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ABSTRACT 

 

This paper deals with mobility prediction of  

          batteries for an emission-free Electric Vehicle. 

The data-driven model has been developed based on 

empirical data from two different road types –highway and 

local streets –and two different driving modes – aggressive 

and moderate. Battery State of Charge (SoC) can be 

predicted on any new roads based on the trained model by 

selecting the drving mode. In this paper, the performance of 

Adaptive Recurrent Neural Network (ARNN) and 

regression is evaluated using two benchmark data sets. The 

ARNN model at first estimates the speed profile of the new 

road based on slope and then both slope and speed is going 

to be used as the input to estimate battery current and SoC. 

Through comparison it is found that if ARNN system is 

appropriately trained, it performs with better accuracy than 

Regression in both two road types and driving modes. The 

results show that prediction SoC model follows the Columb-

counting SoC according to the road slope. 
1
 

1. INTRODUCTION 

Concerns with fuel cost, oil shortages, air pollution, and 

higher fuel economy standards have driven the rapid rise of 

more fuel-efficient vehicles and Electric Vehicles (EV). The 

future of transportation is being propelled by a fundamental 

move to green and more efficient electric drive systems. 

However, Electric vehicles still represent a small part of the 

worldwide market. For example, EVs account for just over 

1% of the passenger car market at present (Shafiei & 

Williamson, 2010). With recent major advancements in 

battery technology, however, more electric vehicles are 

anticipated to enter the market within the next few years. 
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New concepts and technologies need to be developed to 

launch electrically chargeable vehicles suited for both 

individual and public mobility and for goods distribution in 

urban areas. Electrically charged vehicles provide many 

benefits in metropolitan areas, such as very low (plug-in 

hybrid electric vehicle - PHEV) to zero (battery electric 

vehicle - BEV) tailpipe emissions and reduced noise. 

 

Although battery technology has developed considerably in 

recent decades, the main drawback of electric vehicles still 

remains: the low range of such vehicles in comparison to 

their gas-powered counterparts. Engineers and EV designers 

are challenged to improve EV mobility performance with 

existing battery power. The lead-Acid battery - and its 

variants- is the dominant battery in the automotive industry 

due to its low manufacturing price, high C-rate discharge 

and good low temperature performance. However, the low 

energy density of these batteries makes them unsuitable for 

hybrid and electric vehicle applications. Currently, car 

manufacturers are motivated to utilize Ni-MH and Li-ion 

batteries because their high energy density and cycle life 

that satisfy the requirements of an electric vehicle. 

Therefore accurate estimation of the SoC of a high capacity 

energy storage system can improve energy management and 

efficient utilization of electric vehicle by optimizing 

performance, lengthening the cycle life and providing more 

useful information for the driver. 

 

The output power from the battery depends on a number of 

factors, such as discharge current rate, internal resistance, 

battery age, environment temperature and historical usage 

(Meissner & Richter, 2003; Ulrich, 2012). All above factors 

influence SoC in linear and non-linear ways. Therefore, a 

number of diverse techniques have been proposed to 

calculate or estimate the SoC of a battery each of which as 

its relative advantages and constraints, as reviewed by 

(Piller, Perrin, & Jossen, 2001; Rodrigues, Munichandraiah, 

& Shukla, 2000; Zhang & Lee, 2011). However, all of these 

techniques attempt to monitor and measure the SoC at the 

current time. Applying prognostics algorithms can help 
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engineers predict battery conditions as well. Fully informed 

travelers and increased productivity of energy storage 

devices are the requirements for enabling the intelligent 

mobility of an electric vehicle. Due to the broad availability 

of low cost wireless communication systems, related 

information flows constantly and flawlessly from each 

source to all interested users. Using these systems provides 

an opportunity for drivers to obtain directions and optimize 

their route before starting a trip. Moreover, these devices 

can provide the raw data necessary for prognostics 

algorithms to predict the conditions of the battery as well.   

  

This paper investigates new methods of using machine 

learning techniques and prognostics algorithms to predict 

the battery SoC of an EV prior to starting a trip, which is 

based on the route selected and historical driving behavior 

by the driver. Section 2 gives an overview of why the 

market is looking for SoC estimation and EV battery 

performance prediction. The details of empirical testing on 

EV are presented in section 3. Section 4 provides the 

methodology and details of algorithms used for prediction. 

The details of the data analysis, including feature extraction 

and SoC estimation, are presented in section 5. Finally, the 

results and conclusion are discussed in section 6 and 7.  

2. PROBLEM STATEMENT 

One of the most important barriers in acceptance of electric 

mobility is a range of electric vehicle. It has been evaluate 

the effects of low range resources of electric vehicles, as a 

significant feature for users’ purchase intentions by market 

experts and prospective customers. As it has been 

mentioned before new communication technology provides 

much more data to the interested user. A GPS can provide 

some basic route options including local streets, highways 

or combination of both with an estimation of travel time. 

However, such estimations are not tailored for the specific 

needs of EV users. There is no prediction of energy 

consumption for suggested routes, or any inclusion of 

driving behavior or road conditions. Route suggestions 

based on this information would go a long way towards 

alleviating potential range anxiety that is one of the major 

barriers for EV adoption.  

In battery prognostics, since it is a relatively new field of 

interest, there are few works that can fit inside the 

requirements. For example, (Gonder, Markel, Thornton, & 

Simpson, 2007) found that around 95% of daily driving can 

be achieved with 100 miles of electric range by studying a 

set of vehicles for thirty weekdays each. Correspondingly, 

studies by (MacLean & Lave, 2003) and (Sioshansi & 

Denholm, 2009) on hybrid vehicles have determined that 

about three-quarters of travel miles could be powered by 

electricity. The main issue with such studies is that 

customers desire a vehicle that fulfills their own diverse 

needs over time, not the needs that are dictated by statistics 

or the average profile. In general, changing the charge status 

of the battery is a complex process, resulting from the 

interaction of several factors. Among these factors, 

discharging current rate is the most significant, and it 

depends on several car resistances. For mechanical power 

generation of a vehicle, the electric motor should be able to 

provide enough power to accelerate and propel the EV if it 

encounters any resistance. There are three significant forms 

of resistance for a vehicle: tire friction, aerodynamic 

resistance and gravity resistance (Fodor, Enisz, Doman, & 

Toth, 2011; Khaled, Harambat, Yammine, & Peerhossaini, 

2010; Shukla, Aricò, & Antonucci, 2001). These forms of 

resistance are directly influenced by vehicle speed and road 

slope. Moreover the driver’s driving habits affected battery 

performance. Even the same maximum speed on a road with 

different accelerations can have different effects on the 

charge of battery. In this paper this term is called “driving 

mode” and is defined it as acceleration and braking. Hence 

this paper looks for a method to predict SOC based on three 

factors:  

1. Vehicle Speed  

2. Road Slope (Terrain type) 

3. Driving Mode  

Researchers have established different techniques for 

formulating a relationship between SoC and these factors. In 

(He, Xiong, Zhang, Sun, & Fan, 2011) an improved 

Thevenin model and utilized Extended Kalman Filter were 

used to calculate SoC for an EV which was driving  at 

variable speeds. In (He, Xiong, & Guo, 2012; Xu, Wang, & 

Chen, 2012) the battery was modeled with combination of 

Extended Kalman Filters and Fuzzy Neural Network to give 

an approximation of SoC. Some researchers attempted to 

determine realistic driving conditions and their effects on 

battery performance. In (Adornato, Patil, Filipi, Baraket, & 

Gordon, 2009; Lee, Baraket, Gordon, & Filipi, 2011) the 

authors classified practical driving to identify a charging 

model for each category of driving mode. In (Marina de 

Queiroz Tavares, 2010) GPS tracker is using to monitor 

Route 1: Local st.

Existing SoC 29%

Route 2: Highway

Figure 1.   Two different types of road (highway 

and local streets) 
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where the EV is charging and where it goes in order to 

recognize driving behavior.  What’s missing is how to 

define the relationship between these factors and mobility. 

In fact, the inclusion of all these variables would complicate 

the findings of SoC prediction. For clarification purposes, 

this paper will focus on one variable and its effect on battery 

performance, energy efficiency, and long-term operation on 

battery Remaining Useful Life (RUL). Hence, several tests 

have been designed on the EV to be tested on different roads 

with different slopes and see how the slope can affect 

battery performance.  

3. EXPERIMENTAL DESCRIPTION 

The best approach to represent real–world driving patterns 

is to test an EV on specific routes and collect voltage and 

current from battery and speed from car. A major drawback 

of this approach is that it is difficult to justify the value that 

can be derived from such costly experiments. Because of the 

sporadic nature of driving cycles and the wide distribution 

of driving conditions, obtaining meaningful information 

from field testing for accurate analysis is very difficult. 

Researchers previously summarized statistical results from 

field tests to offer some help in understanding battery 

performance (Huang, Tan, & He, 2011; Lee et al., 2011; 

Liaw & Dubarry, 2007; Montazeri-Gh, Fotouhi, & 

Naderpour, 2011). According to the literature, road type, 

traffic road slope, traffic and driving mode have major 

affects on battery state of charge and energy consumption 

during a trip; however, there are some other factors such as 

ambient temperature, humidity, and charging intervals that 

can affect on battery life on long term operation. Since 

considering all factors make the problem very complex and 

difficult to solve, in this paper we set these factors to 

constant values and conduct the test on just different road 

types and with driving modes to investigate battery 

performance in diverse conditions. Data has been collected 

from a Chevy Equinox (Figure 2), which has been converted 

from a regular gas powered car to an emissions-free Electric 

Vehicle by AMP. This car has been equipped with 

          battery from the GBSystem. The basic 

specifications of the EV are summarized in Table 1.  

 

Characteristics Range Unit 

Car Range 90-100  Miles 

Max Speed 90 mph 

Number of Cells 108  

Cell connection in-series  

Total Battery Energy 40 kWh 

Battery type            

Nominal Capacity 100 A.h 

  

Table 1. Chevy Equinox and battery pack specification 

To make the condition of the tests as stable as possible all 

tests have been done using a single car. In each test two 

persons were in the car (the driver and one passenger were 

to control data collection). The condition of test is based on 

two road types: highways and local streets. Both road types 

were selected to have some uphill and downhill conditions 

to observe battery performance in both conditions.  

 

 

 

 

 

Figure 2. Chevy Equinox electric vehicle 

4. METHODOLOGY 

One of the most proficient ways of solving a multifaceted 

problem is to decompose it into simpler elements, in order 

to make it more understandable and more manageable (Bo, 

Zhifeng, & Binggang, 2008). In addition, simple elements 

may be assembled to produce a complex system. One 

approach for achieving this is using Networks. All networks 

consist of nodes and connections, where the nodes can be 

considered to be computational units. Nodes receive inputs 

and apply some mathematical processes to attain an output. 

This processing might be very straightforward (such as 

summing the inputs), or quite complex.  

The Neural Network (NN) techniques are one of the 

common methods, which typically consist of inputs that are 

multiplied by weights (strength of the particular signals), 

and then computed by a mathematical function that 

represents the activation of the neuron. Another function 

computes the output of the artificial neuron (sometimes in 

dependence of a certain threshold). NNs combine artificial 

neurons in order to find relations among inputs and outputs 

(Charkhgard & Farrokhi, 2010). In this paper Adaptive 

Recurrent Neural Network is implemented on EV data. 

Recurrent or recursive networks are well suited to time 

variant modeling applications, such as prediction. This is 

because temporal knowledge is saved by the network in the 

form of time-delayed inputs; outputs from one iteration of 

the model are fed back as inputs into one or more 

succeeding iterations (Wang, Golnaraghi, & Ismail, 2004).  

 

In this paper the recurrent network has a feedback link from 

outputs to the inputs, which serves as the third input layer. 

This layer is illustrated in Figure 3. However, in some cases 

this recurrent network can be applied from the hidden layer 

to the context (Wang et al., 2004).  This network has three 

input nodes (slope, speed and previous step of current), 

three layers and one output. The nodes in the input simply 

send out input values to the hidden layer. For the nodes in 

the hidden layers, hyperbolic tangent sigmoid functions 
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have been selected as their transfer functions, while a linear 

function is assigned to the output node. By training the 

model, the connection weights can be adjusted in the 

algorithm. The higher the weight of an artificial neuron the 

stronger the input is; meaning that this specific input is more 

significant (Abolhassani Monfared et al., 2006; Julka et al., 

2011). Eq. (1) shows the function of output I at time k of 

three inputs where p is the slope of the road; s is the speed 

of the car; and I is the current at one step ago. 

                                                          

 

                                                       (1) 

 

P(1)

P(2)

P(3)

Unit delay

Output

layers

 

Figure 3. Adaptive Recurrent Neural Network Concepts 

A Linear Regression method has been applied on the data to 

benchmark the accuracy of results with ARNN. In the 

regression process, a linear model has been built between 

the inputs and outputs by applying training data. The model 

is then tested by new inputs and tested with the measured 

output to calculate error.  

5. DATA ANALYSIS AND DISCUSSION 

5.1. Feature extraction 

In addition to the aforementioned methods, it is necessary to 

find the operational parameters that change with different 

driving modes in order. The accuracy of the battery 

performance estimation and SoC prediction will heavily rely 

on these so-called features. From the raw data, many 

features could be extracted, but not all the features will be 

directly related to the driving behavior. In this paper, driving 

mode has been classified into two categories: aggressive and 

moderate. Currently, two main features are extracted from 

battery current. To have better understanding of the two 

different driving modes, Figure 4 shows battery current for 

aggressive and moderate driving modes on the same local 

streets with the same driver and the same car.  

  

Figure 5 a) and 5 b) illustrate the distribution of current for 

these two different driving modes on one type of road (local 

streets). The aggressive driving mode is distributed in a 

lager range of current: the minimum value is around -120 A 

and the maximum around 200 A. The moderate driving 

mode has changed, however, to between -85 A to 140 A. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Current data for two driving modes on local streets 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 a). Histogram for local streets 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 b).  Histogram for highway 

For highway mode this range has been extended due o the 

higher speeds reached, since the aggressive driver reaches 

more than 400 A. The other significant difference is related 

P(k-1)  

S(k-1)  

I(k-1)  

I(k)  
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to the high frequency of near zero value for current data. In 

fact, any time the driver increases speed from zero and 

implements hard braking, a value close to zero is recorded. 

This is inevitable when the car is approaching traffic lights, 

which is a pronounced difference between local streets and 

highways. Highways do not often contain stop points, that 

can help us to recognize the route type based on battery 

current data analysis. 

To obtain a mathematical threshold that can help us 

distinguish between the two driving modes, the standard 

deviation of both currents has been calculated in the specific 

window size, by moving the window forward in each by one 

step in value of standard deviation recorded (Figure 4). 

Figure 6 represents the results of how the standard deviation 

for current changes over time. The average of aggressive 

driving mode standard deviation is 44.3 and the moderate 

one is 35.6. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Battery current standard deviation over time 

 

5.2. SOC Estimation 

The estimation of the SoC of a battery may be a problem of 

more or less complexity depending on the battery type and 

on the application in which the battery is used. The most 

reliable technique to define the SoC for Electric Vehicles 

during the operation is ampere hour counting (Columb 

counting) (Zhu, Coleman, & Hurley, 2004). The idea of 

balancing the current is reasonable because the charging and 

discharging cycles are directly related to the supplied or 

demanded current. If the initial SoC value is given (SoC0), 

the value of current integral is a straight indicator for the 

SoC. Eqs. 2 and 3 show this relation for both charge and 

discharge respectively: 

 

          
 

  
        

 

  
                    charge               (2)                                                

          
 

  
        

 

  
                 discharge             (3) 

Where    is the nominal capacity of the EV battery pack, I 

is the battery current and dt is the time interval. It is obvious 

that SoC is a function of current. Therefore if we can 

estimate the current of the vehicle before it completes its 

route then it is possible to calculate SoC. For this purpose 

we need to figure out how that current is changing based on 

road condition.  

Based on these assumptions, the amount of current 

demanded from a battery dependent on how fast the car 

moves, or accelerates and the slope of the road. The main 

challenge is finding what the relation is between road slope 

and car speed. Theoretically, the car speed can be 

independent from the slope. However, in real-world data, 

we can see that by driving up a hill the speed can be 

diminished. Actually, there is no definite answer for this 

question because controlling the speed depends on the 

driver’s decision to keep the speed constant, let it reduce a 

little or even accelerate. In this paper the car has been 

assumed that speed is independent from the road slope. 

  

 

 

 

 

 

 

 

 

 

 

Figure 7. Elevation and Speed in a local street; there are 

input variables in the model 

 

The ARNN predictor has been constructed based on a feed-

forward multi-layer neural network with adaptive and 

feedback links from input nodes. The feedback units 

reproduce the activations of the nodes from the previous 

time step, and allow the network to memorize the evidence 

from the past, which forms a reasoning base for current 

processing. For the nodes in the hidden layers, the sigmoid 

activation function has been used and the linear activation 

function has been selected for the nodes in the output layer. 

The strategy is to train the model based on the ARNN with 

speed and slope at the existing time step and current as the 

output of the model from the previous step as the input 

variables for two different driving modes (Figure 7) with 

current as the target (Figure 4 red color). Figure 7 represents 

the sample input for training, which is road elevation and 

speed for a local street under an aggressive driving mode 
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together. Table 2 summarizes the process of constructing the 

training data set. 

 

 Road type Driving mode Length of the 

road 

1 Highway 1 Aggressive 10 miles 

2 Highway 1 Moderate 10 miles 

3 Local St 1 Aggressive 10 miles 

4 Local St 1 Moderate 10 miles 

 

Table 2. Condition of training dataset 

In addition to this aforementioned challenge, for testing the 

model, the car velocity on the road is needed. It is not 

possible to obtain the exact velocity profile before 

performing the whole route. Since aggressiveness can affect 

the speed of the car as well, we have used the same 

approach to obtain the speed. The ARNN model has been 

trained with just slope data as input and speed as the target 

variable. Again one step of the speed can be used as the 

input for the model for the step k+1. This training has been 

done for all four combinations of driving modes and road 

types. Figure 8 illustrates the result of this type of 

estimation of the speed profile for two different road types 

in moderate driving modes.  

  

 

 

 

 

 

 

 

 

 

   

 

 

Figure 8. Estimated speed; testing for highway and local 

street roads 

 

Looking at the speed predictions for the local street route 

shows that whenever the actual speed is zero the model 

cannot predict the speed accurately. The reason is that, since 

the model is trained based on data from another type of road, 

it does not have enough information from the new road 

except slope. Even though slope can provide some 

information for acceleration or deceleration of speed, it 

cannot give any information when the car is stopping. Some 

other parameters, such as the location of traffic lights and 

stop signs, can affect this model. But, for highway this issue 

does not appear and the model can provide a better 

estimation of the speed. The output of this model (speed) is 

going to be used as the input for the SoC prediction in next 

step. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Comparing measured current and predictive 

current 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Comparing two methods of SoC estimation with 

Coloumb counting (measured) 

 

Four different models have been trained and has been 

represented in Table 2. These models are the combination of 

each road type (local streets and highway) with one of 

driving modes (aggressive and moderate), so with new road 

data (slope of the road) the model should be able to predict 

the battery current profile. During testing the appropriate 

model will be chosen based on the types of data be it 

highway or local in terms of road type, and aggressive or 

moderate for driving behavior. Figure 9 shows the results of 

battery current prediction based on the second road slope 

and the estimated speed from the previous step with 
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moderate driving mode. This estimation has been done with 

the ARNN model. The same approach has also been done 

with linear regression analysis. According to Eq. (3) the 

SoC can be calculated, which has been represented on 

Figure 10. 

 

6. RESULTS AND DISSCUSSION 

Figure 9 shows the behavior of the current and also shows 

that the prediction of the current follows the actual 

measurements. However, it is difficult to evaluate the 

accuracy of the model from the graph. Figure 10 shows that 

the prediction of SoC based on ARNN is accurate at certain 

points when compared to actual measurements, but the last 

value is not exactly correct. The linear regression gives a 

better estimation at the last point. To be able to evaluate 

both approaches the root mean square error has been 

calculated for four different testing data sets. The results 

have been summarized in Table 3. 

 

 Road type Driving 

mode 

RMSE 

ARNN 

RMSE 

Regression 

1 Highway 2 Aggressive 12.87 23.32 

2 Highway 2 Moderate 10.29 21.21 

3 Local St 2 Aggressive 14.32 25.08 

4 Local St 2 Moderate 11.98 22.11 

 

Table 3. Benchmarking tests of RMSE in different road and 

driving condition 

 

Comparing the results we can see that for both highway and 

local driving aggressive driving behavior scenarios exhibit a 

higher error rate in prediction. If we remember the feature 

extraction from driving modes, the standard deviation of the 

aggressive driving mode is higher which indicates that the 

current fluctuates much more compared to the moderate 

driving mode. And if the model cannot follow all of the 

fluctuations in current, the error increases. Another result 

shows that local streets have much more error in terms of 

prediction than Highways in the same driving modes. Based 

on empirical data, EVs consume a higher amount of energy 

in highway driving because of the higher average, though 

stable, speed, however, in local driving the average speed is 

much lower but it changes often due to traffic and 

stoplights, among other reasons.  

 

Benchmarking the two algorithms (ARNN and regression) 

identifies accurate results from ARNN. The strength of 

ARNN is that they provide a dynamic modeling of the 

current and SoC.  Figure 10 shows that SOC prediction 

based on ARNN follows the real values with a smaller error. 

However, we need to consider that this prediction has been 

applied on a small set of data. Larger data sets can help to 

enable much more accurate results.  

 

7. CONCLUSION 

 

Estimating battery state of charge is one of the most 

significant issues for electric vehicles. Since there are many 

factors that can affect battery SoC during vehicle operation, 

it is not easy to assess battery charge status. Discharging 

current rate is one of the factors that change dynamically 

during battery operation based on road slope, and car speed. 

Even if slope of the road is constant, different drivers can 

have disparate driving styles on the same road. In this paper 

a simple classification has been done on both driving modes 

and road types, showing how these two elements impact the 

current of the vehicle.  

 

Whereas the GPS data is available in a car the GPS can 

show more information to the driver before in a trip. The 

objective is to utilize this data as the input and give the 

driver accurate SoC estimation, based on the different routes 

that the GPS provides. Two techniques have been applied in 

this paper. The Adaptive Recurrent Neural Network result is 

accurate in comparison to measured data and has a lower 

error rate. However, even the ARNN results still contain 

some error, which may be attributed to assumptions.  

 

In fact, the method to predict the velocity profile is one of 

the reasons for the error. There are a variety of road 

condition factors that are not incorporated in this model, 

such as street junctions, stop signs, and traffic jams. 

Considering all these items in future plans can improve the 

speed prediction. Regardless of the velocity, this method 

relies on training data; the performed models are based on 

one road from each type. In this experiment just two roads 

of each type were selected. In reality there are an extremely 

large number of roads and road conditions. In the future it 

would be possible to upload data from all EVs in a cloud 

based system during their performance, and then apply 

machine learning tools easily cluster them in different 

regimes like different driving modes. It would then be easier 

to build a data driven model for prediction SoC.  
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