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ABSTRACT 

This paper introduces a methodology for the design, testing 

and assessment of incipient failure detection techniques for 

failing components/systems of critical engineered 

systems/processes masked or hidden by feedback control 

loops. It is recognized that the optimum operation of critical 

assets (aircraft, autonomous systems, industrial processes, 

etc.) may be compromised by feedback control loops, which 

mask severe fault modes while compensating for typical 

disturbances. Detrimental consequences of such occurrences 

include the inability to detect expeditiously and accurately 

incipient failures, loss of control, and inefficient operation 

of assets in the form of fuel overconsumption and adverse 

environmental impact. A novel control-theoretic framework 

is presented to address the masking problem. Major 

elements of the proposed approach are employed in 

simulation to develop, implement and validate how faults 

are distinguished from disturbances and how faults are 

detected and identified with performance guarantees, i.e., 

prescribed confidence level and given false alarm rate. 

The demonstration and validity of the tools/methods 

employed necessitates, in addition to the theoretical content, 

a suitable testbed. We have employed and describe briefly 

in this paper an autonomous hovercraft as the test prototype. 

We pursue a systems engineering process to design, 

construct and test the prototype hovercraft instrumented 

appropriately for purposes of fault injection, monitoring and 

the presence of control loops. We emphasize a general 

control-theoretic framework to the masking problem and 

utilize a simulation environment to derive results and 

illustrate the efficacy of the methodology. 

1. INTRODUCTION 

There is an urgent need to improve the autonomy, safety, 

survivability and availability of such critical assets as 

aircraft and robotic systems that are subjected to internal 

and/or external threats in the execution of a mission. Design 

for autonomy, i.e. the design and operation of critical 

systems for improved reliability, availability, 

maintainability, and safety is taking central stage in NASA’s 

operational needs process development and implementation 

by responding to significant and urgent safety situations. 

_____________________ 
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The industrial and commercial sectors are faced with similar 

needs and challenges. 

Major advances have been reported in recent years aimed to 

ascertain that such critical assets are performing reliably and 

robustly with optimum efficiency and reduced operator 

workload. Yet, despite these technological advances, 

significant improvements are needed to increase their 

operational readiness, improve their availability, reduce the 

operator workload, etc. The underlying technical idea is to 

improve autonomy and performance attributes of unmanned 

and manned systems, among others, develop and install on-

platform rigorous and verifiable health management systems 

and assess the impact of feedback control loops on hidden 

faults or incipient failures. We propose in this paper an 

intelligent strategy for the design of critical systems from 

the aerospace and industrial domains that builds upon 

concepts from Prognostics and Health Management (PHM) 

technologies, a novel autonomous prototype (hovercraft) 

used  as the testbed and focuses on an important problem 

that is the detection of severe fault modes “masked” or 

hidden by control loops. Faults or incipient failures, 

typically observed in aerospace and other complex systems, 

may significantly degrade the performance, efficiency, and 

integrity of these assets. The accurate and expedient 

detection of fault modes masked by control loops and the 

resolution of overlapping features between faults and 

disturbances may contribute to improved and early detection 

of fault modes that will assist in predicting accurately the 

remaining useful life of failing components.   

 

Aspects of the proposed framework for improved system 

autonomy and performance and its constituent modules are 

summarized below: 

 Methods and tools for detection of masked faults and 

the discrimination between severe faults and 

disturbances typically encountered and compensated by 

control loops.  

 A novel autonomous vehicle (hovercraft) platform 

specifically designed and built to highlight aspects of 

autonomy, flexibility, and ease of experimentation. 

 A rigorous simulation and visualization framework 

accompanied by a series of experiments designed to 

accommodate fault modes masked by control loops and 

fully instrumented to monitor all relevant parameters.  

 Consideration of the system dynamics and 

navigation/guidance/control aspects governing the 

vehicle’s behavior facilitating a realistic simulation 

environment. 

 Performance and effectiveness metrics are represented 

as fault signatures, whose presence is made possible via 

feature extraction techniques. This helps to support the 

optimum design and validation of the detection 

algorithms. 

 The integrated integrity management architecture is 

implemented on-platform and run in real time. Generic 

aspects of the approach may be readily applied to other 

air systems. 

The methodology introduced in this paper is generic and 

applicable to a large class of engineered systems that are 

configured to include feedback control loops. Furthermore, 

system (plant) subsystems/components are assumed to be 

subjected to monotonically degrading fault modes that may 

lead to detrimental or even catastrophic failures. Typical 

systems that exhibit such behaviors include autonomous 

platforms (unmanned aerial, ground and undersea vehicles), 

aircraft and a large category of large complex industrial 

processes.  

We pursue a dual approach: simulation and experimentation 

with an actual laboratory hovercraft for proof of concept and 

validation purposes. We describe briefly in the sequel the 

vehicle design concepts, the masking framework, and the 

method used to address the fault detection problem. The 

methodology introduced in this paper, does not necessitate 

assumptions of linearity in system dynamics and Gaussian 

noise profiles. It is assumed that an on-board and/or 

telemetering sensor suite is available to measure various 

system and subsystem states, from which features may be 

derived to enable diagnosing of one or more faults. Models 

and experimental data are employed for implementation and 

validation purposes.  An appropriate metric to quantify the 

masking effect relates to a norm of the fault magnitude 

compared to a similar norm describing the noise or 

disturbance typically observed. One such metric would be a 

measure of the “fault signature to the noise/disturbance 

ratio”. This is described in detail in Sec. 4. From a control-

theoretic perspective, this metric is viewed as the innovation 

or discrepancy between the fault and the disturbance term. 

Test and simulation results are employed to demonstrate the 

efficacy of the approach. 

2. THE MASKING PROBLEM 

It is well recognized that feedback control loops are 

designed to compensate for system internal disturbances 

resulting in improved tracking or set point following. Thus, 

we exploit reduced system sensitivity to disturbances when 

the loop is closed. Fault modes affecting system 

components may be viewed as a form of “disturbance” 

when such faults are masked or hidden by control loops. 

Detrimental consequences of such occurrences include the 

inability to detect expeditiously and accurately incipient 

failure or fault modes, possible loss of control while system 

stability may be compromised resulting in inefficient 

operation of critical assets in the form, for example, of fuel 

overconsumption (aircraft, unmanned systems, etc.). Recent 

studies have highlighted the need to attend to such events as 
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aircraft thrust asymmetry, masked fault modes, and their 

consequent impact on environmental conditions (Srivastava, 

2012).  

Several questions arise when addressing the masked fault 

mode concerns: Is it possible to differentiate between the 

early initiation and progression of a fault inside control 

loops and typical system disturbances? We address this 

issue by considering significant differences in the frequency 

and time domains between characteristic signatures 

(features) or Condition Indicators (CIs) extracted from raw 

data for the two events. A second question may be stated as 

follows: Is it possible to estimate the bounds of influence or 

limiting state imposed by the control loop’s compensating 

effect? This question may be answered via experimentation 

on an actual prototype or through analytical methods, which 

will be addressed in the sequel. Experimental testing (with 

the autonomous hovercraft system, in our case) or a high 

fidelity simulation model (3D simulation with a physics 

engine for the hovercraft prototype) may reveal those 

bounds beyond which the fault is detected with high 

confidence via appropriate external sensing modalities. The 

experiments are designed to provide smooth and continuous 

changes, in the inserted fault mode until the diagnostic 

routines declare the presence of the fault with prescribed 

confidence or accuracy (say 90%) and given false alarm rate 

(5%, for example). Analytical tools from systems theory 

(the circle criterion, for example), nonlinear dynamics, and 

concepts from Lyapunov stability theory (Ioannou & Sun, 

1996; Khalil, 2002) may be exploited to resolve this 

dilemma in both the linear and nonlinear domains. A 

feasible data-driven approach to differentiate between 

“normal” disturbances and fault modes may build upon 

actual data and analysis tools in the frequency domain 

where the characteristic signature of a fault can be 

differentiated from the corresponding one for a disturbance. 

A control-theoretic framework to differentiate between 

faults and typical disturbances is outlined in the following 

section; however a full experimental investigation of this 

issue will be addressed in the sequel. The principal focus of 

this contribution is on introducing the experimental methods 

and tools used for demonstrating the masking effect and 

exhibiting its impact on system behaviors. Moreover, the 

study presents a novel methodology to detect such masked 

fault modes.  

To illustrate the masking problem, a series of simulations 

were conducted using the aforementioned simulation model 

in 3D robot simulation software Gazebo. In each simulation 

five set points were given to the guidance program of the 

hovercraft. The set points are the centers of the red circles 

shown in Figure 1. Once the hovercraft enters a circle, it is 

guided to the next set point using the LOS guidance law. 

The simulations were done in three settings: normal, open 

loop, and closed loop. In the normal setting the hovercraft 

experienced no fault and followed the trajectory indicated 

with the solid line. During this simulation the thrusts that 

the control program commanded to the two motors were 

recorded, and in the next simulation the recorded thrusts 

were applied to the hovercraft. This setting is referred to the 

open loop simulation in Figure 1. Therefore, with this 

setting there was no feedback in the control loop. 

In this open loop simulation, a fault was assumed to occur 

on the left motor and that the left thrust was reduced by 20% 

due to the fault. In this case, as indicated with the dash-dot 

line, the hovercraft fails to follow the set points, and it 

becomes evident after the second set point that the 

hovercraft experiences an abnormality. On the contrary, 

when the feedback controller compensates the error in the 

trajectory due to the fault, as indicated with the dashed line, 

the hovercraft is able to follow the set points, and the fault is 

masked. This case study demonstrates the need of a fault 

detection and identification (FDI) technique that can reveal 

faults masked by feedback controllers. 

 

Figure 1. Fault Masking Problem 

2.1. The Control-Theoretic Framework to Differentiate 

Faults from Disturbances 

The control-theoretic framework is informed by enlisting 

model-based fault detection and isolation methods proposed 

by various investigators over the past decades (Dinca, 

Aldemir, & Rizzoni, 1999; Isermann, 1984; Jones, 1973; 

Massoumnia, Verghese, & Willsky, 1989; Willsky, 1976). 

Among them, Kalman filtering and its variants, failure 

sensitive filters, multiple hypotheses filter-detection and 

isolation methods, jump process formulations and 

innovation based detection systems have been proposed and 

applied to a variety of engineering processes. The general 

structure of model-based methods builds upon analytical 

redundancy, definition of residuals, i.e. the differences 

between the sensory measurements and analytically 

obtained values. From our perspective, it is essential to 

consider the deviation of the residuals from white noise: the 

combined result of noise/disturbance and fault, assuming 

that the fault signature is a logical pattern showing which 

residuals are normal or which ones result from fault 

conditions. 

Start 
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Figure 2. Failure detection system involving a failure 

sensitive primary filter (here,   denotes information 

concerning detected failures). 

Figure 2 depicts a typical failure detection system involving 

a failure-sensitive filter. Failure sensitive filters track the 

system sensitivity to new data, reflect the presence of abrupt 

changes in the filter behavior and are applicable to a wide 

variety of faults/failures. Multiple hypotheses filter 

detection methods rely on a bank of linear filters based on 

different system hypotheses. They employ a wide range of 

adaptive estimation and failure detection strategies and aim 

at both system identification and state estimation. 

In general, the system dynamics may be described by a 

nonlinear stochastic model of the form: 

                                          (1) 

where x(t) is the state of the system, u(t) is the control input, 

xc(t) is a measure of the fault dimension, specifically an 

internal motor resistance in these experiments; n(t) 

represents unmodeled dynamics and modeling errors; and 

ω(t) is the disturbance term. The difference xc(t) – ω(t) is a 

representation of the innovation or discrepancy between the 

fault value at time t and the disturbance. Dynamic response 

due to a fault, xc(t), is masked by the disturbance when the 

fault is below a specific threshold, and therefore the fault 

will not affect the modeled system dynamics. 

The particle filtering formulation pursued in this paper 

avoids linearity and Gaussian noise assumptions typically 

found in most fault diagnosis and identification methods.  

The fault progression is often nonlinear and, consequently, 

the model should be nonlinear as well. Thus, the diagnostic 

model is described by 

                             (2) 

xd(t) represents two Boolean terms that correspond to 

normal (no-fault) and fault condition. It is employed to 

declare the fault condition when the innovation xc(t) – ω(t) 

reaches a specified threshold. The latter is determined by a 

stated confidence level and given false alarm rate. The 

particle filtering scheme for fault diagnosis allows for an 

easy and convenient determination of the confidence level 

in terms of overlapping areas between the fault and 

disturbance pdfs. 

The available measurements are denoted by y(t): 

                         (3) 

where v(t) represents the measurement noise. 

An alternative representation of the fault progression model 

that includes the impact of load or fatigue stresses on the 

progression of the fault dimension is expressed as: 

                               (4) 

where β is the time-varying parameter that describes the 

effect of stress conditions. 

A particle-filter-based fault detection routine using the 

model allows for a statistical characterization of both 

Boolean and continuous-valued states, as new feature data 

(measurements) are received. As a result, at any given 

instant of time, this framework will provide an estimate of 

the probability masses associated with each fault mode, as 

well as a pdf estimate for meaningful physical variables in 

the system. Once this information is available within the 

fault detection module, it is conveniently processed to 

generate proper fault alarms and to inform about the 

statistical confidence of the detection routine. The outputs of 

the detection module may be defined as the expectations of 

the Boolean states in xd(t). This approach provides a 

recursively updated estimate of the probability for each fault 

condition considered in the analysis. These expectations 

may activate alarm indicators if they exceed appropriate 

thresholds for the probability of detection (typically 90% or 

95%). This is a particularly useful approach when the 

normal operation of the system is defined through a 

dynamic state-space model. In addition, it is also possible to 

define the output of the detection module as the statistical 

confidence needed to declare the fault via hypothesis 

testing. This test is performed employing the pdf estimate of 

the continuous valued state in model (1) and another pdf 

defining the system disturbance. This approach allows for 

the inclusion of variables with a physical meaning into the 

decision-making procedure. Additionally, it is particularly 

useful when diagnosing deviations from a specified set-

point, since historical data can be used to build the 

disturbance pdf. 

2.2. Particle Filtering for Diagnosis – Distinguishing 

Faults from Disturbances 

Fault detection and identification involves the use of a 

feature vector (observations) to determine the operating 

conditions (state) of a system and the causes for deviations 

from desired behavioral patterns. The same fundamental 

framework is employed to differentiate between faults and 

system disturbances and declare a fault with confidence 

when its state pdf deviates from the one corresponding to 

the disturbance. Particle filtering approximates the state pdf 

by using samples or “particles” having associated discrete 

probability masses (“weights”),   
 . 
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Figure 3. Schematic Diagram of the Closed-loop System 

In the closed-loop system, Figure 3, the direct path consists 

of the controller, the actuator and the plant (system), of 

which the latter two may contain a fault. For example, in the 

hovercraft model, the plant could be the motor driving the 

thruster fan or the motor-fan combination or even the total 

hovercraft model with its motion dynamics. Feedback 

control reduces the sensitivity of the system output to 

changes in the components of the direct path, disturbances 

affecting the system, and noise. As potential faults exist in 

this diagram as unmodeled dynamics within the actuators or 

mechanical system, they are unrecognizable from 

disturbances to the controller and may be masked by the 

control law. 

2.3. The Solution Method 

Figure 4 depicts a conceptual schematic of a particle 

filtering framework for fault diagnosis and, eventually, 

filtering of the innovation term, xc(t) – ω(t). Available and 

recommended sensors, specifically designed to monitor fault 

conditions, and the feature extraction module provide the 

sequential observation (or measurement) data of the fault 

growth process      at time instant t = k. 

                                       (5) 

where               is the probability density function of 

    . The fault dimension at time t = k is written as: 

                         

                                     
(6) 

with                       representing the 

corresponding pdf. It is from this fault progression model 

that the diagnostic model in (2) may be derived. 

The first part of the approach is state estimation, i.e., 

estimating the current fault dimension and other important 

changing parameters of the environment. The a priori state 

estimation is generated from the knowledge of the previous 

state estimation and the process model according to 

 

                

                                            
(7) 

Incorporating the observation data      into the a priori 

state estimate                 produces the posterior 

state estimation               

              
                            

              
 (8) 

where 

               

                                            
(9) 

 

Figure 4. Particle Filtering Approach for Fault Diagnosis – 

Differentiating Between Faults and Disturbance 
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The posterior result is a better estimate and adapts to 

changing data characteristics. 

In general, no closed-form solution exists for estimating the 

state from the above equation except in the special case 

where the system dynamic model is linear, and the noise 

processes      and      are Gaussian. In this case, the 

Kalman filter is the optimal solution. For the diagnosis of 

complex systems, because of the nonlinear nature and 

ambiguity of the underlying dynamics of the physical 

systems, these functions are nonlinear and non-Gaussian, 

and hence, the Kalman filter cannot be used directly. 

Particle filtering approximates probability distributions 

using samples or “particles” having associated discrete 

probability masses. As the number of particles becomes 

very large this set of samples and weights tends to the true 

distribution, and the particle filter become the optimal 

Bayesian solution. Unfortunately, it is often not possible and 

too computationally expensive to sample directly from the 

posterior distribution. This problem is circumvented by 

assuming a known, easy to sample, importance distribution 

             . The real distributions would then be 

approximated by the importance distribution and the 

corresponding normalized importance weights for the ith 

sample    
        

      

                     
                

     

 

   

 (10) 

In the posterior state estimation, we need to update the 

importance weights. The update procedure is given by 

           
                             

                    
 (11) 

A common choice is to select the prior distribution as 

                                       . This 

procedure, referred to as Sequential Importance Sampling 

(SIS), often suffers from degeneracy problems.  A selection 

step (resampling) may be introduced to eliminate particles 

with low importance ratios and reward those with high 

ratios. The resampling procedure maps the previously 

weighted random measure    
            

       onto a new 

equally weighted random measure    
          , by 

sampling again uniformly from the particle set    
        

       with respective probabilities     
           . 

In the current study, the measurements are identical to the 

feature. The feature vector may be extracted from data 

(measurements) in general or a number of suitable features 

may be fused into a single one and represented by     . 

Thus, the fault evolution       is the same in this case as the 

feature       The distribution pdf is computed from 

historical data or system measurements under normal 

operating conditions. It may be time-varying or assumed to 

be stochastic without a time-varying profile. The procedure 

starts with the output measurements (or the feature values) 

whose pdf combines the fault mode and the disturbance. A 

schematic representation of the two (normalized) pdfs is 

shown in Figure 5. 

 

Figure 5. A Concept of Innovation Between Faults and 

Disturbance 

As a first approximation, we may consider a linear 

stochastic model (system dynamics) of the form:  

                                      (12) 

The particle filtering technique, as mentioned previously, 

addresses the nonlinear formulation and makes no 

assumptions beyond those dictated by the approximation of 

the actual pdf in terms of a discreet particle population. 

Thus, this approach exploits data and disturbance/noise 

profiles as they appear in the real system (hovercraft 

platform, in our case). 

We are focusing in this paper on the fault model addressing 

the development and application of fault features or 

condition indicators, and fault diagnostic strategies as 

applied to the hovercraft platform. Distinguishing or 

discriminating between faults and system disturbances is 

viewed from an experimental, data-driven approach using 

the system simulation as the test platform. The filter 

problem may be addressed in the same particle filtering 

based detection scheme by considering the innovation or 

discrepancy depicted in Equation 1 where the fault and 

disturbance are expressed in probabilistic terms as 

probability density functions. The control-theoretic 

approach proceeds in the following steps. First, a no-fault 

condition is considered and data are used to establish a 

baseline representative of the disturbance/noise present in 

the system. The disturbance profile and a suitable 

probability density function are derived from experimental 

data and subsequently employed in the simulation. Second, 

the next step involves the extraction from pre-processed 

data of a feature vector (as detailed later in the paper) in the 

time and frequency domains that is focusing on the system’s 

faulty behavior. The innovation              is filtered 

next using the particle filtering framework to determine the 

time instant when the fault signature is distinguished with 
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prescribed confidence and given false alarm rate from the 

disturbance. 

3. THE AUTONOMOUS PLATFORM: HOVERCRAFT 

We have designed and built a novel autonomous system-a 

hovercraft, shown in Figure 6.  We are exploiting features of 

autonomy, flexibility, and data availability to demonstrate 

how fault modes are injected, monitored and distinguished 

from disturbances. The hovercraft is instrumented to 

monitor internal and external events continuously while 

appropriate software is used to detect fault conditions. 

Of particular interest are those concepts that will allow the 

detection of fault modes masked or hidden by feedback 

control loops. Care has been taken in the design of sensors, 

actuators, and navigation/control algorithms to enable the 

injection of critical faults and the demonstration of the 

“masking” effect. The enabling technologies will improve 

the vehicle’s autonomy attributes and permit the 

development, design, and implementation of novel 

autonomous systems. 

The hovercraft hardware platform consists of a Pandaboard 

(Pandaboard, 2013), a low powered single-board computer,  

used for onboard computing. Robot Operating System 

(ROS) (Quigley et al., 2009) is used as middleware that 

connects various software modules such as localization, a 

position controller, and hardware drivers. For indoor 

localization HectorSLAM (Kohlbrecher, von Stryk, Meyer, 

& Klingauf, 2011) is employed. One advantage of using 

HectorSLAM is that localization and mapping can be done 

simultaneously without odometry information and with only 

LIDAR. For outdoor operations IMU and GPS can be added 

to improve localization results. 

 

Figure 6. Hovercraft prototype. 

 

Figure 7. Control system block diagram. 

The position control is carried out by a line-of-sight (LOS) 

guidance law adapted from Breivik and Fossen (Breivik & 

Fossen, 2008) and a dynamic inversion controller. The LOS 

guidance law determines a desired surge speed and yaw 

angle, and the dynamic inversion controller generates the 

motor command that is required to meet the two desired 

properties. Nonlinear techniques such as the dynamic 

inversion heavily rely on accurate knowledge of plant 

dynamics and are often vulnerable to modeling errors 

(Brinker & Wise, 2012). To enhance robustness of the 

controller adaptation logic based on an artificial neural 

network is added to the controller. The adaptation logic 

handles various sources of uncertainties such as unmodeled 

dynamics and nonlinearities (Adams & Banda, 1993; 

Brinker & Wise, 2012; Buffington, Adams, & Banda, 

1993). A block diagram of the hovercraft control loop is 

shown in Figure 7.  The hovercraft is represented here by 

the mechanical system; the thruster motors 1 and 2 drive the 

fans that generate the forward thrust component; control 

signals V1 and V2 drive motors 1 and 2, respectively. The 

controller decided upon monitors the current vehicle state 

(position, x, y; velocity, vx, vy; and heading, ψ) and, in the 

event of a discrepancy, generates command signals to 

correct for such deviations. The controller produces proper 

control signals that minimize the errors between the desired 

states from the reference model and the actual states of the 

hovercraft. 

For communication between the hovercraft and a ground 

control center, the hovercraft is equipped with a wireless 

router. The body of the hovercraft is made of plywood, and 

the skirt is made of nylon. The nylon skirt is sealed with 

silicon for better air-tightness. 

To facilitate this study the hovercraft hardware was 

simulated in high fidelity 3D robot simulator Gazebo 

(Koenig & Howard, 2004). Gazebo solves rigid body 

dynamics using open-source physics engine Open Dynamics 

Engine (ODE) (OpenDynamicsEngine, 2013). In addition, 

Gazebo already contains various sensor models so that it is 

easy to simulate a robot with various sensors in the same 

way as in real hardware tests. Figure 8 shows the hovercraft 

model in an environment simulated using Gazebo. 
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Figure 8. Gazebo simulation environment. 

3.1. Hovercraft Configuration 

The hovercraft is actuated by two independent uni-

directional thrusters that are symmetrically located with 

respect to the plane of symmetry of the vehicle. This 

configuration is generating the hovercraft's surge force and 

yaw moment. Since there is no direct control input applied 

to the sway motion the hovercraft is classified as an under-

actuated system. The input of each thruster is a voltage 

signal that controls an electrical motor. The motor speed is 

operating the thruster's propeller that generates the 

propulsion force. Four lift fans are used to provide the 

vehicle’s hover (upward) motion. The hovercraft model is 

divided into two parts. The first subsystem is related to the 

force and moment generation process. The second 

subsystem is associated with the hovercraft's motion 

dynamics. The two subsystems and their connections are 

shown in Figure 9.  

 

Figure 9. Hovercraft dynamics model. 

The first step towards the development of the hovercraft's 

equations of motion is the definition of two reference 

frames. Figure 10 shows an inertial frame, x and y, and a 

hovercraft body fixed from, xb and yb. 

We consider only the planar 2-D motion of the vehicle 

disregarding the pitch, roll, and heave motion components. 

Denote by   the hovercraft angular velocity and by     the 

surge and sway velocities, respectively. From standard 

results, the hovercraft dynamic equations, with respect to 

the body fixed frame, are 

              
           
        

(13) 

where   denotes the net surge force,   the net yaw moment, 

  is the mass of the hovercraft,   is the inertia of the 

hovercraft (assuming symmetry with respect to the principal 

axis), and    is additive noise due to disturbances. 

 

Figure 10. Schematic of the hovercraft vehicle in Earth-

fixed and body-fixed frames. 

The two propulsion thrusts are produced by two identical 

fans that are operated by two identical motors. The last step 

of the modeling process is to include a simplified model of 

these motors. Denote by   the voltage applied to the fan 

motor. This voltage is the output from the control system. 

From standard results, the electrical part of the motor is 

described by the following equation: 

            (14) 

where    is the motor current,    is the motor resistance 

and      is the back-emf voltage of the motor. The 

available measurements are all the states related to the 

motion of the vehicle      ,  , the applied voltages to each 

motor         and the produced currents    
    

  . Since the 

produced current of each motor is considered a measured 

quantity, the current-voltage mapping is required by the 

fault detection and identification approach. Therefore, 

   
 

        

  (15) 

where b is a constant, Kt is the motor torque constant, and 

KΩ is the back emf constant. 

4. DIAGNOSIS OF MASKED FAULTS 

4.1. Fault Model 

The fault under consideration is an increase of the resistance 

value,   , of one of the motors. As the resistance increases 

in one motor, the motor with the fault produces less thrust 

force. However, the controller compensates for the fault 

considering it as an error between the reference model and 

the system states. It makes it difficult to distinguish the fault 

and the disturbances from the external environment.  



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

9 

The proposed analysis involves faults that are monotonically 

increasing functions of the load conditions. It is generally 

acknowledged that fault modes in engineered systems 

exhibit a monotonically increasing trend. The fault growth 

may pause or remain constant for short periods of time but 

the fault dimension (crack length, insulation breakdown, 

etc., as typical examples) will not exhibit a downward trend. 

A monotonic fault behavior ensures a surjective feature-to-

fault mapping, or that the feature domain may be mapped 

onto the fault domain to produce an indirect measure of the 

fault. In this case study the load variable is the faulty motor 

current,   . Therefore, the generic growth rate of the fault 

under consideration is given by the following differential 

equation: 

   
 

  
       

 
     (16) 

with   
 

       . By    we denote the time instant that 

the fault initiates, while   
 

 is the value of the faulty 

resistance. Furthermore,       
 

            
 

      . 

The latter condition guarantees that the fault value is non-

decreasing over time. Hence, the faulty resistance can be 

written as   
           

    , where    is the healthy 

value of the resistance and    
            . 

4.2. Feature Extraction 

Feature or condition indicator selection and extraction 

constitutes the cornerstone for accurate and reliable fault 

diagnosis. A feature or condition indicator is an extracted 

value from a signal that describes the status of the process 

that fault diagnosis is applied to. Fault diagnosis depends 

mainly on extracting a set of features from sensor data that 

can distinguish between fault classes of interest, detect and 

isolate a particular fault at its early initiation stages (Zhang 

et al., 2011). Feature extraction may be approached in a 

number of ways, but in general, it is highly dependent on 

the application domain. In the hovercraft system, feature 

extraction is conducive to derivation from physics-of-failure 

mechanisms. The physical system is modeled with as much 

fidelity as needed to determine the effects of the fault on 

measurable quantities, for instance the effect of a change in 

motor thrust output on the velocity or orientation of the 

vehicle as compared to the expected system dynamics. 

Feature evaluation and selection metrics include the 

monotonicity of the relationship between the feature and the 

true fault size and the variance (or covariance) of the feature 

at discrete fault levels compared to the feature range 

(Voulgaris & Sconyers, 2010). A feature is sufficient if it 

shows a similar growth pattern to that of the ground truth 

data. 

With the possibility of alternate fault types or multiple 

simultaneous faults, it is assumed that a feature or set of 

features may be estimated to identify only the fault of 

interest. Alternatively, a single feature may accommodate a 

set of similar fault types, such as a set of faults that have 

similar characteristics at the component or system level. For 

this paper, only one fault is being examined. 

As indicated previously, the fault under consideration is the 

change in the resistance value of one of the two motors. The 

hovercraft model is composed of two interconnected 

subsystems: the force/moment generation and the motion 

dynamics subsystems. The faulty resistance affects the 

force/moment generation directly, and subsequently the 

vehicle's motion. The goal of this paper is to use features 

extracted from signals generated by both subsystems. The 

first feature belongs to the force/moment generation 

subsystem and is the resistance value itself. In particular, we 

may write: 

      
 
    

 
 

 

  
 

    

 
 (17) 

The second feature is derived from the motion dynamic 

subsystems. Both features are based on the dynamic 

equation of motion of the vehicle given in (13). The input-

output description of each thruster is given by 

         (18) 

where 

      
    

        

 (19) 

Therefore from (13), the dynamics of the surge velocity can 

be written as 

           
         

        (20) 

Assuming that we monitor the left motor for a fault and 

considering the above equation, the second feature is 

       
 

      
 

  
             

    

  
 (21) 

The second feature is the mapping from the voltage-to-

thrust. This feature is valid only when      indicating the 

intuitive notion that the faulty motor must be operating in 

order to diagnose the fault. Similarly the dynamics of the 

angular motion are given by 

   
 

 
     

         
      (22) 

The voltage-to-thrust mapping can be also derived by the 

angular motion as well. More specifically, 

       
 

      
 
  

            
    

  
 (23) 

Features      and       are monitoring the same quantity. 

However, in each case different sensors are used. The goal 

of this paper is to conduct fault diagnosis by monitoring two 

of the vehicle’s subsystems. Therefore, from a theoretical 

perspective, either the tuple            or            can be 
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used by the detection algorithm. Typically, for the sensing 

of the vehicle's motion an Inertial Measurement Unit (IMU) 

is used. In such cases, it is preferable to monitor motion 

variables related to the angular motion of the vehicle since 

they typically have better accuracy compared to variables 

related to the linear motion and are less affected by 

disturbances and varying environmental conditions. 

The angular response feature     empirically estimates the 

deviation in expected angular velocity according to thrust 

effort supplied to the fan motors and the current measured 

angular velocity. The higher order angular response is less 

subjected to deviations in the environment, therefore the 

extraction of     is as follows: 

      
 

                       
   

      (24) 

where         is a root-mean-square operation over a 

sliding window of size   samples,   ,    are the left and 

right thrust efforts,   is the heading of the hovercraft, and   

is a normalizing constant that is adapted during healthy 

operation. Because the feature is extracted using a window 

of   samples, the feature has an accuracy and a lag 

proportional to the size of the window. 

4.3. The Fault Detection and Identification Algorithm 

A fault diagnosis procedure involves the tasks of fault 

detection and isolation, and fault identification (assessment 

of the severity of the fault). In general, this procedure may 

be interpreted as the fusion and utilization of the 

information present in a feature vector (measurements), with 

the objective of determining the operating condition (state) 

of a system and the causes for deviations from particularly 

desired behavioral patterns. Several ways to categorize FDI 

techniques can be found in literature. FDI techniques are 

classified according to the way that data is used to describe 

the behavior of the system: data-driven or model-based 

approaches. 

Data-driven FDI techniques usually rely on signal 

processing and knowledge-based methodologies to extract 

the information hidden in the feature vector (also referred to 

as measurements). In this case, the classification/prediction 

procedure may be performed on the basis of variables that 

have little (or sometimes completely lack of) physical 

meaning. On the other hand, model-based techniques, as the 

name implies, use a description of a system (models based 

on first principles or physical laws) to determine the current 

operating condition. 

A compromise between both classes of FDI techniques is 

often needed when dealing with complex nonlinear systems, 

given the difficulty of collecting useful faulty data (a critical 

aspect in any data-driven FDI approach) and the expertise 

needed to build a reliable model of the monitored system (a 

key issue in a model-based FDI approach). 

From a nonlinear Bayesian state estimation standpoint, this 

compromise between data-driven and model-based 

techniques may be accomplished by the use of a particle 

filter (PF) based module built upon the dynamic state model 

describing the time progression or evolution of the fault 

(Orchard, 2007; Orchard & Vachtsevanos, 2007, 2009). The 

fault progression is often nonlinear and, consequently, the 

model should be nonlinear as well. Thus, the diagnostic 

model is described in (2). 

Since the noise signal      is a measure of uncertainty 

associated with Boolean states, it is advantageous to define 

its probability density through a random variable with 

bounded domain. For simplicity,      may be assumed to be 

uniform white noise (Orchard, 2007). The PF approach 

using the above model allows statistical characterization of 

both Boolean and continuous-valued states, as new feature 

data (measurements) are received. As a result, at any given 

instant of time, this framework provides an estimate of the 

probability densities associated with each fault mode, as 

well as a probability distribution function (PDF) estimate 

for meaningful physical variables in the system. Hypothesis 

testing through calculating current and baseline PDFs is 

used to generate fault alarms, and other statistical analysis 

tools may be used to extract additional information about 

the detection and diagnostic results, discussed in the sequel. 

One particular advantage of the proposed particle filtering 

approach is the ability to characterize the evolution in time 

of the above mentioned nonlinear model through 

modification of the probability masses associated with each 

particle, as new data from fault indicators are received. 

The PF based FDI module is implemented accordingly 

using a non-linear time growth model given in (16) to 

describe the faulty motor's resistance value. A growth 

function       
 

     is selected that as closely models the 

expected growth pattern as possible, in this case a C
1
-

discontinuous linear growth model. The rate of growth is 

estimated from a priori physics of failure models. The goal 

is for the algorithm to make an early detection of the 

increase to the resistance value (leading to an open-circuit). 

Two main operating conditions are distinguished: The 

normal condition reflects the fact that there is no fault in the 

motor while a faulty condition indicating an unexpected 

growth to the resistance value. Denote by       and      two 

Boolean states that indicate normal and faulty conditions 

respectively. Additional Boolean states may be added for 

larger fault spaces. The nonlinear model is given by 

 
         

         
      

       

       
        (25) 

and 

  
 
                  

 
          

         
           

(26) 
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where 

       
                                    

              
  

                       
      

 
             

    
             

 
          

 
  

 
 

(27) 

In the above equations    is the initial healthy value of the 

resistance. The condition indicators         and        , 

after the addition of     , are thresholded to restrict them to 

Boolean values, with the possibility of changing to new 

values at    . The above system can be written in a more 

compact form as 

                        (28) 

                    (29) 

where                  
 
 
 

,              
 , and   

       . The steps of the PF algorithm execution are 

described below: 

1. From (28) generate   state estimates (particles) denoted 

by        where        . 

2. From (29) calculate the feature estimates, substituting 

the particles          to the mapping     . 

3. Calculate the   errors                 with 

      
     

  
 

, and assign to each particle        a 

weight           
      

  , where      denotes the 

standard normal distribution. 

4. Normalize the weights      . The normalized weights 

       represent the discrete probability masses of each 

state estimate. 

5. Calculate the final state estimate       using weighted 

sum of all the states       . 

 

Figure 11. Block diagram of the PF algorithm for fault 

estimation. (Raptis & Vachtsevanos, 2011) 

An important part of the PF algorithm is the re-sampling 

procedure. Re-sampling is an action that takes place to 

counteract the degeneracy of the particles caused by 

estimates that have very low weights. A block diagram of 

the PF algorithm is given in Figure 11. 

5. RESULTS 

The performance of the proposed FDI algorithm was tested 

via numerical simulations and hardware tests. The 

hovercraft dynamics are described in (12) and the thrusters 

model in (13) and (14). The resistance fault is seeded to the 

left motor according to (15). The actual fault can be seen in 

Figure 12. The number of particles used for the estimator 

was      . 

 

Figure 12. Particle filter-based fault estimate and actual 

seeded fault value during simulation test. 

The estimator fault value can be seen in Figure 12. Besides 

detecting the faulty condition, it is desired to obtain some 

measure of the statistical confidence of the alarm signal. For 

this reason, an additional output will be extracted from the 

FDI module. This output is the statistical confidence needed 

to declare the fault via hypothesis testing (  : The motor is 

healthy versus   : The motor is faulty). The latter output 

needs another PDF to be considered as the baseline. The 

statistical parameters of the baseline PDF are derived from 

known healthy data, typically collected from the beginning 

of a component's lifecycle when it is known that no fault 

exists or any fault is negligible. In this case, a normal 

distribution        is used to define this baseline data. The 

standard deviation represents the variation from the mean 

due to the random estimation error of the particle filter. This 

is a component of the total disturbance/noise term we are 

attempting to distinguish from the current fault. This 

indicator is essentially equivalent to an estimate of type II 

error, or equivalently the probability of detection. 

The statistical confidence can be seen in Figure 13. 

Customer specifications for false alarm rate and fault 

detection confidence (constant red line) are respectively 

translated into acceptable margins for the type I and type II 

Weight update

Normalize

Resampling
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errors (varying blue line) in the detection routine. If 

additional information is required, it is possible to compute 

the value of the Fisher Discriminant Ratio (Duda, Hart, & 

Stork, 2000). 

 

Figure 13. Estimator confidence metric derived from type II 

statistical hypothesis testing. 

The baseline PDF of the faulty resistance and the estimated 

one at times t=107sec and t=200sec can be seen in Figure 14 

and Figure 15, respectively. 

 

Figure 14. Baseline (left) and estimated (right) PDFs of the 

faulty resistance at t=107 sec. 

 

Figure 15. Baseline (left) and estimated (right) PDFs of the 

faulty resistance at t=200 sec. 

Hardware tests were designed to observe the efficacy of the 

features on-board the physical hovercraft system. The motor 

winding fault was seeded as a reduced efficiency in the left 

motor response. This seeded fault was introduced as a 

percentage reduction in thrust effort expected from the 

navigation control output. 

Four discrete fault levels were chosen and the hovercraft 

was commanded to follow the same designated set of 

waypoints for three repetitions at each fault level: 0%, 30%, 

50%, and 70% of thrust loss. Figure 16 shows the statistical 

behavior of angular response feature     (blue bar lines) to 

each fault level during the hardware tests. 

By using the same hardware test data and varying the RMS 

window size (number of samples) for filtering consecutive 

feature-based estimates, we observe the response of feature 

    to variations in vehicle dynamics and environmental 

conditions. Using larger window sizes (Figure 16c), 

variations may be smoothed out, reducing the feature 

variance. The trade-off for increased feature accuracy is a 

larger lag time, as observed in the decrease of feature 

variance with the increase in window size  . A statistical 

profile of the feature response may be empirically derived 

and used to guide the fault size estimation in the diagnostic, 

and eventually prognostic, particle filtering scheme. In 

general, this improved statistical profile may be used to 

enable early fault detection despite input feature lag times. 

 

Figure 16. Feature     versus seeded fault levels: 0%, 30%, 

50%, and 70% fault at varying window size w. 

The feature to fault mapping is also derived from the 

discrete fault level tests (bold red line in Figure 16). The 

feature to fault mapping is used in the diagnostic particle 

filter routine to transform feature-based measurements to the 

fault domain for likelihood comparisons with particle state 

estimations. Estimates in the fault domain have statistical 

uncertainty that is directly proportional to the feature 
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uncertainty. Improved feature accuracy, therefore, improves 

the diagnostic particle filter fault estimation accuracy. 
 

6. CONCLUSIONS 

Incipient failures or faults masked or hidden by feedback 

control loops tend to degrade performance of aerospace and 

other complex systems/processes and may even result in 

instability conditions. The early recognition and accurate 

differentiation of masked faults from typical plant 

disturbances compensated by such control loops may result 

in improved system performance and significant savings the 

operation of complex systems. The masking problem 

requires new and innovative tools and methods to verify the 

existence and impact of this event and the development and 

validation of detection, identification and control strategies 

aimed to remedy adverse situations arising from masking. 

We introduced in this contribution a control-theoretic 

framework for addressing the fault detection and 

differentiation between real faults and system disturbances. 

A laboratory autonomous hovercraft is used as the testbed 

for validation and demonstration purposes. Results are 

encouraging and may encourage further research into this 

important problem area. Such issues as multiple fault modes 

and actual experiments on prototypical platforms will 

enhance the present findings and allow relevant applications 

to large-scale aircraft and autonomous systems. 
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