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ABSTRACT 

There is a growing trend in applying a prognostics and 

health management approach to engineering systems in 

general and space and aviation systems in particular. This 

paper reviews the role of prognostics and health 

management approach in support of integrated risk-based 

applications to nuclear power plants, like risk-based in-

service inspection, technical specification optimization, 

maintenance optimization, etc. The review involves a survey 

of the state-of-art technologies in prognostics and health 

management and an exploration of its role in support of 

integrated risk-based engineering and how the technology 

can be adopted to realize enhanced safety and operational 

performance. An integrated risk-based engineering 

framework for nuclear power plants has been proposed, 

where probabilistic risk assessment plays the role of 

identification, prioritization and optimization of systems, 

structures, and components, while deterministic assessment 

is performed using a prognostics and health management 

approach. Keeping in view the requirements of structural 

reliability assessment, the paper also proposes essential 

features of a ‘Mechanics-of-Failure’ approach in support of 

integrated risk-based engineering. The performance criteria 

used in prognostics and health management has been 

adopted to meet requirements of risk-based applications.  

1. INTRODUCTION 

Nuclear power, with over 430 nuclear power plants (NPPs) 

operating around the world, is the source of about 17% of 

the world’s electricity. The nuclear industry has arrived at a 

point where it is dealing with two major issues. First, 

addressing life extension for legacy units while complying 

with present day safety regulations. Second, designing new 

systems with enhanced safety features so that the core 

damage frequency meets the target of 10
-6

 failures per 

reactor years or less. The literature available suggests an 

increasing role for a risk-based (RB) / risk-informed (RI) 

approach to the design, operation, and regulation of nuclear 

power plants in order to improve safety (IAEA, 2010; 

IAEA, 1993, 2010; Kadak and Matsuo, 2007). Even though 

the risk-based / risk informed applications are growing for 

many engineering systems, like process or chemical plants, 

aviation systems and many societal applications, the 

applications to NPPs have inherent / specific aspects that 

need to be addressed. These  requirements are implemented 

by employing a defense-in-depth approach through a) 

Efficient and fast acting mechanisms to address dynamics of 

nuclear reactions, b) highly reliable and effective cooling 

systems to remove the decay heat, c) maintenance 

containments by series of barriers to contain source of 

radioactivity, c) maintenance of emergency measures in 

general and long terms consequences. Level 1 Probabilistic 

Safety Assessment (PSA) models allow development an 

integrated model of the plant that enables assessment of core 

damage frequency, i.e. statement of safety. These PSA 

models are employed to develop risk-based applications for 

nuclear power plants. The prognostics approach requires 

development of models and methods for irradiation induced 

degradation. Apart from this the aspects related to 

accessibility to reactor core components is a special issue 

that needs to be addressed while developing applications of 

prognostics as part of a risk-based / informed approach to 

NPPs. 

However, the major limitations in the risk-based approach in 

its present form are a) it is not capable of handling dynamic 

scenarios, e.g. fault trees and event trees are static in nature, 

b) uncertainty in prediction of life and reliability of 

components and systems, c) no well defined framework in 

monitoring / tracking the performance of the system and d) 

no mechanism to generate input for dynamic PSA models. 

The prognostic approach is promising to overcome or 

reduce the above limitations. Since, the prognostic 

framework envisages on-line monitoring of precursor and 

_____________________ 

P.V. Varde, et. al. This is an open-access article distributed under the terms 
of the Creative Commons Attribution 3.0 United States License, which 

permits unrestricted use, distribution, and reproduction in any medium, 

provided the original author and source are credited. 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

2 

feature extraction towards predicting degradation trend and 

the life of the component. This feature enables application 

of dynamic PSA while reducing uncertainty in life or 

reliability prediction as the predictions are based on real-

time operational and environmental stresses. The failure 

mode, effect and criticality analysis performed as part of a 

prognostic approach provides an effective framework to 

monitor the precursor parameters. The predictions, so 

performed provide required input to dynamic PSA models 

and updates of the risk models in real-time. This paper 

presents a role for prognostics - a relatively new paradigm, 

as part of risk-based approach to extend the present 

activities of monitoring, surveillance, in-service inspection, 

and maintenance from the periodic to condition-based 

through the application of prognostics methods.  

The major elements of prognostics are online monitoring of 

precursor parameters and the detection of deviation from the 

reference conditions using prognostic algorithms (Pecht, 

2008).  Here, the evaluation of remaining useful life (RUL) 

for the monitored component or system and the use of 

insights from this evaluation is a crucial part of risk-based / 

risk informed applications (Coble and Hines, 2010). Figure 

1 shows the major steps in prognostics as part of integrated 

risk-based engineering (IRBE) applications. The main aim 

here is to monitor the degradation in a dynamic manner and 

enable prediction of the failure well in advance so that 

failure can be avoided altogether or advance action can be 

taken to repair or mitigate the consequences associated with 

the failure. 

Traditionally, the nuclear industry has employed online 

status monitoring of safety and process parameters so that 

any deviation from the reference operating conditions can 

be detected in time and, if necessary, automatic safety 

actions can be initiated. Also, there exist various levels of 

defense in the form of alternate provisions that provide 

coping time for systems and equipment should the 

preceding level of defense fail. 

However, there is a need to predict the life and reliability of 

each level of defense in order to enhance the safety of a 

plant. The prognostic approach facilitates the health 

management of systems and components based on the 

remaining life prediction of components. Even though in the 

current generation of plants, prognostic principles are used 

in the form of qualitative reliability and life attributes,     the 

full potential of prognostics has yet to be realized through 

the formal implementation of a prognostics-based health 

management program. 

The available literature shows that the role of prognostics is 

growing in many fields of components and systems where 

safety forms the bottom line, such as in aerospace (Wheeler, 

Kurtpglu and Poll, 2010), electronics systems (Kalgren 

et.al.2010; Bhambra, J.K, 2000; Mishra et. al., 2004)), 

telecommunications, and structural systems (Guan, Liu, Jha, 

Saxena, Celaya, and Geobel, 2011).   
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Figure 1. Simplified representation of prognostics as part of 

integrated risk-based application. 

Specific engineering applications include prognostics for 

bearings and gears (Klein, Rudyk, Masad, and Issacharoff, 

2011), engine/turbine condition monitoring (Wu, 2011; 

Hyres, 2006), aircraft engine damage modeling (Saxena, 

2008), aircraft ac generator model simulation (Tantawy, 

Koutsoukos, Biswas, 2008), health monitoring of lithium 

ion batteries (Chen and Pecht, 2012), and development of an 

intelligent approach in support of diagnostics and prognosis 

(Chen, Brown, Sconyers, Zhang, Vachtsevanos and 

Orchard, 2012).  Based on the experience in these fields and 

the knowledge that has been generated over the years, it can 

be argued that a prognostics-based approach, as an 

extension of a condition-monitoring approach, is expected 

to go a long way to address the surveillance and monitoring 

requirements of new as well as old nuclear plants. For old 

plants, the life extension program can be implemented on a 

sound footing by integrating prognostics and health 

management models to complement the risk-based 

approach. For new systems, enhanced safety can be 

achieved by the implementation of prognostics-based health 

management of systems and components. To realize risk 

reduction through the prognostic approach, design 

specifications should ensure that a plant is built with online 

monitoring capabilities for the identified precursor 

parameters. This basic setup will focus on online prediction 

of remaining life and reliability considering the postulated 

loads and stresses such that risk reduction by detecting 

failure in advance can be realized. The same approach 

applies to legacy plants also. In these plants, the existing 

sensors and monitoring systems can be adopted in support 

of prognostics, like the vibration monitoring data on rotating 

machines can be utilized for prognostics and health 

management. It is relatively easy to install a vibration 

monitoring network for existing check-valves. However, 

there will be issues related implementing on-line monitoring 

for some specific locations (e.g. for in-core and reactor 

support and structural components which may not be easily 

accessible). For these systems the monitoring of derived or 

secondary parameters may work. For example the annulus 

gas monitoring system provides information of leakage, if 

any, as an on-line assessment for integrity of coolant 
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channel in the existing fleet of Pressurized Heavy Water 

Reactors. Periodic inspection, installation of coupons (e.g. 

to assess corrosion of sub-soil piping) may also provide 

effective approach in the absence of on-line monitoring for 

existing plants.  

This paper presents a review of the current approaches to 

monitoring and surveillance. We assess the prognostic 

requirements as a part of an integrated risk-based approach 

for old and new NPPs.  Even though the implementation of 

prognostics varies depending on the type of components and 

the objective of prognostic applications, this paper 

emphasizes proposing a general framework that addresses 

the basic or broader aspects of various applications. The 

prognostic performance metrics and other related issues that 

are relevant to NPPs are also discussed.  

2.  SURVEILLANCE AND CONDITION MONITORING IN 

NUCLEAR PLANTS: A BRIEF OVERVIEW 

The design safety philosophy for nuclear plants requires the 

implementation of defense-in-depth, fail-safe criteria: the  

design is fault-tolerant to the extent that a single failure 

event will not adversely affect plant safety. The selection of 

online process parameters and associated limiting condition 

settings ensure the monitoring of all postulated conditions 

and the taking of timely action such that safety is not 

compromised. Most of NPPs operating world over belong to 

first- and second-generation systems. Based on the 

accumulated operating time logged by the operating NPPs, 

the average life of the NPPs works out to be over 20 years 

(Bond, Doctor and Taylor, 2008; Bond, Tom, Steven, 

Doctor, Amy, Hull, Shah, and Malik, 2008). In general, 

NPPs have a design life of more than 40 years. The 

evidence of aging may manifest in many ways, like frequent 

failure of components in process and safety systems and 

subsequent interruption of plant operation, overall reduction 

in plant availability, adverse impact on available 

redundancy or safety margin in safety systems, etc. (IAEA, 

1995; IAEA, 2009b). With effective inspection and 

maintenance practices, degradation due to age can be 

managed and operational life can be extended. For over 30 

years the United States (U.S.) nuclear power industry and 

the U.S. Nuclear Regulatory Commission (USNRC) have 

worked together to develop aging management programs 

that ensure the plants can be operated safely well beyond 

their original design life (Gregor and Chokie, 2006). 

Third generation plant designs are characterized by the use 

of inherent safety features such as negative void coefficient 

of reactivity, incorporation of passive features, the shift 

from analogue to digital plant protection systems, and added 

redundancy from 2-out-of-3 in second generation to 2-out-

of-4 trains and channels (including the control and 

protection system and improved accident management 

features in containment). Application of the leak-before-

break concept in design and operation has been associated 

with new plants. Apart from this, condition monitoring 

using vibration signatures, current signatures, insulation 

resistance assessments, temperature trends, acoustic 

signatures and other process parameter variations forms part 

of diagnostics and in a limited way prognostics assessment 

of the third generation plants components and systems. 

Some examples of condition monitoring include assessment 

of the health of the fuel by online monitoring of radiation 

level, assessment of rotating machine mechanical bearing 

condition based on online or off-line measurement of 

vibration and temperature, current signature analysis to 

assess the health of induction motors, electromagnetic 

interference mapping to assess the effect of magnetic field, 

pump shaft performance monitoring using eddy current 

technique, exhaust air temperature and smoke quality 

monitoring to assess health of the diesel generators, and oil 

sample analysis for foreign material to assess degradation 

and wearout of mechanical parts.  

There are also examples of built-in-test (BIT) facilities for 

online diagnostics in systems and control systems. For 

safety channels, the protection channel will be activated 

only when there is demand. In these types of systems, the 

latent fault remains passive and reveals itself only when a 

channel is required to be activated. For such cases periodic 

testing is conducted to reveal a passive fault so that a system 

is available when there is an actual demand. However, the 

test interval determines system availability. The safety 

objective requires that the channel should be tested as 

frequently as possible to ensure the maximum availability of 

the channel. For a protection channel this testing is 

conducted by incorporating a fine impulse test (FIT) feature. 

An FIT module sends an electrical pulse of very short 

duration of around ~2 milliseconds. This duration is long 

enough to test electronic cards but short enough to not 

activate an actuation device, such as an electro-magnetic 

relay as actuation of a 48 VDC relay requires a signal that 

prevails at least for ~ 40 milliseconds.  

From the structural health monitoring point of view, annulus 

gas monitoring, where CO2 gas is passed between an 

annular gap between the pressure tube and a calandria tube, 

is a good example of condition monitoring (IAEA, 1998; 

Baskaran, 2000). The dew point of the CO2 is monitored at 

the exit point of the channel to identify any indications of 

leak. Any increase in dew point from the reference dew 

point of around -40
o
C indicates a possible leak in the 

annular region from the pressure tube or calandria tube and 

prompts an analysis of the region. This is an example of an 

implementation leak before the break strategy in real-time 

mode. The examples listed above are not exhaustive. They 

indicate the state of the art in operating nuclear plants that 

have condition monitoring provisions and limited features 

for prognostics. However, this background provides a basis 

for identifying gap areas for the implementation of 

prognostics and health management program as part of a 

risk-based approach.  
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Component / System type  

(Representative items) 

M OFL  

ISI 

OFL  

CM  

OFL 

D 

OFL 

P 

ONL  

D 

ONL 

P 

Remarks / 

(references) 

a)  Reactor Structure: Reactor Pressure Vessel, Coolant Channels, 

Reactor block, Reactor vault and its lining, Shielding structures, Steam 

Generator, and associated fittings and penetration and nozzles, and, 

Ventilation plenum and ducts etc.  

***  **** *** *** **** *** **  The life prediction for 

Candu / PHWRs) coolant 

channels (pressure tube; 

IAEA, 1998; Dharmaraju, 

2008; Chatterjee, 2012)   

b) Non-Reactor Structure: Containment and civil structures, Fuel 

Transfer and Storage block, Overhead tanks and reservoirs, Airlocks, 

Structural support, RB Dampers, Bridges and jetties, guide and support etc  

**** **** **** *** *** *** **  Structural health 

prediction in R&D 

stages.(Andonov, 2011; 

Coble, 2012),  

c) Mechanical Components: Pumps & Turbines, Piping, Valves, 

Heat Exchangers (Shell and Tube and plate type, Fueling Machine, Fans and 

Dampers, Hydraulic drives and systems, Strainers and Filters, Bearings, 

Diesel Generators, Compressors, Cranes, Travelling water screens,  etc  

**** **** **** **** ** 

 

*** *** State of the art is available 

on on-line diagnostics. 

Prognostics in R&D stages, 

(Heng A, 2009; Samal, 

2010; Coble, 2012) 

d) Electrical Power System: Electrical buses and cables, HV 

Transformers, Motors, Breakers and Isolators, Power Relays, Motor 

Generator / alternator Sets, Battery banks etc. 

**** *** *** *** *** ** 

 

** CM for rotating machines. 

(Heng, 2009)  

e) Power Electronics systems: Un-interrupted Power Supplies, 

Convertors, Invertors and rectifiers etc.  

*** ** ** ** ** **  

 

* R&D work on Capacitor, 

IGBT reported. (Yin, 2008; 

Smith, 2009; Ye, et.al., 

2006) 

f) Micro-electronic Systems: Digital Cards, ICs, PLCs and FPGAs, 

interconnects and Control Cables, Control Connectors etc. 

**** *** **** *** ** ****  ** Prognostics in R&D stages 

(Pecht, 2008) 

g) Process Instrumentation: Electrical and Pneumatic transmitters, 

Level, Pressure and Flow gauges, RTDs and Thermocouples, Impulse 

tubing, Control Valve telemetry, Solenoids, pH, Conductivity meters.  

**** **** **** *** ** 

 

****  

 

**  Smart sensors and periodic 

calibrations, (Hashemian, 

IAEA-CN-164-7S05) 

h) Nuclear instruments: Fission Counters, Ion Chambers, etc. **** **** **** *** ** ****  **  Often saturation 

characteristics indicate 

reaming useful life.  

Note: The characterization of the metrics has been done considering the ‘representative items’ identified in column with ‘bold and italics’.   

Legends: M: Monitoring; CM: Condition Monitoring, D: Diagnostics; P: Prognosis; OFL: Off-line; ONL: Online; ISI: In-service-Inspection;  

‘****’: Technology Available for NPPs; ‘***’ : Technology Available further qualifications are required for specific applications;  

‘**’: Technology in R&D domain, feasibility demonstrated; ‘*’ : Work initiated;  x :  No work reported in literature. 

IMPORTANT: The items shown in table provide an overview and do not claim, in any way, to provide specifics/guidelines.  

Table 1: Categorization of SSCs and Status of Monitoring, Diagnosis and Prognostics in Existing (up to Generation III NPPs) 
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The first step in implementing a prognostic program for a 

complex system such as an NPP is to classify the systems, 

structures, and components (SSCs) into different categories, 

keeping in view the NPP’s design and operation 

characteristics that will also determine the type and level of 

prognostics. The classifications and categorizations 

performed in this paper are not comprehensive but rather 

indicative. The objective here is to present the state of the 

art of monitoring for these components from the point of 

assessing the prognostic maturity level for these 

components. Table 1 shows the status of online monitoring, 

condition monitoring, in-service inspection, and diagnostic 

prognostics. This categorization has been primarily done 

keeping in mind the pressurized heavy water reactor 

systems and components and is representative and not 

exhaustive. The basic idea is to categorize the systems and 

components, as shown in Table 1, keeping in mind the 

reactor type and prognostic requirements. The following are 

points drawn from this table with respect to criteria required 

for the classification of NPP SSCs, the status of various 

surveillance methods, and existing gaps in the 

implementation of prognostics: 

This classification is required for both new and old reactors. 

In fact this table provides a good starting point to generate 

prognostic specifications for the new design. In each 

category, the representative components are chosen such 

that they fulfill one or more of the following criteria:  the 

component allows prognostic implementation (the most 

challenging), the component allows prognostic, diagnostic, 

in-service-inspection or condition monitoring 

implementation, the component represents a typical sample 

from the category, and that for other components in the 

group, prognostic implementation will be similar to the 

representative component. The monitoring program has 

matured for all the categories of components in NPPs. In-

service-inspection (ISI) is applicable to mechanical 

components in general and piping and associated fittings in 

particular.  It may be noted that the capability of ISI in terms 

of various coverage factors such as detection, location, and 

isolation remains a subject of research and development 

(Coppe, Haftka, Kim, and Bes, 2008). The surveillance 

activities, which include testing and maintenance, 

performed on electronics channels and electrical power 

supply systems have also been categorized under the ISI 

program. Condition monitoring programs for reactor coolant 

channels, pumps, motors, bearings, reactor containment, 

fission counters, and transmitters is mature in NPPs. 

Generally, diagnostics is provided for selected components, 

such as diesel generators, pumps, and digital cards. For 

example, the complete protection channel is monitored in an 

online mode for detecting failure of any card using a built-

in-test or a fine impulse test facility.  

There are many examples of online surveillance and health 

management programs in NPPs. Some of the examples 

include coolant channel inspection activities (item (a) in 

Table 1) in a pressurized water reactor or an advanced aging 

management program for mechanical components. 

Similarly, the fine impulse test facility for monitoring all the 

redundant channels (item (f) in Table 1) is also an example 

of a Verification and Validation (V&V) tool for the health 

assessment of electronic parts of protection channels. The 

saturation characteristics of ion chambers or fission counters 

provide an online indication of the remaining life of these 

components. However, regulation and protection channels 

only have diagnostic features, and research and 

development is required for the implementation of 

prognostics for these components.  

At the component level, the condition monitoring of rotating 

machines using vibration and temperature monitoring and 

diesel generators sets are arguably a mature health 

management program, except that they lack the capability of 

life prediction. Our literature search suggests that online 

prognostics either have not been developed or still in a 

research and development stage for most of the components 

in NPPs. 

3. INTEGRATED RISK-BASED APPROACH 

The term ‘risk’ in nuclear parlance deals with assessing the 

likelihood and consequences for a given scenario. When the 

modeling is performed considering risk as the major 

objective metric by integrating probabilistic and 

deterministic methods, then the approach is called as 

integrated risk-based engineering (IRBE). Even though the 

majority of risk modeling is performed considering 

hardware failures, incorporation of human factor modeling 

into plant modeling also forms a significant feature of risk 

models. Another major feature of this approach is that it 

provides a quantified statement of safety (Tsu-Mu, 2007). 

Deterministic criteria, design, and operation information 

form part of the risk assessment to reflect a realistic 

representation of the plant model. There are many 

approaches to risk assessment, including hazard and 

operability analysis, failure modes and effects analysis 

(FEA), what-if approaches, cause/consequence analysis, and 

quantitative methods for nuclear plants. The probabilistic 

risk assessment (PRA) methodology is a well-accepted 

methodology for risk assessment of the plant. Apart from 

this, probabilistic interference modeling using stress-

strength distribution approaches is also used for determining 

failure criteria at the component level. The following section 

provides a brief discussion on PRA, as this approach 

handles the probabilistic element of the integrated risk-

based approach. 

3.1. PROBABILISTIC RISK ASSESSMENT 

Probabilistic risk assessment (PRA) is an analytical 

approach to predicting the potential off-site radiological 

consequences of accidents for a nuclear power plant and 
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research reactor. PRA is performed at three levels. Level 1 

PRA deals with system modeling to provide estimates of 

core damage frequency. Level 2 PRA deals with the release 

mode and mechanisms from reactor containment to provide 

estimates of radioactivity release frequencies for various 

source terms. In level 3 PRA consequences for various 

releases are estimated to provide an assessment of risk.  As 

level 1 PRA deal with SSCs modeling level 1 PRA is 

directly relevant to prognostics application. Hence, for 

prognostic applications, results and insights from level 1 

PRA with assessments of system-level unavailability and 

core damage frequency as indicators of safety are proposed 

in this paper.   

The major elements of level 1 PRA methodology include: 

identification of the postulated initiating event (both internal 

and external), assessment of the response of the plant using 

event tree methodology, modeling for safety system failure 

employing a fault tree approach, quantification of the model 

by using failure data including human error probabilities 

and common cause failure data, etc., iterative simulation of 

an integrated plant model to estimate the core damage 

frequency and uncertainty bounds, and sensitivity analysis 

for critical assumptions  made during the study. Figure 2 

shows the general level 1 PRA methodology. 

Risk-based applications, such as an equipment surveillance 

test interval and allowable outage time optimization, 

precursor event identification and analysis, evaluation of 

emergency operating procedures, and risk monitoring for 

plant configurations studies are generally based on level 1 

PRA studies. The reason for this is that level 1 PRA deals 

with modeling plant configurations with consideration of 

component failures, human actions, test and maintenance 

data, and operational procedures and plant technical 

specifications to predict unavailability and core damage 

frequency at system level and plant level. Accordingly, we 

deal with level 1 PRA, wherein the estimates of core 

damage frequency represents a statement of risk.  

PRA methodology can be considered mature enough to be 

used in decision support. The main reasons for the growth 

of this field are because it enables the quantification of the 

statement of plant safety by estimating the core damage 

frequency and unavailability at the system level, it provides 

a mechanism to capture random elements of safety 

characterizing uncertainty in safety and performance 

estimates, it provides a strong framework for integrated 

performance of SSCs into the model of the plant, and it 

facilitates integration of the human factor into an integrated 

model of the plant. When the PRA framework is employed  
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 Figure 2. Level 1 PRA methodology. 

in support of regulatory decisions, then the application is 

called “risk-informed.” 

 

3.2 Role of PRA in Risk-based Applications 

PRA provides a systematic framework for the identification 

of safety and reliability issues, safety-based prioritization of 

components, human actions, and assessment of plant 

configuration. The major result of PRA is a statement of 

core damage frequency per year, while the assessment of 

design strength and weaknesses of the plant, 

characterization of uncertainty, and sensitivity analysis also 

form part of the major insights. 

The level 1 PRA model and framework is used for many 

risk-based applications, including risk-based design 

optimization, risk-based in-service inspection, risk-based 

maintenance management, risk-based technical 

optimization, risk monitoring, and precursor analysis.  

Among these, the risk monitors are used to address real-time 

issues and have gradually become an integral part of the 

operation of NPPs in many countries.  This is the reason 

why PRA applications are becoming an integral part of 

regulatory review as part of a risk-informed approach (Tsu-

Mu, 2007). 

3.3 Living PRA and Risk Monitor  

Even though the traditional approach to PRA modeling is 

static in nature, the application of PRA as ‘living PRA’ and 

‘risk monitor’ make this approach in a limited sense 

dynamic in nature. The living PRA approach ensures 

updating of the plant PRA model on a periodic basis such 

that it reflects the as-built and as-operated features of the 

plant. These living PRA models are updated based on 

modifications or change in operating procedures or 

regulatory stipulations. Changes are documented in such a 

way that each aspect of the model can be directly related to 

existing plant information, technical specifications, and 

emergency and normal operating procedures. The 

verification of assumptions within the analysis and the 

associated sensitivity analysis forms part of living PRA 

approach (IAEA, 1999).  
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There is a noticeable growth in on-line application of PRA 

as risk monitor. These risk monitors provide assessment of 

risk for real-time changes in equipment configurations and 

technical specification parameters like allowable outage 

time or change in test intervals, etc. Risk monitors reflect 

the current plant configuration in terms of status of the 

various systems and components. Basically, risk monitors 

are developed as an operator aid in decision-making support 

in the plant control room environment. The operator may 

like to assess change in risk levels for an action involving, 

for example, taking any components out of service for 

maintenance or tests. Given the above background, living 

PRA and risk monitors make the risk assessment process 

dynamic in a limited sense. This means that it addresses 

discrete events/changes in time not in the continuum sense 

of time. The risk monitor models should be consistent with 

living PRA models and should be updated at least with the 

same frequency as living PRA models (NEA/CSNI, 2005). 

The change in core damage frequency or core damage 

probability for a given scenario assessment and its 

comparison with the quantitative criteria is used in support 

of decisions as part of risk-informed approach. 

 

3.4 Limitations of the Risk-based Approach   

The risk-based framework in its present form is essentially 

‘static’ in nature and often incapable of conducting 

evaluations involving dynamic scenarios evolving in 

through time. Hence, there is a need to make the whole 

approach more dynamic in nature for addressing real-time 

scenarios. It must also account for degradation, which is 

inherent in systems and components, and have a predictive 

capability with reasonable accuracy such that it can provide 

a time window for corrective actions. It should also have 

risk mitigation or management features. This is where a 

prognostics approach can enable evaluation of dynamic 

scenarios. The probabilistic tools and methods, on the other 

hand, can provide the required framework for assessment of 

available safety margins and characterization of uncertainty. 

This approach has been extensively applied to mechanical 

and structural systems, like risk-based in-service inspection 

of piping and structural systems, risk-based maintenance for 

process systems, etc. However, radiation-induced 

degradation poses a challenge to life prediction of structural 

components in NPPs. There are some areas in NPPs where 

radiation-induced degradation modeling and assessment 

have been performed to predict the remaining life of 

structural systems, such as pressure tube life prediction in 

PHWRs and CANDU reactors, reactor vessel health 

assessment modeling, and aging of control and power 

cables. However, these pose a challenge to the assessment 

of life of in-core components.  Extensive research and 

development is being performed to implement this approach 

for micro-electronic and power-electronic systems (Tsu-Mu, 

2007; Patil, et. al., 2009). 
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Fig. 3  Interrelationship of IRBE and prognostics approach. 

4.  PHM and IRBE  

Figure 3 shows the interrelationship between integrated risk-

based engineering (IRBE) and a prognostics framework. As 

can be seen, the deterministic and probabilistic methods 

together can be used to build an integrated risk model of the 

plant. The integrated risk model provides information about 

safety issues in general, which is vital for the 

implementation of prognostics. This includes information 

on components and modes and sequences of system failure, 

which are precursors that can form candidate components 

for implementation of prognostics. From here the 

organization gets vital input to focus on a small group of 

safety-critical items to improve technical specifications. 

This approach provides a valuable tool for prognostic 

coverage so that maximum benefits can be realized by 

investing the available resources.  

While probabilistic input is critical for uncertainty 

characterization in prognostics, the overall effect is to help 

in the assessment of a safety margin at the reference level.  

Once a prognostic assessment is performed, it is possible to 

understand the safety margin in a dynamic manner. The 

prognostic strategy complements the present risk-based 

framework by online performance tracking and generation 

of feedback for operators as well as regulators. The overall 

gain from the implementation of a prognostics strategy is 

that it allows the assessment of safety issues by predicting 

life, reliability, and prognostic distance in a dynamic 

manner.  

5 REQUIREMENTS OF PROGNOSTICS FOR IRBE 

APPLICATIONS 

There are three major areas that need to be strengthened in 

the risk-based approach. These include dynamic modeling, 

improved methods for uncertainty characterization, and 
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Parameter 

Applicable Levels  

1 2 3 4 5 

Plant – stage (* and #) Under Design New  Operating plant 

(Useful Life)  

Aged Operating 

plant  

 

Shutdown 

Under-refurbishing 

Operating 

After refurbishing 

Objective (* and #) Improve Safety 

 

Improve Availability & 

Safety 

Monitoring of 

remaining useful life 

Follow-up after 

retrofitting 

Reduction in 

Operational Cost  

State-of-the-art enabler 

(*) 

Online Monitoring, Off-

line Diagnosis.   

Online Monitoring Off-

line Diagnosis and 

Conditioning 

Monitoring. 

Online Monitoring, 

diagnosis and 

condition monitoring. 

Online Monitoring, 

diagnosis and 

condition monitoring, 

off-line prognosis.  

Online Monitoring, 

online diagnosis and 

condition monitoring, 

online prognosis. 

Subject  (* and #) Micro-Electronics / 

Digital Control Channels  

Power Electronic  Electrical Structural / 

Mechanical 

Interdisciplinary 

Implementation Level (* 

and #) 

Level 1 Level 2 Level 3 Level 4 - 

Risk Assessment 

Approach (* and #) 

Qualitative / 

Deterministic 

Failure Mode Effect and 

Criticality Analysis 

Hazard and 

Operability Analysis 

System Level 

Reliability Modeling 

Fault tree. Event Tree 

Level 1 Probabilistic 

Risk Assessment (L-1) 

Existing Maintenance 

/Health Management 

Strategy (*) 

Preventive Maintenance 

and Scheduled Testing 

Condition based test and 

Maintenance  

Reliability Centered  Risk-based Test and 

Maintenance   

Online reconfiguration 

Stakeholders (* and #) Design Team Operating organization Regulators  - - 

Implementation 

Approach (* and #) 

Model Based Data Based Risk-based Fusion  - 

Availability of Tools and 

Methods / Challenges (* 

and #) 

Prognostic algorithm Availability of Sensors Degradation Models Feature Extraction 

Methods 

- 

Cost-benefits (* and #) In the context of NPPs, cost benefits for a particular level is assessed using safety and availability indicators.   

 

    Legend *: applicable to old plants; # : applicable to new plants 

Table 2.0 Prognostics Design Requirement 
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realistic assessment of safety margins. It can be argued that 

a risk-based approach is a rational one, in that it combines 

the plant configuration, including operational logic, and 

performance parameters through probabilistic reasoning. 

Hence, this approach, in conjunction with the deterministic 

approach, is expected to provide more flexibility compared 

to the traditional approach. Apart from this, performance 

monitoring and generation of feedback following the 

implementation of changes and modifications forms an 

integral feature of risk-based engineering. Development and 

implementation of prognostic program is expected to 

address the above issues in the following manner:  

Develop suitable sensors that can measure a precursor 

parameter of interest. Assess online the reliability and 

remaining useful life of the monitored systems based on 

identified precursors or degradation characteristics. Develop 

a prognostic algorithm that provides advance remaining life 

prediction with an adequate time window. Characterize 

uncertainty in the prediction, instead of point estimates of 

RUL, such that management issues can be addressed in an 

efficient and effective manner. Employ multi-objective 

algorithms that take into consideration risk, cost, and 

reduction in radiation dose. The prognostic framework 

should have provision for database, model-based (Physics of 

Failure (PoF) and Mechanics of Failure (MoF)), and fusion 

approaches, keeping in view the varying nature of 

prognostics programs for a range of components, such as 

mechanical and electrical systems, electronics, and nuclear 

components. The prognostic algorithm also should have a 

provision to provide feedback online to track the 

performance of modifications in a component that has been 

replaced or has undergone a maintenance procedure or 

calibration of some instrumentation.    

It may be noted that use of input from prognostics may 

require modification to the existing risk assessment 

approach. For example, an existing database in the risk-

based approach may have only static reliability data, failure 

criteria, and maintenance and test schedules. However, 

when the dynamic aspects are implemented as part of 

prognostic feedback to risk-based engineering, then there is 

a need to re-organize the complete database framework such 

that dynamic inputs and outputs can be managed.  

5.1 Prognostics Design Requirements  

The complex nature of NPP design requires a different set 

of design metrics that satisfies the requirements of a 

particular application. There are many areas that require 

research and development with respect of material 

degradation, development of special sensors, and suitable 

algorithms for online feature extraction and analysis. In 

some situations, the design constraints may make it 

challenging to implement a prognostic program. Table 2 

shows the requirements that can be used for the design of a 

prognostics program for a given application. The 

applicability of these parameters for old or new plants is 

indicated in the table by * and #, respectively. 

5.1.1 Plant Stage 

The scope of a prognostic program will be governed by such 

factors as at what stage of the plant the prognostics is being 

implemented. As mentioned earlier, for the implementation 

of a prognostic program in new plants, prognostic 

requirements and specifications should be part of the design 

strategy. Since the plant has yet to be built, provisions can 

be made in advance, keeping in view criteria such as safety 

and availability. Prognostics as part of life extension will 

have activities focused on select systems, components, and 

structures. However, the plant’s design and operational 

constraints will dictate the implementation levels. 

Prognostic requirements for refurbished plants will be 

similar to a plant whose life has been extended. In a 

refurbished plant prognostics is useful particularly for those 

systems where clear insights into the remaining life of 

certain components is not available, while the cost of bulk 

replacement would have been prohibitive, and where it is 

felt that online prognosis and diagnosis would be useful, 

such as in coolant channels, piping, and power supply 

cables. 

5.1.2 Objective  

The objective of prognostics is defined as keeping in view 

the plant status, logistics, and data and knowledge base, 

particularly the understanding of the material degradation 

phenomenon and the availability of prognostic algorithms. 

For new plants, the institutive reaction will be to go for a 

model-based approach, while for older plant, where enough 

data are available, the data-driven approach will be 

preferred. It should be noted that most of the nuclear plants 

in the world either have a level 1 PRA model with internal 

initiating events for full power conditions or a reactor core 

as the source of radioactivity. These plants have an obvious 

advantage over using risk modeling to formulate or identify 

and prioritize a prognostic program. The available literature 

shows that most prognostic implementations produce 

improvement in availability and cost-benefit objectives 

(Hyers et al. 2006). There have been applications of 

prognostics to aircraft health monitoring, where the 

emphasis has been on safety. There have also been 

applications of PHM with mission safety as a driving force. 

5.1.3 State of the Art  

The state of the art refers to the current status of monitoring 

and surveillance methods used in a plant. If a plant is in the 

design stage, metrics may include the requirements for 

monitoring and health management. Provisions can then be 

made throughout the design stage for implementation of 

prognostic program. However, in the operating plants the 

existing sensors/provisions, and new sensors will determine 

the level and scope of prognostic. Generally, the state of the 

art in the current generation of plants facilitates the online 
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monitoring of important safety parameters and condition 

monitoring and surveillance. Such programs are not fully 

automated, however; the diagnosis is performed in off-line 

mode for most systems. There are closed feedback loops 

wherein corrective actions are automatic. These feedback 

loops ensure the maintenance of plant parameters within set 

limits. These metrics help to determine the specifications 

and the scope of the prognostic requirements. The available 

literature on NPPs does not appear to provide information 

on application of prognostic based on online life and 

reliability prediction. 

5.1.4 Subject 

For complex systems such as NPPs most of the systems 

require an interdisciplinary approach to implement 

prognostic program. However, particular disciplines may 

require a unique focus. For example, prognostics for reactor 

protection channels and structural components such as 

reactor blocks will differ with respect to degradation 

mechanisms, the time window available, and the monitoring 

and sensor requirements. Hence, even though the broad 

framework may remain the same, the specifics will vary by 

applications. 

5.1.5 Level of Implementation 

The level of implementation metric is derived/adopted from 

the procedure developed by Gu et al., keeping in mind the 

NPP requirements. In this reference, various levels have 

been presented for the implementation of prognostics of 

electronic systems. For complex systems such as NPPs, 

there are different prognostic levels. Level 0 is the 

component level, which includes items such as fuel 

assembly, feeder, bearing, motor, control and power cables, 

alternator, pipeline, battery, relay, micro-processor chip, 

switch, and electronic cards. Level 1 includes the assembly 

of components of a particular class, such as mechanical, 

electrical, electrical, or nuclear and associated connections 

that perform a basic function. Examples include pumps with 

connected piping up to suction and discharge and the 

suction strainer, a compressor with sub-components such as 

coolers and associated connections, diesel generators with 

support systems, and power supply modules, amplifier 

modules, and function generators. Level 2 includes those 

systems that are activated only on demand from the plant 

control system. They can also be referred to as safety 

support systems such as class III electrical power supply, 

class II control supply, and class I power supply systems. 

Level 3 systems include those systems that are required to 

be operational when the reactor is in operational state, 

including the main coolant system, class IV power supply 

systems, feed water systems, regulation systems, and 

process water systems. The structural systems, such as the 

reactor vessel and reactor shielding components, reactor 

pile, and containment building, that are basically passive in 

nature but require a structural approach for health 

monitoring are categorized as level 4. These categories are 

based on the broad characterization of component functional 

requirements and their place in a system, whether as an 

independent unit, sub-block, block, major function, or 

assembly of functions to deliver an objective function. 

5.1.6 Risk Assessment Approach 

Most NPPs have a level 1 PRA implemented, considering 

the internal initiating of events for full power conditions. 

Even though risk-based applications require shutdown or a 

low power operation PRA, the availability of a full-power 

PRA can be considered for initiating a PHM implementation 

program. Apart from this, Failure Modes, Effects, and 

Criticality Analysis (FMECA) forms an integral part of 

PHM implementation. It is recommended that a 

comprehensive FMECA program should be initiated, 

keeping in mind the focus of prognostic implementation. 

5.1.7 Existing Maintenance Health Management 

Strategies 

This metric determines the current maintenance strategy, an 

important reference for building a PHM program. Typically, 

most nuclear plants use preventive maintenance as the major 

approach for health management. However, condition 

monitoring, in-service inspection, and scheduled test and 

maintenance are the general features for health 

management. The available literature shows that in some 

NPPs and industrial systems, reliability-centered 

maintenance, risk-based in-service inspection, and risk-

based technical specification optimizations are also used 

(IAEA, 1993). The available framework is important, as the 

data generated on the maintenance and health of these 

systems and pieces of equipment form the fundamental part 

of the data-driven approach for prognostics. Along with 

inputs from risk models, these data and insights will help to 

identify and prioritize the prognostic program.  

5.1.8 Stakeholders 

Though stakeholders are not a metric, they affect which 

agency is interested in prognostic applications. The 

designers would like to have a prognostic program for 

identified systems or as part of a design policy for systems 

that they feel will determine the life of the plant. These 

could be in-core components or structures that form an 

integral part of systems such as reactor vessels, pile blocks, 

storage pool linings, or containment, or it could be some 

safety or process system for which it is important to track 

performance. For operational agency, it could be certain 

aspects of the plant that affect plant availability, such as 

performance of the strainer, check valves, and certain 

pipelines and bearings, which require continuous 

monitoring and remaining life assessment such that repair 

and replacement of these components can be scheduled to 

improve plant availability. Regulatory agencies want to 

track the performance of a system where the changes have 

been implemented. Here the role of prognostics is to provide 

feedback on the remaining useful life or performance 
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monitoring of a system for a specified period of time or for 

an extended duration to ensure that safety has not been 

compromised.   

5.1.9 Approach for Implementation 

The approach to prognostics implementation is governed by 

many factors, including the objective or purpose of 

prognostics, the level of detail required the availability of 

data, and plant constraints. For argument’s sake, if a 

prognostic program requires performance monitoring as part 

of a risk-informed or risk-based approach, then the focus 

will be on monitoring the performance metrics of the system 

under regulatory review. If a prognostics program is being 

designed for a new plant where the objective is to strengthen 

the safety function, then the task should include the 

prognostic specifications in the design phase and keep 

provisions not only for online monitoring but also for the 

implementation and management of the health of the plant. 

If prognostics is being implemented as part of a life 

extension strategy, then it must be noted that the focus 

should be on structural remaining life assessment. As a rule,  

NPPs require close monitoring of structural health, 

particularly where safety is the major metric, even if it has 

not entered the aging phase.  

5.1.10 Tools and Methods  

Prognostic tools and methods are identified only when 

FMECA has been performed, precursors have been 

identified, and the broad approaches, including data-driven 

and PoF-based, have been evaluated, keeping in mind the 

requirements of applications. However, detailed studies, 

literature searches, or required meetings with consultants 

may present issues associated with selection of prognostic 

algorithms, the availability of sensors, the availability or 

limitations of degradation models,  and approaches that will 

be required for feature extraction, deriving useful data and 

information from a host of complex data and signatures 

collected from  experiments. 

5.1.11 Cost-benefit Studies 

The available literature shows that cost-benefit evaluation 

can be used to demonstrate the net benefit of the 

implementation of PHM results (Wood and Goodman, 

2006). In the context of nuclear plants, benefits need not be 

in terms of monitory gain; they could be in terms of safety 

improvement, life extension, or lessening the burden on the 

operating staff.   

4. PROGNOSTIC FRAMEWORK FOR NUCLEAR PLANTS  

Major elements of prognostics implementation include 

monitoring system performance through noise analysis, 

detecting changes by trending, understanding and 

identifying root causes of failure, prognostics, and health 

management (Vichare and Pecht,  2006).  Even though there 

will be variation in the tools and methods, the level of 

accuracy required when the prognostics is implemented for  
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Figure 4.  Prognostics framework for NPPs.  

mechanical, structural, or electrical systems, will remain the 

same.   

6.1 Existing Set-up 

Traditionally, online monitoring and maintenance, including 

surveillance of passive and structural systems, as well as 

maintenance of active components form an integral part of 

NPP operations, as shown in Figure 4. The existing 

approach is shown within the boundary drawn on left side of 

the Fig. 4. The monitoring provisions exist at the 

component, system, and plant level. These monitoring 

provisions are limited to process parameter values and an 

equipment status display, which indicates various states of 

reactor operation including transient states. However, 

condition monitoring and surveillance for many systems is 

performed in an off-line mode as part of plant policy for 

selected equipment. Even though condition-monitoring 

approaches have matured and are being used in the health 

management, the prognostic quotient in terms of the 

prediction of remaining life is low.  One of the major 

reasons for this is complexity in terms of material 

characterization, such as irradiation-induced degradation of 

core components and structures (Bond et al., 2008). Apart 

from this, the nuclear industry operates on conservative 

criteria; hence, strict regulations for design and operation 

dictate that uncertainty in real-time assessment should be as 

low as possible. However, in the present situation, advances 

made in other application areas (such as space, aircraft, and 

civil) can be implemented in NPPs by incorporating 

adequate provisions for some identified systems, which can 

provide insight into the application of prognostics in a 

graded manner as well as into safety critical systems.  

Figure 4 shows the framework for PHM for NPPs. The 

proposed approach, while utilizing the data and information 
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that is available in the traditional approach, envisages 

development of prognostic sensor systems to monitor the 

identified precursor parameters. The data available through 

the sensors are mapped on the prognostic algorithms to track 

deviation and therefore provide information on incipient 

faults. Here, the role of intelligent tools like Support Vector 

Machine or Bayesian estimation or Sequential Probability 

Ratio Technique is to predict the prognostic distance such 

that action can be taken well before the situation results into 

safety or availability consequences.  

The following subsection deals with major aspects of 

prognostic implementation which are relevant to NPPs.  

6.2 Prognostic Approaches  

6.2.1 Probabilistic or Reliability-based Approach 

This approach is used extensively to predict the life and 

reliability of components, be they mechanical, electrical, or 

electronic components. Even though this is considered to be 

an approximate approach, the advantage of this method is 

that uncertainty characterization comes naturally. Often the 

Weibull distribution is utilized extensively. Other 

distributions, such as exponential and log-normal 

distribution, are also common as a life prediction model 

(Yates et al., 2006; Modarres, Kiminskiy and Krivstov, 

2010). The weakness of this approach is that the predictions 

are based on the past performance data of equipment and 

components. This implies that the prediction does not 

account for changed component operational and 

environmental loads. For example, for a given component in 

a component database, the failure rate estimations are based 

on an operational environment where the average 

temperature and relative humidity is 28
o
C and 65%, 

respectively. The condition for which the failure rate 

estimation is required to work is a ground benign 

environment of 22
o
C and humidity of 55%. These 

environmental conditions are bound to affect the failure 

rate—in this case, reduction in failure rate. Certain external 

factors such as vibration and seismic shocks adversely affect 

the life and performance of a component. If these aspects 

are not factored into the estimates based on historical data, 

then the estimates tend to be either optimistic or 

conservative, depending on the severity levels of the 

component in the database compared to the component for 

which failure rates are being estimated. If a given 

component experiences less vibration and seismic shock 

than a component with a failure rate estimate based on 

higher vibration and shocks, then the failure rate estimates 

will not be accurate. Often these types of situations 

involving application of PHM approach in real-life 

situations are handled by providing uncertainty bounds.  

This approach involves prediction of the mean life of a 

component along with its upper and lower uncertainty 

bounds. A wide uncertainty bound indicates that the 

prediction is based on limited data sets, that reliance on such 

estimates should be lower, and that these estimates should 

be used as an indicator. In such situations, precursor-

monitoring techniques such as vibration or temperature 

monitoring of the components represent an effective 

strategy for prognostics. The Bayesian model features 

probabilistic estimates that form a priori and has data 

coming from the precursor monitoring that can be used as 

evidence for updating the strategy for prediction (Yates and 

Mosleh, 2006). So, even though the approach is primarily 

probabilistic in nature, trend monitoring is used to improve 

the prediction capability.    

6.2.2 Physics-of-Failure-based Approach 

The physics of failure (PoF) approach deals with the 

application of first principle models to understand the 

various failure mechanisms and thereby predict the 

remaining useful life and reliability of components. In other 

words, this approach is based on the development and 

application of scientific models that predict the life of 

component. In this approach, unlike statistical approaches 

for reliability estimation, past performance data is not 

required (White and Bernstein, 2010). The predictions are 

based on the component characteristics, such as material 

properties, geometrical attributes, and activation energy for 

applicable degradation processes for given environmental, 

operational, and environmental stressors. Accelerated life 

testing is central to the PoF approach. PoF enables the 

identification of dominant failure modes and mechanisms, 

and thereby precursors for monitoring the health of the 

component.  Failure Modes, Effects, and Criticality 

Analysis (FMECA) form the cornerstone of this approach to 

identify and prioritize the applicable degradation 

mechanisms. Identification of precursors is an important 

part of this approach. The precursors are the parameters that 

can be monitored using the available sensors (Patil, Das, 

Pecht, Celaya and Goebel, 2009). Precursor monitoring 

provides advanced information about the underlying 

degradation mechanism.  

The PoF model can be expressed in general form as: 

.......),,( 32150 xxxft     [1] 

where t50 is the median life and xi is the parameter of the 

model. The commonly known PoF model for life prediction 

is the Arrhenius model, which is expressed as follows: 











kT

E
At aexp50    [2] 

where A is a process constant, Ea is the activation energy of 

the process in eV (electron volt), k=Boltzmann’s constant= 

8.617*10
-5

 eV/K, and T is the temperature in Kelvin.  

There are many more models available to predict life, such 

as the Eyring model. The limitation of these models is that 

they only recognize temperature as an environmental stress.  
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Figure 5. CALCE Physics of Failure Based Approach for 

Prognostics (Pecht and Gu, 2009). 

In real life, there are many environmental and operational 

stresses. 

These models also fail to account for the geometrical and 

other material mechanical design features such as material 

finishes and materials of the mating parts. Overall, the 

challenge translates into assessment of the accurate 

prediction of activation energy for a given case. 

These limitations have led to further research into 

developing PoF models that take under consideration the 

various stresses associated with each component in 

reliability modeling. This became possible with a basic 

understanding of the physics of degradation of materials 

under various stresses. Accordingly, accelerated life testing 

has become central to PoF modeling. Root cause analysis is 

performed to understand the degradation mechanisms 

responsible for failure. Figure 5 shows the framework of 

PoF approach developed at Center for Advanced Life Cycle 

Engineering (CALCE), University of Maryland, USA 

(Pecht, 1996).  

This figure shows that information about the component, 

including physical specifications, geometry, construction 

materials, operating environment (including temperature, 

humidity, and vibration), and operational stresses (current, 

voltage, and electric field) forms the main input for 

modeling.  

One of the notable and significant features of the PoF 

approach is the development and application of canaries 

(Dasgupta, Doraisami, Azarian, Osterman, Mathew and 

Pecht, 2010). Canaries are miniature versions of the subject 

electronic component, which is designed to fail early. This 

early failure predicts the impending failure of the subject 

component. The available literature provides examples of 

the application of canaries for prognostics (Pecht, 2008). It 

is very important to note that the word “canary” was coined 

very recently for incorporating a “weak link” or “weak 

device” into electronic systems. However, the concept of 

weak link has been used in mechanical and electrical 

systems to protect major failure in these systems due to over 

stresses. In electrical systems the “fuse” protects the 

electronic or electrical system by cutting of power when 

electrical stresses reach above the pre-designed levels. 

Similarly, when mechanical components, such as fuel 

elements that are incorporated with tension members or pins 

which are designed to fail, before permanent damage occurs 

to the reactor structural components or in the fuel itself due 

to over stressing during fuel handling. This weak link 

concept, coupled with the present knowledge base and 

further R&D on prediction of remaining life, provides a 

promising approach to developing canaries for mechanical 

and electrical systems.    

The PoF approach is particularly suited for assessing 

electronic component reliability. Even though this approach 

is in the research and development stage, there are many 

models available for electronic components. The state of the 

art in micro-electronic reliability shows that greater 

advances have been made for reliability modeling of micro-

electronic components compared to power electronic 

components. 

6.2.3 Mechanics of Failure (MoF) Approach  

The root cause failure analysis of mechanical components 

and structures may differ from the RCA of electronic 

components. In mechanical components, the RCA often 

deals with the macro-level. In a few cases the micro-level of 

investigations is necessary for understanding failure 

mechanisms, unlike for electronic components, which 

require developing models and methods that function at the 

micro- and at nano-levels. RCA of mechanical components 

may not always require high precision lab facilities, tools, 

methods, and software. Often, the stress-strength reliability 

model with prediction capability and within reasonable 

uncertainty bands may provide satisfactory insights into 

failure modes and mechanisms. In fact, the failure modes of 

mechanical components include failed to open, leakage, 

failure on demand, and blockage. These failure modes can 

be verified by visual examination, unlike electronic 

components, where often the information about failure 

mode is not directly available or based on failure symptoms. 

Another important feature included in MoF is a detailed 

investigation through corrosion-related modeling. These 

models and investigations deal with various materials, weld 

joints, environments, stresses (stress corrosion cracking), 

finishes, and provisions of protection against corrosion.  

The failure surface characterization at the macro or micro 

level, often part of any RCA for mechanical components, 

provides reasonable results. Apart from this modeling and 

simulation, using the finite element approach at the macro-

level can provide satisfactory inputs. Generally, an 

accelerated test approach does not form part of the RCA of 

mechanical components, unlike electronic components 

where accelerated life testing forms the bottom line. Even 
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though mechanical components can also be modeled using 

the PoF approach, the nature of prediction and level of 

treatment required to model mechanical components and 

structures require the problem to be handled at the macro-

level rather than the micro-level. Hence, this paper proposes 

a collection of tools and methods through an approach 

called mechanics of failure (MoF) to predict the life of 

mechanical and structural components. Here, the stress-

strain relationship forms the fundamental approach to 

reliability and life prediction. 

Even though this approach is best suited to tackle one of the 

main bottlenecks of risk-based approach, namely, 

assessment of the safety margin, the data and the models 

available so far often form a limitation to predict reasonably 

accurate safety margins. Accelerated testing methods, 

probabilistic fracture mechanics approach, damage 

mechanics, strength of material methods, finite element 

analysis, and failure analysis methods form the major 

elements of the MoF approach. Reliability methods are used 

as part of the MoF approach for making statistical estimates 

of life. The major degradation mechanisms that are 

evaluated in this approach include mechanical wear, creep, 

corrosion, and catastrophic failure. As with the PoF 

approach, MoF also utilizes root cause failure analysis 

models for understanding underlying failure or degradation 

mechanisms. The work performed by Mathew et al. 

provides a structural analysis of a structural board for 

NASA and appears to bring out, in a way, the essence of the 

MoF approach (Mathew, Das, Osterman, and Pecht, 2006). 

There are many studies in the literature where the objective 

is to base the prognostics on two major degradation 

mechanisms—temperature and vibration (Pecht, 2010). Of 

course, when the application is designed for nuclear core 

components, irradiation-induced degradation often becomes 

the leading parameter (IAEA, 1998).  

6.2.4 Symptom or Data-based Approach 

Generally, this approach is referred as the data-driven 

approach. This section deals with a data-driven approach, 

except that here a distinction between various data forms an 

input for prognostics. For example, a trend monitoring of 

operational and environmental parameters through on–line 

instrumentation may provide information about some 

precursor. A pattern comprising the status of a finite set of 

alarms as “registered as 1” and “cleared as 0” is another 

representation of data. A probabilistic distribution of time to 

failure based of individual components provides time to 

failure estimates of the systems being monitored. Input can 

be in the form of linguistic variables in place of a numerical 

value. All these require different approaches.  

The term “symptom-based approach” is used in this paper to 

extend the context of input data and information used in 

prediction, particularly for nuclear plant applications. As 

mentioned above, often information is not available in the 

form of a numerical value or in the form of binary values 

(0/1 or yes/no). Instead the information about the model 

parameters comes from experts in linguistic expressions. 

This information is not suitable for use as input; however, 

the information cannot be ignored, as it provides much 

stronger input for prediction or estimation of remaining 

useful life. In such instances, treating expert opening, which 

can be considered imprecise information, using fuzzy 

algorithms can provide one with improved assessment of 

imprecise parameters (Chen and Vachtsevanos, 2012).  

Second, the reason to have provision for some information 

is that establishing a pattern is important, as often, instead of 

a single parameter, a pattern can provide more data and 

information. For example, a comparative value of three 

parallel components seeing the same operational and 

environmental stresses may form a pattern, which may 

provide an effective mechanism to assess the health of the 

component and thereby provide an effective input for 

predicting the remaining life. The only issue is that even this 

information could be expressed in terms of linguistic 

variables and will require the fuzzy approach to address the 

challenge.  

This background is an obvious reason to formulate the data 

and information in two ways: trend monitoring using 

precursor symptoms and a pattern-driven knowledge-based 

approach.  

6.2.4.1 Trend Monitoring 

Trend monitoring is a natural extension of the condition-

based approach to diagnostics. Often pump bearing 

temperature, vibration reading, or a pump shaft that has run 

out of measurements forms part of a condition-monitoring 

program in nuclear plants. An expert can predict the time 

when a piece of equipment will need to be shutdown. This 

practice is common in industrial environments in general 

and nuclear plants in particular. In these cases, pump 

bearing vibration, temperature, and shaft run-out act as 

precursors for the prediction.  

To extend this approach to a prognostic regime, it is 

required that the deviations be tracked or monitored in 

online mode, that the failure criteria and associated 

uncertainty band be assessed for the component in question, 

that the future operational and environmental loading be 

used to assess the remaining useful life, that the prognostic 

distance, which can come from the maintenance logs, be 

assessed, that the uncertainty in RUL estimates be assessed; 

and that the degradation rate and alarm be predicted online 

as soon as the prediction upper estimates overlap with the 

lower bound of the failure criteria.  

There are many examples of models and methods that have 

been developed for prognostics and health assessment of 

check-valves or loose part monitoring in nuclear plants. This 

approach is particularly useful when the degradation profile 

is well understood. This means that this approach is more 

applicable to micro-electronic components where adequate 
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accumulated operational experience on degradation trend is 

available. The availability of a PoF approach to the 

modeling of micro-electronic systems is testimony to this 

observation.  

However, when it comes to power electronic components, 

one can only claim that work on the application of a PoF 

model for these systems has been initiated (Yin, Hua, 

Mussalam, Baily and Johnson, 2010; Patil, Das and Pecht, 

2012) but still is not as developed as micro-electronic 

systems. In the absence of the proper understanding of the 

degradation process, the current strategy to overcome this 

limitation is to uprate the system by providing the extra 

margins in design.    

6.2.4.2 Pattern-driven Knowledge-based Approach   

This approach does not require description of the system or 

component through basic models, but only requires patterns 

comprising component and system specific historical data 

and information. It provides an efficient and effective 

mechanism where the input/output relation cannot be 

defined through well-defined scientific models. However, it 

establishes that there is a one-to-one relationship between a 

set of input patterns and corresponding states in a system. 

One example is the alarm/trip pattern in a reactor, which can 

be associated with a discrete reactor state. When number of 

patterns or vectors each comprising a set of alarms uniquely 

define a given reactor state, then this approach can 

effectively be used for reactor status and condition 

monitoring.  The advantage of this approach is that it can 

operate successfully even with missing primary data to form 

a precursor for predictions. As it operates on clusters of data 

and often derives data it can use to predict with reasonable 

assurance. The applications include nuclear plant transient 

identification, prediction reactivity, and health monitoring in 

rotating machines. This approach has often been 

implemented using artificial neural networks (ANNs) 

(Varde, Verma and Sankar, 1998; Lee et. al., 2005), neuro 

fuzzy systems (Chen, Zhang, Vachtsevanos and Orchard, 

2011), support vector machines (Abe, 2010), or sequential 

probability ratio techniques (Coble et al., 2010). When ANN 

tools are used, the approach involves training the ANN with 

various patterns, including healthy patterns and various 

failure patterns for specific components. 

Another example is application of ANN for health 

prediction for check valves (Lee, Lee and Kim, 2005), 

(Uhrig, 1994). The ANN is trained with historical data on 

the failure of the check valve   involving the hinge pin, dish, 

stopper pin, or dash pot. These patterns, along with healthy 

patterns, are used to train the ANN. Validation and 

verification of the algorithm is carried out by testing the 

ANN response for new and existing patterns, for which it 

has been trained, plus unlearned patterns. The recall tests are 

often carried out with additional patterns having noise, 

missing data, or fuzzy data to ensure that the prognostic 

model is robust and that repeatability is high. During the 

course of prognosis, if the ANN algorithm comes across a 

new pattern that was not there in the database, there is a 

provision to train the ANN for this new condition. This new 

pattern then becomes part of a pattern-knowledge-based 

library for prognostics.  

It may be noted that the approaches listed above fall in the 

category of intelligent methods. The objective is to extract 

the features specific to a given input pattern. Here, the main 

issue is to determine which approach should be used for 

arriving at a given solution. Often, this decision comes from 

assessing the nature and complexity of the level of details 

that are expected in the solution space. This often requires 

performance evaluation of the approaches under 

consideration (Varde et. al, 1998).  

6.2.5 Integrated Approach.  

The prognostics approach followed for electronic 

components often uses what is called a fusion approach to 

enhance the prediction capability of the prognostics 

approach. General experience has been that often one 

approach may not be adequate to provide the desired results. 

Hence, the trend-driven approach is integrated with the PoF 

approach. While the PoF approach prides fundamental 

requirements for prognostic models, the database approach 

complements the model with a knowledge base that has 

already been developed for various failure modes.  

An integrated approach is also beneficial where the 

available data is inadequate to implement prognostics. To 

improve the prediction accuracy and precision, it is often 

necessary to use Bayesian updating to incorporate new data 

for prediction (Modarres et al., 2010). Hence, the 

probabilistic approach is used in conjunction with online 

precursor trends to update estimates with new data available 

from online sensors. While the trend monitoring identifies 

the deviation from the normal operation of equipment, the 

probabilistic model with uncertainty bands will provide an 

estimate of the prognostic distance—a performance metric 

crucial for fixing the deficiency either through repair or 

replacement. The prognostic distance also prompts the plant 

manager to plan the action in advance such that plant 

availability and safety can be optimized. 

6.3 Material Degradation and PHM Requirements 

Nuclear power plants include PWR, BWR and other designs 

such as Canadian deuterium reactor (Candu), pressurized 

heavy water reactors (PHWR), and gas-cooled reactors. The 

accumulated operating experience works out to be 10,750 

reactor years, considering an average operating experience 

of 25 years. Logs of failure history of components provide 

indicators for degradation trends. Prognostic applications 

require research and development to fuse the historical data 

with the available PoF models, considering intrinsic and 

extrinsic parameters, to gain improved understanding of the 

degradation of SSCs. It may be noted that non-destructive 

evaluation or testing (NDE or NDT) forms a major 
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component of the surveillance of SSCs in NPPs (Baskaran, 

2000). With respect to the aging or degradation of SSCs, 

degradation is a slow and gradual process and the 

prognostics used to track trends exists only after a period of 

30 years (Bond, 2008a). This means that the pre-service 

inspection (PSI) data collected during the plant licensing 

phase forms a template or reference for future trend 

monitoring.   

However, often the information may not be adequate to 

provide support of the estimation of remaining useful life or 

to determine the failure criteria for a given material 

application. This is why there is an overwhelming desire to 

have a proactive approach to the management of material 

degradation in nuclear plants in general and aged plants in 

particular (Bond, 2008a; Bond, 2008b). The incentive for 

the operating organization is to support the case for life 

extension while for regulators it provides flexibility for 

oversight and monitoring to generate feedback. Hence, 

monitoring as part of the implementation of PHM strategy 

backed up by degradation models forms a vital element for 

remaining useful life prediction (Meyer, Ramuhalli and 

Bond, 2011). 

For a prognostic strategy to be effective, it is important to 

have the reference signatures of the systems during the 

initial stages of operation. This makes it prudent that all the 

condition monitoring and surveillance applications, like 

leak-before-break, coolant channel health monitoring, 

installation of coupons (to assess corrosion in strategic 

location for in-core or out-of-core components), in-service-

inspection, bearing signatures, and cable insulation strength 

be seen as prognostic applications. As the life of 

components depends on lifetime loading and variation in 

environmental, electrical and mechanical stresses, (this 

includes the effect of external events and new combined 

phenomenon), it is important that PoF and MoF models 

account for degradation history to predict life. 

6.4 Prediction and Learning Machines and Tools  

There are a host of approaches for prediction, including 

probabilistic and statistical approaches. Examples of 

probabilistic methods include regression modeling, 

Bayesian updating (Guan et al., 2011; Modarres et al., 

2010), principal component analysis and sequential 

probability ratio tests (Coble, 2010). The intelligent 

methods or machine learning approaches form an important 

element in prognostics. The common approaches employed 

for prediction and machine learning are artificial neural 

networks (ANNs) (Varde et al., 1998), neuro-fuzzy models 

(Chen et al., 2010; Chen et al. 2011), Kalman filters 

(Heimes, 2008), particle filters (Chen, Vachtsevanos, and 

Orchard, 2010), and support vector machines (Abe, 2010). 

The selection and application of a given approach is based 

on the nature of the predictions to be made. For example, 

ANN tools are used when the prediction is based on 

symptoms and not an actual model of the system. The 

Bayesian approach is used where the prior knowledge 

predictions are based on new evidence or data. Probabilistic 

approaches are the traditional methods for estimating time 

to failure as an indicator of remaining life. Support vector 

machines are used where predictions are to be based on the 

clustering of data and information to form patterns.  

6.5 Limitation of Prognostic Methods 

Even though prognostics has evolved into a relatively new 

paradigm with applications in areas such as space, aircraft, 

and structural engineering, the development and deployment 

of prognostics in NPPs is very limited (Shafto et al., ). There 

are certain issues that need to be addressed through research 

and development efforts.   

Major challenges to the implementation of prognostics 

include sensors and associated networks, PoF and damage 

models and failure criteria, uncertainty characterization, and 

organizational frameworks. The availability of sensors in 

general and the development of an integrated sensor 

network can be considered one bottleneck in the 

implementation of prognostics. This is particularly true for 

electronic components, as this application requires 

miniaturization of the sensors such that newly developed 

sensors and networks can fulfill the requirements of an 

application. Keeping in view the enhanced performance of 

prognostics for future applications, wireless sensor networks 

(WSNs), along with utilization of miniaturized sensors such 

as Pt-100 for online temperature measurement, provide with 

an effective technique for the implementation of prognostics 

for electronic components (Puccinelli and Haenggi, 2005), 

(Lin, Wang, and Sun, 2004).   

The designers of newly built plants have to take a proactive 

approach for making prognostics provisions. This requires 

focused efforts on preparing design specifications based on 

safety and availability studies that identify not only 

components and processes that require PHM, but also 

selecting a PHM approach depending on failure 

mechanisms. For instance, if prognostic provisions are 

required for certain in-core components, suitable provisions 

should be made right before the start of construction 

activity. For existing plants, plant constraints will dictate the 

level of prognostics to be implemented. However, when life 

extension is being explored for the new plants, 

implementation of prognostics tools and methods can 

provide valuable insights into tracking aging mechanisms as 

well as help in assessing performance of systems in on-line 

mode or at periodic intervals. Keeping in mind advances in 

wireless sensor network (WSN) applications, the pros-and -

cons of this technology should be evaluated. On the one 

hand, while there is immense potential for WSN technology, 

there are some limitations, which include, a) lower speed, b) 

requirement of power supply to the node, c) more complex 

to configure and d) the performance of the node is easily 

affected by surroundings like walls, microwaves, large 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

17 

distances due to signal attenuation, etc. (Bhattacharya, Kim 

and Pal, 2010). 

In the nuclear industry the principles of defense in depth 

ensures the implementation of redundant and diverse 

electronic channels; however, the common cause failure 

(CCFs) aspects require special attention. The effect of any 

degradation or failure mode, induced by material, 

environmental, operational parameters needs to be analyzed, 

particularly for assessing its CCF impact as part of PHM 

implementation (IAEA, 2009). For developing the PoF 

model for electronic protection channels, the potential 

failure due to whisker growth, electromigration induced 

shorting of parallel metallization, coupling of the redundant 

path due to field effects and solder joint failure requires 

special CCF considerations.  

Similarly, for developing degradation models for in-core 

structural components as part of PHM implementation 

requires not only the monitoring provisions that include 

special sensors but also considerations and development of 

irradiation induced degradation and growth models. The 

prediction accuracy of these models will require assessment 

of change in material property in dynamic manner with the 

fluence it has seen in the reactor core (IAEA, 1999; 

Dharmaraju et al., 2008). When implemented, these models 

are expected to provide input for a risk-based approach 

(Samal, 2010).  

Often if the PoF models/damage models are available it is 

challenging to define the failure criteria and the uncertainty 

associated with these definitions. The lack of knowledge 

related to failure criteria is often addressed by conservative 

assumptions. Here, the role of prognostics becomes crucial, 

as the online signal can be used with the available data and 

models to characterize the incipient failures.          

There are two types of uncertainties that need to be 

addressed in prognostics: aleatory and epistemic. Aleatory 

uncertainty, which is inherent in nature and cannot be 

reduced, arises from data and models. Epistemic uncertainty 

is uncertainty, which is reduced by acquiring additional 

knowledge or data. The integrated approach is a typical 

example of reducing epistemic uncertainty. Reducing 

uncertainty in PHM becomes more important from the point 

of estimating prognostic distance. At a higher level, it 

affects the accuracy of the assessment of the safety margin 

as part of risk-based applications. Other approaches to 

model or reduce uncertainty involve updating the prior data 

with new evidence using well-known techniques such as 

Bayesian updating, Kalman filtering, constrained 

optimization, and particle filtering.  

In spite of the above developments, the accuracy of 

uncertainty assessment is a lingering issue. Other non-

parametric methods that are expected to reduce subjectivity 

in uncertainty assessment are being developed. One method 

is the imprecise probability based approach. However, there 

are limited applications of this approach. Further R&D in 

this area may provide a new approach to uncertainty 

modeling and analysis.PHM is a resource-intensive 

application. Hence, organizational will to implement and 

operate a PHM program is a pre-requisite. Whether it is for 

routine health management of components in support of 

surveillance or life extension studies for new plants, the 

involvement of not only implementation-level staff but also 

plant management is an important factor in the success of 

the PHM approach (Pecht, 2010). The availability of a PoF 

or damage model is one of the major challenges to the 

initiation and implementation of a PHM program in a 

nuclear plant. Even though limited application up to 

condition monitoring has found wider applications in the 

nuclear sector, full potential of prognostics can be realized 

only after the damage model for mechanical and structural 

engineering components and PoF models for power and 

micro-electronics and electrical components. 

5. PERFORMANCE CRITERIA 

Performance criteria or metrics determine the adequacy of a 

prognostic approach for a given application (Saxena et al., 

2010). Extensive work has been reported to define the 

appropriate performance metrics for a given application  to 

improve the performance of prognostics and health 

management and condition monitoring approaches (Wheeler 

et al., 2010; Saxena et al., 2010; Pecht, 2009; Feldman et al., 

2010; Coble and Hines, 2008). As the literature shows, there 

are three major performance indicators to determine the 

efficiency and effectiveness of PHM applications: 

prognostic distance (PD), accuracy, and precision.  

taf Timet0 tmtdtep tmg

taf= Time of actual failure  

t0 = 0; Time when component was put in service after test or maintenance 

td= Prediction of Failure by Prognostic algorithm

tm= Epoch of time when maintenance / recovery should complete

tep= Early prediction of deviation   

tmg  - taf= Time available for repair / recovery /mitigation (referred as plant coping time) = B

tm  - td= Time required for reconfiguration / recovery action = A

Time

C
D

P

Increase 
in CDP

Prognostic Distance

B=Safety Margin 
without Prognostic

C=Enhanced Safety 
Margin with 
Prognostic

td  - tmg= Time available for repair / recovery /mitigation (referred as plant coping time)=C

A=Time for 
advance recovery 

A
B

C

AOT

Depiction of   

Uncertainty with td

 

Legends: CDP: Core Damage Probability 

                AOT: Allowable outage time 

 

Figure 6. Depiction of features of prognostics and 

performance criteria.  
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5.1. Prognostic Distance  

The time between the predicted time of incipient failure and  

actual component failure is called the prognostic distance. 

This definition has been derived from the concept of 

prognostic distance used in canaries (Wang, Luo, and Pecht, 

2011). This indicator can be better understood by the 

following assumptions and observations: 1) assume that the 

time taf is the actual time to failure of a component 

involving a particular failure mechanism, 2) tm is the time 

for completion of the recovery of a component, assuming 

that the time for actual failure is known, 3) the time when 

the prognostic model detects and confirms the degradation 

trend as positive is td, 4) the prognostic algorithm has the 

built-in capacity to predict uncertainty in the remaining life 

estimate and degradation parameter assessment, and 5) the 

success of metrics is determined by how far in advance it 

predicts the deviation such that an adequate time window is 

available for the replacement or recovery action such that 

availability and safety functions are ensured. However, the 

prediction should not be so early that it results in a loss of 

component life or premature replacement. Fig. 6 depicts the 

condition for optimum prognostics.  

7.2 Accuracy: Accuracy means the correctness of the 

remaining life estimates. As can be seen in Figure 6, the 

correctness of the prediction of time determines the 

accuracy of prediction.  

7.3 Precision:  

Precision accounts for the uncertainty estimates in 

remaining life prediction. The width of the uncertainty band 

determines the precision of the estimates. A shorter band 

has higher precision, and a wider band has lower precision.  

Other parameters that are of interest to risk-based 

applications include assessment of the safety margin for the 

case or scenario being evolved. Figure 6 also shows the 

increased safety margin made available by the prognostic 

algorithm. The increase in core damage probability (CDP) is 

depicted by the lower time vs CDP plot. The plant technical 

specification defines the allowable outage time. It can be 

seen that by keeping a safety related system or component, 

the core damage probability increases while the process of 

prognostics is dynamic in nature, the efficiency and 

effectiveness of this process, from the risk evaluation point 

of view, is determined by how effectively the process 

addresses performance trending and follow-up activities. 

This increase is linear with time. This aspect extends the 

role of a prognostic algorithm to monitoring and comparing 

the performance of the subject case or component to ensure 

that it meets the performance criteria set or recommended 

by the regulator. The algorithm then produces documentary 

evidence, providing the estimates of assessment of safety 

margin, characterization of uncertainty, critical parameter 

trends, and projected life of the new modifications. These 

indicators are of particular interest to risk-based 

applications.  

6. CONCLUSIONS AND RECOMMENDATIONS 

There is increasing use of condition monitoring in support 

of operation and maintenance of nuclear plants. The 

diagnostic and prognostic approach can be used as part of a 

risk-based approach. A risk-based approach can support the 

prognostics program. Looking at the publications in the 

areas of mechanical and structural engineering, it can be 

argued that a prognostics framework for nuclear plants can 

be established by adopting the models and methods 

developed for space, aircraft, and civil engineering systems 

for core components where radiation-induced degradation 

may not play much of a role in dictating the remaining 

useful life. For core components, a limited knowledge base 

is available that can be utilized with certain uncertainty 

bounds.  

We have proposed a new paradigm called the mechanics of 

failure as part of prognostics implementation for risk-based 

applications. The MoF approach to a large extent operates in 

the manner of a PoF approach; the only difference is that 

most of the times MoF deals with macro- or micro-level 

analysis tools and methods. It has been argued that although 

PoF is more suitable for the modeling and analysis of 

electronic and power electronic components, MoF works for 

structural systems and components in nuclear systems, such 

as pressure vessels, coolant channels, pumps, valves, pipes, 

and heat exchangers. For example let us take the case of 

implementation of prognostics as part of risk-based in-

service inspection programme. Here, tools like probabilistic 

fracture mechanics, finite element methods, irradiation 

induced degradation when dealt at macro level as part of 

MoF approach forms an effective strategy to implement 

prognostics for addressing issues related to management of 

safety issues. As in NPPs the ISI program deals with 

relatively large components and volumes where, a PoF 

approach may not be effective.   

Prognostics can be applied to new plants by making the 

complete monitoring and surveillance and maintenance 

management process more effective through the prediction 

of fault and degradation trends, such that adequate time is 

available for recovery and repair actions. This aspect is 

important as it works for both safety and availability 

improvement. For existing or older plants with constraints 

imposed by design, layout, or operational limitations, this 

approach is expected to be very effective for life extension 

studies that are carried out as part of aging studies and 

performance monitoring after the changes and modifications 

have been incorporated. As can be seen, all of these gains go 

further towards consolidating the risk-based approach. 

Advances in any field and their application to real-life 

situations are normally judged by the availability of codes 

and standards. Even though there are many standards and 
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codes for surveillance and condition monitoring, there are 

hardly any standards on prognostics and health 

management. In this direction, the development of the first 

IEEE prognostics and health management standard for 

electronics is at an advanced stage and appears to be 

undergoing review (IEEE). The availability of this standard 

will mark a significant step: it will channelize the 

knowledge base available in advanced labs for system 

applications to industry. As far as the nuclear industry is 

concerned, this will be a clear incentive to develop 

prognostics for electronics in reactor controls and 

protection.   

Based on the review of the status of existing surveillance 

and monitoring programs and the potential role that 

prognostics can play as part of the IRBE in NPPs, we make 

the following recommendations:   

A prognostics approach brings in the element of dynamics 

into the existing risk-based approach. Hence there is a 

strong argument in favor of initiating a prognostics-based 

health management program in NPPs. The current 

knowledge of prognostics is such that extensive research 

and development is required, particularly for power 

electronic systems and electrical systems, such that accurate 

prediction of remaining useful life can be developed.  

The development of PoF and MoF models require elaborate 

life test set-ups and material characterization facilities. 

Apart from this, the study of irradiation-induced degradation 

requires research reactor test facilities. The available 

resources can be networked in a coordinated manner to 

support this development work. There should be provision 

in the operating reactor organization to communicate data 

and insights on failure to a prognostics laboratory on the one 

hand while providing prognostic solutions for real-time 

issues on the other.  

Even though the prognostic approach for estimating the life 

and reliability of the components in new and old plants 

remains similar, the emphasis in new plants is to develop a 

host of prognostic performance metrics for the identified 

components while for old plant prognostics must support 

inspection, testing, and condition monitoring. Development 

efforts should adopt the prognostic systems that have been 

developed in other fields, such as navigation, aircraft, space, 

and infrastructure systems, so that the program is more 

effective in terms of deliverables.  

Nuclear research labs generally have a reasonable 

infrastructure for developing prognostic sensors and 

associated systems. Hence, early identification of sensor 

requirements is important for the success of prognostic 

programs. 

Work should start on the development of codes and 

standards for prognostics and health management for 

nuclear components and systems. 

Keeping in mind the benefits that can be realized through 

the implementation of a risk-based prognostic program, this 

paper argues a case for setting up centers of excellence to 

facilitate research and development on prognostics for 

engineering systems in complex systems such as nuclear 

power plant. This is required as the prognostic and health 

management approach has the potential to benefit existing 

plants entering the aging zone and new plants where a target 

life of more than 90 years can be met with online 

prognostics that enable degradation monitoring of critical 

systems and components. 
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