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ABSTRACT 

This paper presents the implementation of a particle-

filtering-based prognostic framework that allows estimating 

the state-of-charge (SOC) and predicting the discharge time 

of energy storage devices (more specifically lithium-ion 

batteries). The proposed approach uses an empirical state-

space model inspired in the battery phenomenology and 

particle-filtering to study the evolution of the SOC in time; 

adapting the value of unknown model parameters during the 

filtering stage and enabling fast convergence for the state 

estimates that define the initial condition for the prognosis 

stage. SOC prognosis is implemented using a particle-

filtering-based framework that considers a statistical 

characterization of uncertainty for future discharge profiles. 

1. INTRODUCTION 

Energy storage devices (ESDs) play a key role in both 

industrial and military machinery. Consider, for example, 

electronic products commonly associated with daily living 

(laptop computers, communications equipment, GPS, 

domestic robots) and some other more sophisticated pieces 

of equipment and machinery such as pacemakers ground 

and aerial vehicles (manned, tele-commanded and  

unmanned), and satellites. ESDs may be used as primary 

sources of energy or as backup, allowing energizing 

different devices and systems under various operating 

profiles; thus improving their autonomy. 

Particularly nowadays, Lithium-based compounds have 

presented significant advantages over other chemical 

combinations, such as Ni-MH, Ni-Cd and lead, when used 

for the manufacture of ESDs. In part this is explained by the 

fact that Li-Ion ESDs offer larger charge density by unit of 

mass (or volume), allowing to design very compact cells 

that can be easily integrated to small electronic devices; in 

addition, Li-Ion batteries offer extended life cycles and 

limited self-discharge rates (Saha and Goebel, 2009; 

Ranjbar et al., 2012). Due to the exponential increase in the 

use of Li-Ion ESDs within the automotive industry, and the 

projected demand associated to this type of vehicles, the 

concept of “Battery Management Systems” – BMS, 

(Pattipati et al., 2011) – started to become more a necessity 

than a luxury. These systems have as main objective (i) to 

provide and maximize usage time (autonomy) that is 

associated to a discharge cycle, (ii) to reduce battery 

charging times, (iii) to maximize the number of operating 

cycles for the ESD, and (iv) real-time operation, adjusting to 

sudden changes in charge/discharge conditions. To achieve 

this, BMS must consider at least information about the 

battery “state-of-charge” – SOC (Pattipati et al., 2011), 

the “state-of-health” – SOH (Pattipati et al., 2011), and the 

“remaining useful life” – RUL (Orchard and Vachtsevanos, 

2009) of cells within the pack. On the one hand, knowledge 

about the SOC will help to quantify the autonomy of the 

system (based on some assumptions on the future discharge 

profile). On the other hand, knowledge about the SOH or 

the RUL of specific cells within the battery pack could help 

to decide when to replace or recycle it. 

This article focuses on the problem of estimating and 

predicting the SOC of a Li-Ion ESD. Given that several 

definitions for the concept of SOC can be found in 

literature, it is relevant to mention that this research effort 

defines the SOC as the remnant energy (measured as a 

percentage of the current maximum cell capacity) in the 

battery. The SOC is highly affected by charge/discharge 

rate, temperature, hysteresis effects, usage time and self-

discharge (due to the internal resistance of the cell), which 

transforms this particular prognosis problem into a very 

challenging one. Three specific aspects have to be carefully 

considered when intending to implement an efficient (and 
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effective) SOC prognosis approach: (i) how to model the 

battery, (ii) how to estimate the SOC in a nonlinear, non-

observable system, and (iii) how to predict the impact of 

future discharge profiles in the evolution of SOC in time. 

Several research efforts aim at providing a solution for the 

first two open questions, using empirical, physicochemical, 

or electric models in conjunction with estimation techniques 

based on fuzzy logic (Salkind et al., 1999), neural networks 

(Charkhgard and Farrokhi, 2010), or Bayesian approaches 

such as the extended Kalman filter – EKF (Saha and 

Goebel, 2009; Vinh Do et al., 2009). 

This work has selected a combination of an empirical state-

space model inspired in the battery phenomenology and 

Bayesian filtering techniques to study the evolution of the 

SOC in time; adapting and learning the value of unknown 

model parameters during the filtering stage, and enabling 

fast convergence for the state estimates that define the initial 

condition for the SOC prognosis stage. Due to model 

nonlinearities and the existence of non-Gaussian noise 

sources, the proposed approach considers the use of 

sequential Monte Carlo methods in prognosis, a sub-optimal 

filtering technique also known as particle-filtering. SOC 

prognosis is implemented using a particle-filtering-based 

framework (Orchard and Vachtsevanos, 2009) that 

considers uncertainty in the future discharge profile by 

including several possible future scenarios in the 

computation of the discharge time probability density 

function (PDF).  

The structure of the article is as follows. Section 2 presents 

a theoretical framework for the problem of SOC estimation 

and prognosis, as well as failure prognosis using sequential 

Monte Carlo methods. Section 3 focuses on the modeling 

aspects that are required to incorporate the impact of 

different discharge profiles on the battery SOC. Section 4 

shows the obtained results for SOC prognosis when trying 

to estimate the discharge time of a Li-Ion battery that 

energizes a ground robot. Finally, Section 5 presents the 

main conclusions of this research effort. 

2. THEORETICAL FRAMEWORK 

2.1. State-of-Charge Estimation in Lithium-Ion Batteries 

The state-of-charge provides an indicator of the system 

autonomy that directly depends on the remaining battery 

energy and the mission profile; a critical piece of 

information for the design of path planning/control 

strategies in autonomous vehicles. It is for this reason that 

the implementation of SOC estimation and prognostic 

algorithms (Saha and Goebel, 2009; Ranjbar et al., 2012; 

Pattipati et al., 2011; Salkind et al., 1999; Charkhgard and 

Farrokhi, 2010; Vinh Do et al., 2009; Ran et al., 2010; 

Cadar et al., 2009; Qingsheng et al., 2010; Di et al., 2011; 

Tang et al., 2011) is considered the first step towards online 

characterization of both the End-of-Discharge (EoD) time 

and RUL of Li-Ion batteries.  One of the main difficulties in 

SOC estimation is that it cannot be measured directly, and 

thus its value must be inferred from the observation of other 

variables such as the battery current, voltage, temperature, 

state-of-health degradation and self-discharge phenomena 

(Pattipati et al., 2011; Cadar et al., 2009; Qingsheng et al., 

2010; Di et al., 2011). Indeed, the utilization of more 

complex electrochemical models has been only suitable for 

off-line studies, mainly because these models (i) require a 

large number of variables to represent the battery internal 

structure, (ii) assume extremely accurate measurements, and 

(iii) have an elevated computational cost (Pattipati et al., 

2011; Charkhgard and Farrokhi, 2010). Other options for 

SOC monitoring include the open-circuit voltage (OCV) 

method. This approach has the advantage of providing a 

direct relationship between battery SOC and voltage 

measurements – the higher the OCV, the higher the SOC 

(Tang et al., 2011). Unfortunately, the implementation of 

this test requires large resting periods for the battery, 

limiting its use for online applications (Pattipati et al., 2011; 

Charkhgard and Farrokhi, 2010; Di et al., 2011; Tang et al., 

2011). Similarly, the “Electrochemical Impedance 

Spectroscopy” (EIS) (Pattipati et al., 2011; Ran et al., 2010) 

is a noninvasive method that intends to provide a complete 

characterization of the battery internal equivalent circuit. 

However, the implementation of an EIS test requires the 

acquisition of costly equipment (generally found only at 

laboratory test sites), which severely limits its widespread 

use in practice (Dalal et al., 2011). It is for this reason that 

current research efforts for SOC estimation and prognostic 

algorithms have focused on approaches that are mostly 

based on empirical models that incorporate only critical 

phenomenological aspects of the process; i.e., the 

relationship between currents, voltages and temperatures of 

Li-Ion cells. Among these methods, it is worth mentioning 

those that are based on fuzzy logic, neural networks, and 

Bayesian approaches. 

On the one hand, fuzzy logic models have been used for the 

SOC estimation either through the identification of 

equivalent circuit for the battery from EIS data or directly 

from voltage and current measurements (Salkind et al., 

1999). Given that EIS data have proved to be very noisy in 

practice (Saha et al., 2009; Dalal et al., 2011), only the latter 

case represents a reasonable method for online SOC 

estimation and uncertainty characterization. However, even 

in that case, the problem of SOC prediction (related to 

battery prognosis) is still unresolved and mainly treated as a 

curve regression problem (which is insufficient for purposes 

of risk characterization). Neural networks have also been 

used to build a nonlinear relationship between battery 

measurements and the evolution of SOC in time (Pattipati et 

al., 2011; Charkhgard and Farrokhi, 2010; Qingsheng et al., 

2010). These methods, however, do not provide an adequate 

representation for uncertainty in nonlinear systems and thus 

neither can they be used for risk quantification purposes.  
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On the other hand, recent years have seen a growing interest 

in the use of machine learning techniques (e.g., Hamming 

Networks (Lee et al., 2011)) and stochastic filtring 

techniques (unscented Kalman Filter (Santhanagopalan and 

White, 2010), extended Kalman Filter (Hu et al., 2012), and 

unscented particle filter (He et al., 2013)) to estimate the 

SOC and/or parameter degradation of a Li-Ion battery cell 

under a randomly varying loading condition. Suboptimal 

Bayesian methods have proven particularly effective in the 

task of simultaneously incorporate information from noisy 

measurements and characterize the sources of uncertainty 

(Charkhgard and Farrokhi, 2010; Vinh Do et al., 2009; Di et 

al., 2011; Saha et al., 2009; Dalal et al., 2011; Orchard et 

al., 2010). In fact, experience has demonstrated that 

Bayesian state estimators are especially well suited for real-

time estimation problems associated to dynamic state 

models (Saha et al., 2009; Dalal et al., 2011; Orchard et al., 

2010). In addition, these methods also provide a concrete 

characterization of uncertainty sources both in the filtering 

and the prediction stage, a piece of information that is 

required for the generation of a risk measure associated to 

SOC prognosis. Bayesian estimators require a state-space 

model for the dynamic system, and prognostic modules 

based on a state-space formulation for the dynamic system 

are very sensitive to the initial condition of the state vector. 

For this reason, the implementation of accurate online SOC 

estimators is absolutely relevant for the development of 

real-time predictors capable of quantifying the feasibility (as 

well as the cost) of a particular vehicle trajectory. 

Depending on the validity of linear or Gaussian 

assumptions, either an extended Kalman filter or a particle-

filtering (Arulampalam et al., 2002; Andrieu et al., 2001; 

Doucet et al., 2001) approach may be needed. 

To evaluate which is the best option for this particular 

problem, it is first necessary to define a state model that 

represents adequately the dynamics associated to the 

evolution of the battery SOC, for a given usage profile.  

This research has considered for this purpose the problem of 

battery end-of-charge prognosis in a four-wheel ground 

robot. In this scenario, different discharge profiles can be 

verified due to terrain conditions (hills, surface changes) and 

other factors, while the robot autonomously has to perform a 

pre-determined mission. Given that the robot is currently 

configured only for use on 2D, uniform terrain, it is 

necessary to simulate the environment through a variable 

load has been attached to the battery. This variable load is 

made up of three resistors (6.23Ω, 12.5Ω, and 25Ω), each 

wired in parallel to the battery to increase current draw. 

Each resistor can be activated via a relay controlled by the 

onboard computer's data acquisition card. It provides 8 

different loading scenarios progressing linearly in 

magnitude. The onboard computer has a map of simulated 

terrain and when the robot crosses into an area of higher 

simulated difficulty on the map, the onboard computer 

activates a larger loading scenario using the variable load. 

This allows for many simulated terrains while keeping the 

robot in a safe, uniformly flat environment. Online data 

consists of voltage and current measurements (with the 

corresponding timestamp), for a lithium iron phosphate 

(LiFePO4) battery (12.8[V], 2.4[Ah], 14[A] maximum 

discharge current). This experimental setup implies that for 

full speed (700 [mm/s]), the current drained from the battery 

ranges between 1.6025[A] and 5.4738[A] (depending on the 

value of the equivalent resistor that is connected in parallel 

to the battery); at 10% speed (70[mm/s]) the current drained 

from the battery ranges between 0.6006[A] and 4.3971[A]. 

2.2. Particle-Filtering-based Prognosis Framework for 

Faulty Dynamic Nonlinear Systems 

Consider a sequence of probability distributions
0: 1{ ( )}k k kxπ ≥

, 

where it is assumed that 
0:( )k kxπ  can be evaluated pointwise 

up to a normalizing constant. Sequential Monte Carlo 

(SMC) methods, also referred to as particle filters (PF), are 

a class of algorithms designed to approximately obtain 

samples from { }
k

π  sequentially; i.e., to generate a collection 

of N>>1 weighted random samples (particles)
( ) ( )

0: 1{ , }i i

k k i Nw x =�
, ( ) 0, 1i

k
w k≥ ∀ ≥ , satisfying (Andrieu et al., 

2001; Doucet et al., 2001): 

( ) ( )

0: 0: 0: 0:

1

( ) ( ) ( )
N

i i

k k k k k k k kN
i

w x x x dxϕ ϕ π
→∞

=

→∑ ∫ , (1) 

in probability and where 
kϕ  is any 

k
π −integrable function. 

In the particular case of the Bayesian Filtering problem, the 

target distribution 
0: 0: 1:( ) ( | )k k k kx p x yπ =  is the posterior PDF 

of 
0:kX , given a realization of noisy observations 

1: 1:k k
Y y= . 

Let a set of N paths ( )

0: 1 1{ }i

k i Nx − =�
 be available at time 1k − . 

Furthermore, let these paths distribute according to

1 0: 1( )k kq x− −
, also referred to as the importance density 

function at time 1k − .Then, the objective is to efficiently 

obtain a set of N new paths ( )

0: 1{ }i

k i N
x = �
�  distributed according 

to 
0:( )k kxπ �  (Andrieu et al., 2001).  

For this purpose, the current paths ( )

0: 1

i

kx −
 are extended by 

using the kernel 
0: 0: 1 0: 1 0: 1 0: 1( | ) ( ) ( | )k k k k k k k kq x x x x q x xδ− − − −= − ⋅� � � ; 

i.e., 
0: 0: 1( , )k k kx x x−=� � . The importance sampling procedure 

generates consistent estimates for the expectations of any 

function, using the empirical distribution (Doucet et al., 

2001): 

( ) ( )

0: 0: 0: 0:

1

( ) ( )
N

N i i

k k k k k

i

x w x xπ δ
=

= −∑� � , (2) 

where ( ) ( )

0: 0: 0:( )i i

k k k
w w x∝ �  and ( )

0:

1

1
N

i

k

i

w
=

=∑ . 
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The most basic SMC implementation –the sequential 

importance sampling (SIS) particle filter– computes the 

value of the particle weights ( )

0:

i

k
w , by setting the importance 

density function equal to the a priori state transition PDF 

1( | )k kp x x −
� ; i.e., 

0: 0: 1 1( | ) ( | )k k k k kq x x p x x− −=� � . In that manner, 

the weights for the newly generated particles are evaluated 

from the likelihood of new observations. The efficiency of 

the procedure improves as the variance of the importance 

weights is minimized. The choice of the importance density 

function is critical for the performance of the particle filter 

scheme and hence, it should be considered in the filter 

design. 

Prognosis (Engel et al., 2000), and thus the generation of 

long-term prediction, is a problem that goes beyond the 

scope of filtering algorithms since it involves future time 

horizons. Hence, if PF-based algorithms (Orchard et al., 

2009; Edwards et al., 2010; Chen et al., 2011) are to be 

used, it is necessary to propose a procedure with the 

capability to project the current particle population in time 

in the absence of new observations.  

Any adaptive prognosis scheme requires the existence of at 

least one feature providing a measure of the severity of the 

fault condition under analysis – fault dimension (Zhang et 

al., 2011). If many features are available, they can always 

be combined to generate a single signal. In this sense, it is 

always possible to describe the evolution in time of the fault 

dimension through the nonlinear state equation.  

By using the aforementioned state equation to represent the 

evolution of the fault dimension in time, it is possible to 

generate p-ahead long term predictions, using kernel 

functions to reconstruct the estimate of the state PDF in 

future time instants, as it is shown in Eq. (3): 

( )( ) ( ) ( )
1: 1 1 1

1

( | ) |

N
i i i

k p k p k pk p k p k p

i

p x x w K x E x x+ + − ++ − + + −

=

 ≈ −  ∑� � � , (3) 

where ( )K ⋅  is a kernel density function, which may 

correspond to the process noise PDF, a Gaussian kernel or a 

rescaled version of the Epanechnikov kernel (Orchard and 

Vachtsevanos, 2009; Orchard et al., 2010; Orchard, Tobar 

and Vachtsevanos, 2009). The resulting predicted state PDF 

contains critical information about the evolution of the fault 

dimension over time. One way to represent that information 

is through the computation of statistics (expectations, 95% 

confidence intervals), either the End-of-Discharge (EOD) 

(Saha et al., 2009) or the Remaining Useful Life (RUL) of 

the faulty system. 

The EOD PDF depends on both long-term predictions and 

empirical knowledge about critical conditions for the system 

(Saxena et al., 2010; Tang, Orchard et al., 2011). This 

empirical knowledge is usually incorporated in the form of 

thresholds for main fault indicators. Therefore, the 

probability of failure at any future time instant k = eod 

(namely the EOD PDF) is given by (Orchard and 

Vachtsevanos, 2009): 

{ } ( )( ) ( )

1

ˆPr Pr |
N

i i

eod eod

i

EOD eod Failure X x w
=

= = = ⋅∑ . (4) 

The conditional probability of failure in Eq. (4) may be 

defined via the determination of hazard zones (Orchard and 

Vachtsevanos, 2009), either using historical data or 

knowledge from process operators. The simplest case is 

where the concept of "failure" implies the moment when the 

fault feature crosses a given threshold. In that case the 

probability of failure, conditional to the state, is equal to one 

if the state is exactly on the manifold that defines the 

threshold value. 

3. STATE-SPACE MODEL FOR STATE-OF-CHARGE 

ESTIMATION IN ESDS 

This article focuses on the development and implementation 

of a module for online discharge time prognosis in Li-Ion 

ESDs, using an adequate characterization of the future usage 

profile. For this, firstly it is necessary to model the effect 

that any arbitrary discharge current profile may have on the 

battery SOC. This model should also have a reduced 

number of parameters, allowing estimating and 

prognosticating in real-time in and accurate and precise 

manner. Because of these facts, physicochemical models 

were discarded as a feasible choice since their complexity 

(and the need of extremely precise off-line measurements) 

implied a high computational cost. Other options, such as 

electric equivalent circuits, with parameters that could be 

estimated from EIS measurements, were also discarded 

since (as it has been already mentioned) the implementation 

of such tests requires the acquisition of costly equipment, 

severely limiting its widespread use in practice (Dalal et al., 

2011). Therefore, this research effort has chosen a grey-box 

(Gonzalez et al., 2003) empirical (discrete-time) model that 

is inspired in the battery phenomenology. The selected 

model only depends on voltage and discharge current 

measurements, something that enables its use for online 

prognostics modules. The proposed structure requires 

defining necessarily one state as the battery SOC. In 

addition, it is important to consider adaptation of the model 

to a particular battery under supervision, through the 

definition of a state associated to an unknown model 

parameter. The model used is shown below: 

State transition model: 

( )1 1 1
1 ( ) ( )x k x k kω+ = + , (5) 

( ) ( ) ( ) ( ) ( )5

2 2 2
1 10x k x k v k i k t kω−+ = + ⋅ ⋅∆ ⋅ + , (6) 

Measurement equation: 

( ) ( ) ( ) ( ) ( )2

0 1

C x k
v k v x k i k e kη⋅ = − ⋅ − + 

, 

[ ] ( ) ( )0 1 2 0
13 ;   5.5687;   0 0.0897;   0v V C x x E= = = = −  

(7) 
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where the battery current level i(k) [A] and the sampling 

period ∆t [sec] are input variables, and the battery voltage 

v(k) [V] is the system output. The states are defined as x1(k) 

(unknown model parameter) and x2(k) (additive inverse of 

SOC, remnant battery energy measured in [VA sec 10
-5

]), E0 

is the ESD initial SOC (that could be inferred from data 

acquired during the charging process).  

Process noises ω1 and ω2 represent uncertainty on the a 

priori state estimates, and C is a constant that characterizes 

the battery voltage drop in terms of the remaining SOC. It is 

important to note that process noise (at least noise ω2) is 

correlated with η, the measurement noise, since uncertainty 

on battery SOC depend on the uncertainty of voltage 

measurements. This fact will be considered when designing 

the prognostic module. The state x1 in Eq. (7) represents the 

instantaneous value for the battery internal resistance. It is 

well known that this value depends on other environmental 

factors (e.g., temperature). As in this case the experimental 

setup did not include temperature probes, then the filtering 

stage must infer the effect of the external temperature (and 

other unmeasured perturbations) into the state estimate x1, 

based solely on voltage and current measurements. 

Validation data (see Figure 1) for the implemented 

algorithms was obtained from a mobile platform developed 

at Impact Technologies, LCC, which basically consisted of 

a four-wheel ground robot used to generate different battery 

discharge profiles due to terrain conditions (hills, surface 

changes). Given that the robot is currently configured only 

for use on 2D, uniform terrain, it is necessary to simulate the 

environment through a variable load has been attached to 

the battery. This variable load is made up of three resistors 

(6.23[Ω], 12.5[Ω], and 25[Ω]), each wired in parallel to the 

battery to increase current draw. Each resistor can be 

activated via a relay controlled by the onboard computer's 

data acquisition card. It provides 8 different loading 

scenarios progressing linearly in magnitude. The onboard 

computer has a map of simulated terrain and when the robot 

crosses into an area of higher simulated difficulty on the 

map, the onboard computer activates a larger loading 

scenario using the variable load. This allows for many 

simulated terrains while keeping the robot in a safe, 

uniformly flat environment. 

Online data consists of voltage and current measurements 

(with the corresponding timestamp), for a lithium iron 

phosphate (LiFePO4) battery (12.8[V], 2.4[Ah], 14[A] 

maximum discharge current). As the battery voltage drops, 

maximum values of the drain current may increase. Figure 1 

show measured data for the battery voltage [V] and 

current [A] in an experiment where the energy accumulator 

was used until it discharged almost completely. 

The nonlinear model proposed in Eq. (5)-(7) simultaneously 

allows a statistical characterization of future battery 

discharge profiles and the implementation of Bayesian 

prognostic approaches, such as those based on particle-

filtering techniques (Orchard and Vachtsevanos, 2009; Saha 

et al., 2009; Orchard et al., 2010; Orchard, Tobar, and 

Vachtsevanos, 2009; Edwards et al., 2010; Chen et al., 

2011; Zhang et al., 2011). Statistical characterization of 

discharge current profiles may incorporate information from 

past measurements, mainly from the ESD current i(k), to 

understand the manner in which the ESD has been used 

lately.  Aggressive usage profiles will translate in reduced 

discharge times and, conversely, low energy consumptions 

will lead to extended period of autonomy. Although diverse 

factors may affect future utilization of the ESDs, typically 

the system that uses those devices as primary sources of 

energy will operate trying to achieve similar performance 

indicators before and after the prognosis time; i.e., the time 

when long-term predictions are computed. For this reason it 

is critical to characterize this usage profile during the 

filtering stage, where the battery current i(k) is an input to 

the estimator, and thus a known signal. 
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Figure 1: Measured voltage and discharge current data for a 

ground robot using a Li-Ion ESD. Curves on the left show 

voltage [V] as the battery discharges, while the curves on 

the right show the battery current [A]. 

The proposed approach for statistical characterization of 

battery discharge current profiles is based on a combination 

of algorithms that define an operating range through the 

computation of maximum/minimum discharge currents and 

empiric distributions of the acquired measurement data. The 

procedure used to compute extreme values is as follows: 
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1. Firstly, data from the current usage profile (measured 

battery current) is segmented in identical time intervals, 

as shown in Figure 2. 

2. On each interval, the maximum and minimum values 

for the battery current, ( )m

lowi  and ( )m

highi
 
respectively, are 

computed (m is an index for the m
th

 interval). These 

values define a range for the battery current that could 

be used to characterize the future operation profile of 

the battery, in a scenario where the prognosticator 

solely considers data from the m
th

 time interval to this 

purpose. A low-pass filter was used to discard outliers 

and/or anomalous currents peaks. 

3. An exponentially weighted moving average – EWMA 

(Hunter, 1986) is used to reduce the impact of an 

arbitrary definition for time intervals, and to incorporate 

prior information about battery usage. EWMA 

computes the extreme values that will be used to 

characterize the range for future battery discharge 

currents: 

( )
( ) ( ) ( 1)

1    
m mm

low lowlowi i i mα α
−

= − ⋅ + ⋅ ∀ , (8) 

( )
( ) ( ) ( 1)

1    
m mm

high highhighi i i mα α
−

= − ⋅ + ⋅ ∀ , (9) 

where 
( )m

lowi   and 
( )m

highi
 
are, respectively, the minimum and the 

maximum values that would be assumed for the future 

battery discharge profile, if the prediction were to be 

computed at the end of the m
th

 interval (see Figure 2). The 

parameter α corresponds to the forgetting factor of the 

EWMA algorithm (α = 0.65 in this case). 
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Figure 2: Characterization of maximum and minimum 

discharge current levels for future operation of the ESD 

based on exponentially weighted moving average 

algorithms. 

 

The obtained range enables the generation of empirical 

distributions for the values that characterize the uncertainty 

in the future battery discharge profile; considering 

information about how the device has been used so far. 

More details on the construction of this empirical 

distribution will be described in the following section. 

4. PARTICLE-FILTERING-BASED DISCHARGE TIME 

PROGNOSIS FOR LITHIUM-ION ESDS 

The problem of battery EOD time has been deeply discussed 

by several authors in the recent years (see Section 2.1). 

Most of them, though, intend to learn the trend of the 

discharge curve assuming that the only sources of 

uncertainty are associated to unknown model parameters or  

the estimates of the state vector, while the future operating 

profile is assumed as a deterministic function of time 

(constant battery current, most of the times). This article 

proposes a framework that intends to complement the 

characterization of the uncertainty associated to future 

discharge profiles to improve the accuracy of prognostic 

results, combining a classic implementation of a particle-

filtering-based prognostic framework (Orchard and 

Vachtsevanos, 2009; Orchard et al., 2010) with a statistical 

characterization of the previous battery usage. 

Indeed, several results (see Section 2.1) indicate that Eq. 

(3)-(7) can be used to show that the a priori state PDF for 

future time instants, and thus the EOD PDF, directly 

depends on the a priori probability distribution of the 

battery discharge profile for future time instants. Most of the 

times, long-term predictions assume that the latter 

distribution is a Dirac’s delta function (a deterministic 

function of time for future discharge profiles). Although this 

simplification helps to speed up the prognostic procedure 

and to generate the most likely EOD estimate, it does not 

allow considering future changes in operating conditions or 

unexpected events that could affect the autonomy of the 

system under analysis.  

Monte Carlo simulation can be used to generate EOD 

estimates for arbitrary a priori distributions of future 

operating conditions, however it is not always possible to 

obtain these results in real-time. In this sense, PF-based 

prognostic routines not only provide a theoretical 

framework where these concepts can be incorporated in 

real-time (Edwards et al., 2010), but also allow the use of 

uncertainty measures to characterize the sensitivity of the 

system with respect to changes in future load distributions 

(see Figure 3). Furthermore, if a formal definition of mass 

probability is assigned to each possible operating condition, 

an EOD PDF estimate can be obtained as a weighted sum of 

kernels, where each kernel represents the PDF estimate of a 

known discharge current profile, characterized as a function 

of time. Indeed, if the a priori distribution of future 

operating conditions is given by: 
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{ } ( )
1

Pr
uN

j j

j

U u u uπ δ
=

= = −∑ , (10) 

where 
1{ } uN

j ju =  is a set of deterministic time functions, then 

the probability of failure at a future time t can be computed 

using Eq. (11) (Edwards et al., 2010). 

{ } ( )( ) ( )

1 1

ˆPr Pr | ,
uN N

i i

j eod j eod

j i

EOD eod Failure X x u u wπ
= =

= = = = ⋅∑ ∑ . (11) 

 

Figure 3: Illustration for the effect that different load/stress 

profiles may have on the growth of the fault dimension in a 

nonlinear dynamic system. More aggressive profiles 

typically result in a shorter RUL for the system.  

This particular research effort considered a statistical 

characterization of future battery operation (i(k), 

k = tpred+1, …, EOD) that assumed constant battery current 

profiles for each of the deterministic functions of time 

1{ } uN

j ju =
. The probabilities πj associated to each path uj were 

computed through empirical distribution of past 

measurements for the battery current, and considering that 

the support (domain) of the empirical distribution is given 

by the interval [
( )m

lowi ,
( )m

highi ] that is calculated using Eq. (8)-(9). 

Tables 1 through 3 show the obtained results when 

considering Nu = 1, 2, and 3 respectively, computed at a 

particular time instant where the long-term prediction is to 

be calculated for model (5)-(7). For each one of these cases, 

the value of the future battery discharge current uj is 

computed as the center of an interval defined by the 

expression
( ) ( ) ( ) ( ) ( ) ( )

[ ( ) , ( 1)( ) ]
m m m m m m

low high low low high lowu ui j i i N i j i i N+ − + + − , 

j = 0,…,Nu-1 In addition, once the empirical distribution is 

built, it is possible to compute the expectation of the future 

battery discharge current as a weighted average. 

In this case, as the Nu increases, it is important to note that 

there is only a limited impact on the probability that is 

assigned to the intervals that represent maximum, minimum 

and the median discharge currents. This fact is critical when 

deciding the number of paths to be considered in long-term 

predictions (the battery), since each prediction path involves 

the computation of a conditional PDF in real-time (Edwards 

et al., 2010). If limited computational resources are 

available, it may be wise to select the minimum possible 

number of paths that can help to represent the uncertainty of 

the battery operating conditions. A throughout analysis of 

the data presented in Tables 1 through 3 indicates that three 

possible discharge profiles are sufficient to characterize the 

tails of the EOD PDF, since the EOD increases 

monotonically as the battery discharge current decreases. 

j (Nu = 3) # Samples ππππj Current [A] 

1
st
 228 0.4551 3.2965 

2
nd

 132 0.2635 4.3177 

3
rd

 141 0.2814 5.3388 

Weighted 

Average 

501 1 4.1403 

Table 1: Empirical distributions that define the weights πj 

for three future battery discharge profiles in a particle-

filtering-based prognosis approach. 

j (Nu = 5) # Samples ππππj Current [A] 

1 184 0.3673 3.0923 

2 82 0.1637 3.7050 

3 58 0.1158 4.3177 

4 115 0.2295 4.9303 

5 62 0.1238 5.5430 

Weighted 

Average 

501 1 4.0596 

Table 2: Empirical distributions that define the weights πj 

for five future battery discharge profiles in a particle-

filtering-based prognosis approach. 

j (Nu = 7) # Samples ππππj Current [A] 

1 171 0.3413 3.0048 

2 42 0.0838 3.4424 

3 71 0.1417 3.8800 

4 31 0.0619 4.3177 

5 78 0.1557 4.7553 

6 57 0.1138 5.1929 

7 51 0.1018 5.6305 

Weighted 

Average 

501 1 4.0355 

Table 3: Empirical distributions that define the weights πj 

for seven future battery discharge profiles in a particle-

filtering-based prognosis approach. 

Considering the aforementioned information, it was 

determined that the proposed approach for uncertainty 

representation would only include three possible paths 

within the implementation of the particle-filtering-based 

EOD prognosis framework. Lithium-Ion battery data shown 

in Section III was used to validate this method, comparing 

its performance with respect to a classic PF-based 

prognostic implementation (Saha and Goebel, 2009; 

Orchard and Vachtsevanos, 2009) that assumed only 

constant discharge current (computed as the average of past 

battery current measurements) for future operation. 
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b) 

a) 

 

 

 

 

 

 

 

b) 

Figure 4 and Figure 5 show the results obtained when using 

the classic PF-based prognostic approach at 920[sec] of 

operation (40 particles and using 25 realizations of the long-

term prediction before computing the EOD PDF). On the 

one hand, Figure 4 illustrates the results of the filtering and 

prognostic stages, showing that indeed an implementation 

based on model (5)-(7) can be used to quantify the effect 

that random changes in the battery discharge current have 

on the voltage of the device. Moreover, the predicted battery 

voltage includes information about the effect of the future 

evolution of the battery SOC in time, exhibiting an 

exponential drop as the SOC decreases. 

Similar conclusions can be obtained from Figure 5, where 

the prediction stage is emphasized. The resulting EOD PDF 

allows building a 95% confidence interval that provides 

information about when the battery would discharge if the 

future operating condition of the device is kept invariant.  

Although this interval has a relative high precision (which is 

expected since there is no uncertainty associated to the 

future operating profile), it is important to mention that the 

bias associated to the assumed operation profile translated 

into overestimating the EOD time. Indeed, the computed 

expectation of the EOD time is 2224.91 [sec], while the 

ground truth discharge time occurred at 2123.7 [sec] of 

operation (101.21 [sec] before the expected value). A quick 

analysis of this information indicates that the proposed 

model for SOC estimation allows to efficiently incorporate 

measurement data and to generate reliable predictions paths; 

however, it must be said the high precision of the resulting 

PDF is only due to the fact that the uncertainty associated to 

the state estimates is bounded (the filter “learns” from data, 

thus the more extended the filtering stage is, the better the 

estimates) and because the uncertainty associated to the 

future battery use is neglected. 

That is not necessarily true if the actual usage pattern of the 

battery is studied in detail. Figure 6 shows the obtained 

results when incorporating information from a statistical 

characterization, using the method proposed in Section 3 

and Table 1. The fact of incorporating more uncertainty in 

the long-term predictions clearly has an impact on the 

precision of the resulting 95% confidence interval; however, 

as a trade-off, the accuracy of the EOD expectation 

(2137.5 [sec]) is highly increased (see Figure 7) to a point 

where the algorithm has an error of only 13.8 [sec] in a 

1203.7 [sec] prediction window. Although at a first glance 

many researchers could feel tempted to indicate that the 

precision of the proposed approach is disappointing, one 

must remember that a good prognostic algorithm should 

correctly characterize all uncertainty sources. As it has been 

already mentioned, by neglecting the uncertainty associated 

to the usage profile it is obvious that the resulting EOD PDF 

will be more “precise”. The real question is if the computed 

precision represents the manner in which the user is 

operating the actual system.  

 

Figure 4: SOC prognosis assuming that the future discharge 

profile is a constant current equal to the average value 

measured in past data. (a) Measured voltage (thin green 

line), estimated voltage (dark black line), predicted voltage 

drop (magenta dashed line) and 95% confidence interval for 

EOD (dashed vertical lines). (b) Estimated SOC [%] (thin 

black line), predicted SOC [%] (magenta thick line), and 

95% confidence interval for EOD (dashed vertical lines). 

 

Figure 5: SOC prognosis assuming that the future discharge 

profile is a constant current equal to the average value 

measured in past data (zoom-in). (a) Estimated SOC [%] 

(thin black line), predicted SOC [%] (magenta thick line), 

95% confidence interval for predicted SOC [%] (magenta 

thin lines)), and 95% confidence interval for EOD (dashed 

vertical lines). (b) Ground truth EOD (vertical magenta 

segment with markers), predicted EOD PDF, and 95% 

confidence interval for EOD. 

A correct characterization of the tails of the PDF enable the 

implementation of much more sophisticated decision-

making strategies, based on concepts such as the Just-in-
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a) 

 

 

 

 

 

 

 

b) 

a) 

 

 

 

 

 

 

 

b) 

Time point (JITP) instead of the expectation of the 

distribution, with the purpose of avoiding failures in the 

system that could occur before the moment that is being 

predicted by the prognosis module. 

 
Figure 6: SOC prognosis assuming statistical 

characterization of future discharge profile. (a) Measured 

voltage (thin green line), estimated voltage (dark black line), 

predicted voltage drop (magenta dashed line) and 95% 

confidence interval for EOD (dashed vertical lines). (b) 

Estimated SOC [%] (thin black line), predicted SOC [%] 

(magenta thick line), and 95% confidence interval for EOD 

(dashed vertical lines). 

 
Figure 7: SOC prognosis assuming statistical 

characterization of future discharge profile. (zoom-in). (a) 

Estimated SOC [%] (thin black line), predicted SOC [%] 

(magenta thick line), 95% confidence interval for predicted 

SOC [%] (magenta thin lines)), and 95% confidence interval 

for EOD (dashed vertical lines). (b) Ground truth EOD 

(vertical magenta segment with markers), predicted EOD 

PDF, and 95% confidence interval for EOD. 

One final remark can be made in term of the accuracy of the 

proposed algorithm if ad-hoc performance measures are to 

be used. In particular, Figure 8 shows the results obtained 

when using the “α-λ accuracy index” (Saxena et al., 2010) 

(α = 15%; λ = 0.5). This measure determines if the 

predicted EOD is within a range defined by ± α % with 

respect to the true remaining time of operation, considering 

that the prediction window represents a fraction λ of the 

total time of operation. If the system were to be time-

invariant, the remaining time should decrease linearly with 

slope equal to -1. Although this assumption does not 

necessarily characterize the true evolution of the autonomy 

of the system in this case, it still represents a good indicator 

on the consistency of the prognostic result. Figure 8 shows 

that the conditional expectation of the EOD consistently 

decreases as more data is acquired, a fact that is important to 

validate the proposed algorithm since Figure 6 and Figure 7 

illustrate only the response for a unique prediction time 

(920 [sec]). 
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Figure 8: Prognosis performance evaluation based on the α-

λ accuracy measure; α=15% and λ=0.5. 

5. CONCLUSION 

This paper presents the implementation of a particle-

filtering-based prognostic framework that allows estimating 

the state-of-charge (SOC) and predicting the discharge time 

of energy storage devices, and more specifically lithium-ion 

batteries. The proposed approach uses an empirical state-

space model inspired in the battery phenomenology and 

particle-filtering to study the evolution of the SOC in time; 

adapting the value of unknown model parameters during the 

filtering stage and enabling fast convergence for the state 

estimates that define the initial condition for the prognosis 

stage. SOC prognosis is implemented using a particle-

filtering-based framework that considers uncertainty in the 

future discharge profile. The fact of incorporating more 

uncertainty in the long-term predictions clearly has an 
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impact on the precision of the resulting 95% confidence 

interval; however, as a trade-off, the accuracy of the EOD 

expectation (2137.5 [sec]) is highly increased (see Figure 7) 

to a point where the algorithm has an error of only 

13.8 [sec] in a 1203.7 [sec] prediction window. Although 

the precision of the proposed algorithm is much worse that 

in the case when constant discharge current is assumed, it 

characterize in a better manner all uncertainty sources and 

the tails of the PDF; enabling the implementation of much 

more sophisticated decision-making strategies, based on 

concepts such as the Just-in-Time point (JITP). 
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