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ABSTRACT can be done in time prior to catastrophic failures. Several
; — - : physics-based models have been proposed in order to de-
In this paper, two probabilistic prognosis updating S'Cm}r’neEqribe the fatigue process and predict the damage propaga-

are compared. One is based on the classical Bayesian ap- ; .
proach and the other is based on newly developed max lon; among these, Paris-type crack growth models (Paris &

mum relative entropy (MRE) approach. The algorithm perfor-

mance of the two models is evaluated using a set of recent ! - :
developed prognostics-based metrics. Various uncegaint ver, experimental data indicate that fatigue crack prapag
jon is not a smooth, stable and well ordered process (\irkle

from measurements, modeling, and parameter estimatiens 6ﬂnllberry & Goel, 1979), thus a deterministic model is not

i i h is f k inpu
integrated into the prognosis framework as random inpuit Varggpable of quantifying the crack growth subject to varioms

ables for fatigue damage of materials. Measures of respon o . . . oo
variables are then used to update the statistical disiitsit certainties associated with the fatigue damage. Uncégain
ising from a number of sources, such as measurement er-

of random variables and the prognosis results are updat@d del predicti dual q timal i
using posterior distributions. Markov Chain Monte Carlo"0"S: MOdel prediction residuals, and non-optimal parame

MCM hni : | ide th ; estimation, affect the quality of life predictions. These u
(MCMC) technique is employed to provide the posterior sam ertainties need to be carefully included and managed in the

ples for model updating in the framework. Experimental datd _ . - .
are used to demonstrate the operation of the proposed pro%r-ognOSIS process for risk management and decision-making
abilistic prognosis methodology. A set of prognosticseoas N order to model the stochastic process of fatigue propaga-
metrics are employed to quantitatively evaluate the pregndion and gain knowledge about a target system via monitor-
sis performance and compare the proposed entropy meth#g system responses, probabilistic updating methodsdbase
with the classical Bayesian updating algorithm. In particu On Bayes theorem have been used to evaluate the probability
lar, model accuracy, precision, robustness and conveegenéensity functions (PDF) of input parameters using response
are rigorously evaluated in addition to the qualitativeuais Measurements. For example, see (Madsen & Sorensen, 1990;
comparison. Following this, potential development and imZhang & Mahadevan, 2000). Entropy methods, such as
provement for the prognostics-based metrics are discissedMaximum Entropy (MaxEnt) methods (Jaynes, 1957, 1979;

rdogan, 1963; Forman et al., 1967; Walker, 1970) are most
mmonly used (Bourdin, Francfort, & Marigo, 2008). How-

detail. Skilling, 1988) and relative entropy methods (Van Camp-
enhout & Cover, 1981; Haussler, 1997), are alternative ap-
1. INTRODUCTION proaches for probability assignment and updating and have

been used in many applications such as statistical mechan-
Fatigue damage is a critical issue in many structural and norics (Caticha & Preuss, 2004; Tseng & Caticha, 2008), quan-
structural systems, such as aircraft, critical civil stames, tum physics (Hiai & Petz, 1991; Vedral, 2002), and fatigue
and electronic components. The estimation of the religbili prognosis (Guan, Jha, & Liu, 2009). This paper has two
and remaining useful life (RUL) is important in condition- objectives; the first is to develop a general prognosis ap-
based maintenance of a system so that unit replacemengsoach based on maximum relative entropy (MRE) principles
- o for probabilistic fatigue damage prognosis and compar it t
Xuefei Guan et al. This is an open-access article distrébuteler the terms

of the Creative Commons Attribution 3.0 United States Licemggch per- the classical Bayesian approach, and the other is to explore

miits unrestricted use, distribution, and reproduction ymedium, provided ~ Prognosis metrics to evaluate prognosis performance quan-
the original author and source are credited.
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titatively. One of the advantages of the proposed MRE apreflect statistical features of batch productions. Thesstat
proach is that the resulting confidence bounds are narrowdical information can further help to improve the individua
compared to the classical Bayesian method, which is benefprognosis performance. In order to include this type of in-
cial for decision making in a health management setting. Thérmation in the probabilistic prognosis and model updatin
rest of the paper is organized as follows. In section 2, wean entropy-based probabilistic inference framework hanbe
review the classical Bayesian approach and formulate a gedeveloped. Details are discussed below.

eral MRE updating and prognosis framework. To the best

knowledge of the authors, this is the first attempt to appy th2.2 MRE Approach for Model Updating

MRE method as a general methodology in fatigue damaggyg re|ative information entropy, also referred to as Katlk-

problems. Section 3 presents two application examples andipjer divergence (Kullback & Leibler, 1951), of two PDFs
methodology validation. Section 4 discusses algorithreie p %1(6) andp»(0) is defined as,

formance metrics and extends the two examples of Section

in this context. Following that are discussions and concfus I(p1: ps) = _/ p1(9)1np1(9) a0 )
' p2(0)
2. PROBABILISTIC MODEL UPDATING whered is the parameter vector arfdlis the associated vec-

In this section, both the classical Bayesian probabilitgatp ~ {OF SPace. The axioms of maximum entropy indicate that the
ing and a general MRE prognosis framework for fatigue damform of Eq. (2) is the unique entropy representation for in-
age problems are introduced. To evaluate the posteriomprobductive inference (Skilling, 1988).

bility distribution, Markov Chain Monte Carlo (MCMC) sim- The three axioms are:

ulation is then introduced and employed in this framework to
approximate the target distribution. For a generic infeeen
pr0b|em with an uncertain parameter vedioe @’ the pos- 2. Coordinate invariance. The ranking of the two proba-

Locality. Local information has local effects.

terior PDF off is inferred on the basis of three pieces of in-  bility densities should not depend on the system coordi-
formation: the prior knowledge aboéf(the prior PDF of ), nates. This indicates that the coordinates carry no infor-
the observation of a response event/variable X , and the mation.

known relationship betweenandf (the likelihood function 3. Consistency for independent subsystem_ For a system
based on physical/mathematical models). The search space composed of subsystems that are independent; it should

for desired posterior PDF ¢fis X x © . Both Bayesian and not make a difference whether the inference treats them
MRE are capable of performing the search for an optimized  separately or jointly.

posterior. However, these two approaches are based on diffe . _ o
ent mechanisms. This is discussed in details in the follgwin USing the similar notation above, Ipt, #) be a prior joint

paragraphs. PDF andq(g.c, 0) be the posterior j_oint PDF. Acqording to the
entropy axioms, the selected joint posterior is the one that
2.1 Classical Bayesian Model Updating maximizes the relative entropy(q : p) in Eq. (3), subject

, ) ] o to all available constraints, such as statistical moments a
Bayes’ theorem provides a model for inductive inference ot aasures of a response variable

the learning process. A Bayesian posterior PDF is a mea-

sure of known information about parameters with uncernyaint I(q:p) = _/ ( 79)IHQ($7 0) dadh. ©)
Bayes’ theorem is a means for combining the observation re- Xx0 p(z,0)

garding the related parameters throug_h the likelihoodtfanc In Eq. (3),p(x,0) = p(x)p(x|0) contains all prior informa-
(Gregory, 2005)', Lep(¢) denote the prior PDF @f. Accord- o (1) is the conditional PDF or likelihood function and
ing to the Bayes’ theorem, the posterior PDF of a varigble p(9) is the prior PDF of). The same relationship applies to

that reflects the fact that we observelds q(z,0). When new information is available in the form of a
p(6]z") o< p()p(z']6) (1)  constraint, the updating procedure will search in the spéce
X x © for a posterior which maximizeB(q : p) . Measure-
The Bayesian formulation of a posterior is straightforwardments of the response variahtecan be used to perform the
and has an enormous variety of applications. Detailed @eriv updating, which is performed in a similar way as the classi-
tion and demonstration can be found in the referred artinde a cal Bayesian updating. The benefit of MRE updating is that it
is not repeated here. One issue with the classical Bayegtan acan incorporate other information for inference, whichraan
proach is that only response observations can be used for ulpe included in the classical Bayesian updating. For example
dating. Other types of information, such as the expectateval the expected value of a function éffrom experiments or
of a parameter and statistical moments, cannot be direetly i the empirical judgment on the mean valuefof This flexi-
corporated into the classical Bayesian framework. For exanbility of applicable information can pose more constrains
ple, coupon level experiment testing and failure analyais ¢ a posterior thus yield a more accurate result given thatethos
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constraints are justified. If a new observationis obtained,

the posteriors that reflect the facis now known to be:’ is | Len (di (@)
a constraint such that p(dis- s dnlb) = (7o exp {*5 D (Ui> ] . (9)
1 q(x) :/ q(z,0)d0 = 6(z — ). (4) Substituting Eq. (9) in Eq. (7), the MRE posterior ®fs
© obtained as

Other information in the form of moment constraints, such as

_1Nm d;—M,;(0) 2
the expected value of some functig(), can be formulated Pl .., dn) o< p(O)exp { 2 2im1 ( o ) +59(9)} - (10)

as For fatigue damage mod@V (), various deterministic mod-
Cco / q(z,0)g(0)dxdd = (g(0)) . (5) els have been proposed to describe the fatigue crack accumu-
~ JXx© o lation, among which Paris type of models are commonly used
The normalization constraint is in cycle based fatigue crack growth calculation. In thisigtu
o - / g(, 0)dxdd = 1. ©) Paris model (Paris & Erdogan, 1963) is employed for illus-
3 xxo tration purposes. In a realistic situation, other modelhnig

Maximizing Eq. (3) using the method of Lagrange multipli- be agoptefd aclcordihnglg. Il_e,tbe éh? cra(;:k lengthiy’ be the
ers, subject to constraints Egs. (4-6) and the posterior&fDF number of cycles, the Paris” model reads,

0 is obtained as da _ C(AK)m _ C[AU\/ﬁF(a)]m, (11)

) dN
a(0) o< p(O)p(a’|0)exp[Bg(6)] () wherec andm are model parameterdo is the stress vari-

The detailed derivation of Eq. (7) and the computation of theation during one cyclic loadAK is the variation of stress
Lagrange multipliers can be found in (Guan et al., 2009). intensity in one cyclic load, an#(a) is the geometry correc-
The right side of Eq. (7) consists of three terms?) is the  tion factor. The crack size can be calculated by solving Eq.
parameter priorp(z’|6) is the likelihood, andxp[Bg(0)] is  (11) given the parameterandm and the applied number of
the exponential term introduced by moment constraints. Eqeading cyclesV. Early studies have show thiic follows a

(7) is similar to Bayesian posterior except for the addiion normal distribution anan follows truncated normal distribu-
exponential term. This equation further indicates thanadf tion (Kotulski, 1998). Given this information, the postarof
moment constraint is available, i.e1,is zero, MRE updat- the joint distribution of(lnc, m) can be expressed as,

ing will be identical to Bayesian updating. In other words,
Bayesian updating is a special case of MRE updating. Sim- )
ilar to that of a Bayesian updating problem, the likelihood 1 <lnc — [ne

p(lne, m)

function is usually constructed using the physics-basedeho R Y
depending on different realistic applications. -

2
) +/Bln(:glnc(lnc)‘| X

Olnc

1 /m— Hm °
2.3 Fatigue Mechanism Model and Likelihood Function R Y (0m> + Bmgm(m) | x
Construction n
- . . . 1 (d; — M;(Inc, m) 2
In this section, a general procedure of constructing the- lik exp —3 (J)

lihood equation is presented. Ldtbe a response variable

measure of our target system apde the prediction value , . . (12).
of a prediction model/. If the model is sufficiently accu- S€tingfimc and 5, to zero in Eq. (12) gives the Bayesian

rate to describe the system output, the observed value & eqd‘ormulation Qf the same pmt?'em- The PDF of one parameter
to model prediction value, i.ey — d. However, noise and C2" be obtained by integrating over the rest of the parame-

errors usually exist for both modeling and measurements, [rf€rS- But for a large dimension parameter space, more gen-
corporating a modeling uncertainty terrand a measurement €ral and computationally efficient methods, such as sagiplin
noise terme into consideration and assuming both errors ardéechniques, might be applied.
additive to obtain 24 MCMC Simulation Method

d=M@®)+ete, ®)  Direct evaluation of the PDF in Eq. (12) is difficult because
where M (0) is the deterministic model prediction addis  of the multi-dimensional integration needed for normaliza
the associated model parameter variable. Without the evion. In order to circumvent the direct evaluation of Eq.)(12
idence thate and ¢ are correlated to each other, the two Markov Chain Monte Carlo sampling technique is used in
terms are assumed to be two independent zero-mean ndhis study. MCMC was first introduced by (Metropolis et
mal variables and can be collected as a hew normal variabkd., 1953) as a method to simulate a discrete-time homoge-
7 = (e + €) ~ Norm(0, o), the likelihood function for mul- neous Markov chain. The merit of MCMC is that it over-
tiple observations can be constructed as comes the normalization of Eq. (12) and ensures that the stat
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of the chain converges to the target distribution after gdar

number of steps from an arbitrary initial start. The widely | o Observation
used random walk algorithm, Metropolis-Hastings alganith 601 —— Experiment
(Hastings, 1970), is summarized here. . 99.9% MRE
. . 504 i
The transition between two successive sampleand x| E B 99.9% Bayesian
. . ~ S Prior estimate
is defined by Eq. (13). < 40
(o))
c
{ Z ~ m(X|z;) with probability o(zy, Z) 2 30,
Tiy1 = S
Ty else 3
(13) O 20t
m(X|z:) is the transition distribution, andv(z;, z) = 10L
min(1,7) is the acceptance probability. The Metropolis ra-
tio r is defined as, % 05 1 15 >
_p(F) T(24|2) Cycle x10°

= — (14)

p(wr) 7(Elwe) Figure 1. MRE and Bayesian prognosis (Virkler's dataset)
wherep(-) is the target distribution. In our casg() is Eq.
(12). For a symmetric transition distributior(-), such as a
normal distribution, the property of(z;|2) = = (Z|x;) re-
duces Eq. (14) to0 = p(&)/p(x¢). In this study, 100,000
samples oflnc, m) are generated with a 5% burn-in period
using a normal transition distribution. In addition, the-mo
ment information of these samples is then integrated irgo th
proposed MRE updating procedure.

stage of the crack propagation are randomly chosen to rep-
resent the measured ground truth values of crack length ob-
tained from health monitoring system or nondestructive in-
spection. These data points are listed in Table 1.

Number | Crack size(mm) | Cycles
1 9.733 21269
10.527 42734

2

Two fatigue crack growth experimental datasets are used to 3 11.256 56392

demonstrate the proposed MRE updating procedure and show 4 12.171 73161
5

3. APPLICATION EXAMPLES

the benefits of this approach.
15.055 110487

3.1 Virkler’'s2024-T3 Aluminum Alloy Experimental
Data Table 1. Data used for updating (Virkler's dataset)

An extensive fatigue crack growth data under constant load-

ing for Al 2024-T3 plate specimens with center throughPredictions from MRE updating and Bayesian updating pro-
cracks was collected in (Virkler et al., 1979). The datasetedures are shown in Figure 1. To keep the figure clear, the
consists of 68 fatigue crack growth trajectories and each tr median prediction (expected value) is omitted. As can be
jectory contains 164 measurement points. All specimens havseen, MRE updating gives a narrower prognosis confidence
the same geometry, i.e., an initial crack size = 9mm, interval as compared to classical Bayesian updating. 4t fur

length L = 558.8mm, width w = 152.4mm and thickness ther justifies that the additional moment constraints inegos

t = 2.54mm. The loading information if\c = 48.28MPa  on the posterior yield a more compact results.

and stress ratidl? = 0.2. The geometry correction factor )

for these specimens B(a) = 1/\/cos(wa/w). (Kotulski, 32 McMaster’s 2024-T351 aluminum alloy

1998) reported the statistical information of the paramsete experimental data

in Paris’ model, namely, mean valugg,. = —26.155 and  |n (McMaster & Smith, 1999), a large set of 2024-T351 alu-
pm = 2.874 with standard deviationsi,. = 0.968 and  minum alloy experimental data under constant and variable
om = 0.164, respectively. Assuming the total error term is |pading conditions were reported. The experimental data of
7 = 0.1lmm and substituting the statistics information into center-cracked specimens with length= 250mm, width

Eq. (12) withgi,. = Inc andg,,(m) = m, the updating ;, — 100mm and thickness = 6mm under constant loading
procedure can be performed when observation data become,; — g5 7MPa and stress ratide = 0.1 are used. Pri-
available. ors of the parameters are obtainedbfda/dN) ~ In(AK)

One crack growth trajectory in Virkler's dataset was seddct regression using the experimental data. Five data points as
arbitrarily for fatigue crack length prediction updatingi  shown in Table 2 are chosen arbitrarily to represent sensor
(Ostergaard & Hillberty, 1983). Five data points in the yarl measurements from health monitoring system. The prior
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4. METRIC-BASED PERFORMANCE EVALUATION

4 servation . . . .
o) e S)t’s:r'i‘r’iﬁ” Various metrics are available to quantify the performarice o
35 ggpg% MRE prognosis algorithms (Saxena, Celaya, Balaban, et al8)200

I 99.9% Bayesian In this section, classical error based statistical measanel

£
E 301 - prior estimate several prognosis metrics are applied to quantify the predi
% 25 tion performance of application examples in the previoas se
9 tion.
X
S 20t
G 4.1 Statistical Metrics
15;
Metrics, such as mean squared error (MSE), mean abso-
10r ‘ ‘ ‘ ‘ ‘ lute percentage error (MAPE), average bias, sample stan-
0 1 2 3 4 5 dard deviation (STD), and their variations are widely uged i

Cycle x 10° medicine and finance fields where large datasets are awilabl
) ) _ , for statistical data analysis (Saxena, Celaya, Balabaal, et
Figure 2. MRE and Bayesian prognosis (McMaster’s datasenog). The results for those classical metrics shown inéTabl
3 and Table 4 (rows 1-4) are computed using the prediction
PDFs are artificially set ag,. — —26.5 and 1, — 2.9, residuals (the difference between actual RUL and predicted

which is not sufficiently accurate enough to match the ex—RUL) obtained after the fifth updating. The proposed MRE

perimental records as seen in Figure 2. Predictions of crackPProach shows its advantages over Bayesian method in all

growth trajectories are also shown in Figure 2, where iaery ©35€S:
predictions obtained by MRE updating are narrower than th
by Bayesian updating. One interesting observation is tfeat t
difference between MRE and Bayesian interval predictions i The statistical metrics mentioned above are general parpos
Figure 2 is larger than that in Figure 1. One possible explametrics and were not specifically designed for prognosis.
nation is that the prior PDF settings in the two datasets havi (Saxena, Celaya, Saha, Saha, & Goebel, 2008) authors
different level of uncertainties. The prior PDFs in Figure 1proposed several metrics, such as Prognostic Horizon (PH),
are sufficiently accurate. We can observe this because thipha-Lambda¢—\) Performance, Relative Accuracy (RA),
prior point estimate in black dash line (computed using theCumulative Relative Accuracy (CRA), and Convergence; that
mean value reported by Kotulski) is very close to the experiwere designed specifically for prognosis to incorporate the
ment records in solid blue line. For the McMaster’s datasetprediction distributions and the structure of the progitsst

the prior PDFs for the Paris’ equation parameters are aalific process. These metrics help assess how well prediction esti
set. The prior estimate is far from the experiment recorti® T mates improve over time as more measurement data become
affect of prior PDFs settings is further discussed in Seciio  available. For readers’ reference, we present a brief diefini

In the two examples, MRE updating shows the advantagesf these metrics here.

over Bayesian updating by visual observation. This is more ) ) . ] ]

likely due to the additional statistical moment constmiot 1+ Prognostic Horizon is defined as the length of time be-
MCMC samples added to posteriors. To quantify the perfor- ~ fore end-of-life (EoL) when an algorithm starts predict-
mance, prognosis metrics need to be considered to provide N9 Within specified accuracy limits. These limits are

a rigorous comparison between MRE updating and Bayesian ~ SPecified asta% of the true EoL.

31_2 Prognosis Metrics

updating as given below. 2.  «— X Accuracy determines whether predictions from an
algorithm are withind=a% accuracy of the true RUL at
Number | Crack size(mm) | Cycles a given time instant, specified. by t_he parameterFor

instance a\ = 0.5 would specify midway between the

L 11.361 4875 first time a prediction is made and EoL.

2 11.928 8475 3. Relative Accuracy quantifies the percent accuracy with

3 12.325 11550 respect to actual RUL at a given time (specified Yy

4 13.856 17775 It's an accuracy measure normalized by RUL, signifying
that predictions closer to EoL should be more accurate

_ , 4. Cumulative Relative Accuracy is a weighted average of
Table 2. Data used for updating (McMaster’s dataset) RAs computed at different time instances. Weights can
be assigned to the predictions based on how critical they
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become as EoL approaches, and hence the accuracy x 10° a=0.1, p=0.9

the predictions. as —=—90% Bayesian
5. Convergence quantifies the rate at which any perfor =l ——90% MRE
mance metric of interest improves to reach its desirec 3| actual RUL

value as time passes by. T 2,50
©
For more description, implementation details and applica & 2t
tion examples on these metrics; the reader may referred 1 3 15/
2L

(Saxena, Celaya, Saha, et al., 2008). In general, thes&Esetr
were designed to capture the time varying aspects of pregno
tics. As more data become available prognostic estimates g
revised. It is, therefore, important to track how well an al-
gorithm performs as time passes by as opposed to evaluatii
performance at one specific time instant only. Further,ghes
metrics also incorporate the notion of increased critigals
EoL approaches, which imply that a successful prognosis a
gorithm should improve as the system approaches its EoL. |
this paper we compare the two approaches based on Bayesian

and MRE updating. In addition to evaluating performanceprediction is used here. Looking at Table 3 one can see that
based on prognosis metrics, we also include some classicgh Virkler's dataset MRE performs better than Bayesian ap-
statistical metrics. For this purpose, in our approach we inproach under all performance measures. One must note that
clude an additional updating point from the end of time serie 3jthough classical metrics conclude the same as the new prog
to establish EoL and compute the RUL curves. Results obhostics metrics, they do not take into account the time vayyi
tained from this evaluation exercise are presented next. nature of the prognostics and hence may not a|Ways be useful

o
o e

Eigure 3. Performance comparison for PH and )\ accuracy
Ata=0.1 (10% error bound) on Virkler's dataset

Performance Results for Virkler's Dataset in practice.

The visual results for PH and — A accuracy are shown in

Figure 3. Numerical values of those metrics are listed in Ta- Metrics MRE Bayesian
_ble 3. For computing CRA (se(_a Table 3), the_ ;tartmg point MAPE 5.66 1093
is cycle zero because the specimens have initial cracks. We

evaluated RA at 20, 40, 60, and 80% of EoL and did not Average Bias(cycle) 10956.27 | 14051.92
use weighting factors. This assumes that relative accuracy STD(cycle) 7628.77 9115.78
is equally weighted at all time instants. Though, this may p p
not always be preferable, a simplistic evaluation was edrri MSE(cyclé) 178.23<107 | 280.510
out to observe the natural behavior of the algorithm itself. PH(cycle) 132016 83583
F_igure 3.compares the prediction horizon for the twp algo- RAs_o4 0.92 0.89
rithms with 10% error bound around EoL value. Using the

strict definition for PH as laid out in (Saxena, Celaya, Saha, CRA 0.89 0.87
Saha, & Goebel, 2009), we observed that MRE yields a larger Convergence 74365.72 77349.24

PH. The plot of PH performance in Figure 3 shows that 90%

. S N
MRE mteryal predpnon entgrs the 90/0 accuracy zone at thﬁ"able 3. Comparison of metrics between MRE and Bayesian
fifth updating, while Bayesian prediction enters the zone af : . o .

. . . o approaches (Virkler's dataset, statistical metrics (rdw$)
the sixth updating showing that MRE is slightly better than ; .

. . c . - are computed after fifth updating)
Bayesian. It is worth mentioning that there is no specifie rea
son to choose , which is very conservative and strict. Typi- ,
cally 50% corresponds to evaluating mean value being insiggerformance Results for McMaster’s Dataset
the alpha bounds. It depends on specific reliability requireA similar analysis for the McMaster’s dataset is performed.
ment and actual application constraints to pick up a propethe visual results for PH angl— X accuracy metrics compar-
value. In general, it indicates that, for engineering pcact  ing Bayesian and MRE updating are shown in Figure 4. The
the proposed MRE can give an informative prediction at amest of the metrics are included in Table 4. The general con-
earlier stage of the whole lifecycle. The statistical nestri  clusion about the superior performance of the MRE procedure
MAPE, Average Bias, STD, MSE, are computed after thefrom Virkler's dataset is further strengthened. The MREs s
fifth updating. The prognosis metrics of PH, RA, and CRAperior performance over Bayesian approach is attributed to
are computed using the 90% interval predictions of RUL athe ability to incorporate additional knowledge about the-s
each updating points. For the convergence metric, the medidem using additional constraints. For this dataset, theste m
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¢ 0=0.1, p=0.9
74 0.35;
—=—90% Bayesian —&— Bayesian
6r ——90% MRE 0.31 ——MRE
. —actual RUL
N S
Q RN [
Q 4r [4)
> =
Q kS
= g
2 2
l L
0 L - R
0 1 2 3 4 5 6

Cycle x 10* Cycle x 10"

Figure 4. Performance comparison for PH and\ accuracy  Figure 5. Comparison of convergence performance on
ata = 0.1 (10% error bound) on McMaster’s dataset Virkler's dataset

rics clearly distinguish the two approaches and show bettesriors. Next, we discuss some of these issues as they relate t
outcomes from the MRE method. For example, the PH an@rognosis metrics.

a — X performance metrics shown in Figure 4 present clear

visual comparisons, e.g., the prognosis bounds obtained 1 Convergence Metric

MRE enters the cone area at the fourth updating which is ea

lier than that of Bayesian. The convergence metric computes a value to quantify how

fast prognostic estimates improve and converge towards the
- - ground truth. A metric like convergence is meaningful only
Metrics MRE | Bayesian if an algorithm improves with time and passes various cri-
MAPE 4.06 22.53 teria defined by other prognostic metrics. For example, the
. convergence in terms of RUL relative error (RE) defined in
Average Bias(cycle) 418.76 4561.93 Eg. (15), which is the difference between an actual response
STD(cycle) 1413.53 | 6888.38 measure R) and the inferred valueR,,) divided by the ac-
MSE(cyclé) 217x10° | 68.26¢10° tual response measure. The result of Virkler's dataset show
a monotonic decreasing trend after the second update @~igur
PH(cycle) 32475 N/A 5). Both MRE and Bayesian methods show diverging trends
RA =0.4 0.99 0.86 for McMaster’s dataset (Figure 6). The results (converging
CRA 0.95 0.87 and diverging trends) suggests that a metric like convergen
will not make complete sense if the algorithms do not show
Convergence | 13757.94| 22175.16 improvements with time and hence additional fine tuning of
the algorithms is required. The length of the dash line (Fégu

Table 4. Comparisons of metrics between MRE and Bayesiap and Figure 6) between the coordinate origin and the centric

approaches (McMaster’s dataset, statistical metrics{fiod)  point of the area covered by the RE curves serves as a quan-
are computed after fifth updating) titative value of convergence metric. The details of that ca

be found in (Saxena, Celaya, Saha, et al., 2008). It is worth
mentioning that different applications may require diffietr
5. DISCUSSION measures instead of RE and the choice of measures depends
on which aspect of the algorithmic convergence we would like
As observed in the previous section, there are a few aspedisinvestigate.
where these metrics can be further enhanced to improve per-
formance evaluation. The significant difference between th
PHs for the two algorithms may also be an artifact of the fre-
quency at wh|c_h these algo.r.|th.ms make a pred|ct!on. We alsg_2 Robustness metric
observed that in a probabilistic prognosis updating scheme
the selection of priors may produce different prognosialtes From the above examples, it is shown that the selection of a
and affect the performance. Consequently, different upgat prior PDF is critical for a meaningful prognosis using prob-
methods may exhibit different robustness with inapprdpria abilistic updating schemes such as Bayesian and MRE. An

Ry — R
RE:.=|——|. 15
\ - ‘ (15)
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Figure 6. Comparison of convergence performance on McFigure 8. MRE and Bayesian prognosis with an accurate prior
Master’s dataset (McMaster’s dataset)

physics requirement (e.g., parameter should be non-wegati

401 . Observation In this paper, we used a parametéo specify the range of in-
35 Experiment terested parameter (i.e., the parameter is in the rangeafi me
99.9% MRE

+n). For a robust algorithm, the change of algorithm param-
eters will not affect the prognosis confidence bounds much.
In view of this, the area in a confidence bound vs. parame-
ter variation plot is a good indication of algorithm robuess
(shaded area in Figures 9 and 10). In order to perform the
____________ metric comparison across different parameter spaces,-a nor
_______________________ malization process is proposed. A reference area is defined
““““ by specifying an allowable prediction error level (e§20%
\ \ \ \ \ in the current investigation). This allowable level is esgsed
0 1 2 3 4 5 :
Cycle ; using pa.ramete({i. The reference area can be.calcglatgd as
x10 4né and is shown as the area by the dashed lines in Figures

Figure 7. MRE and Bayesian prognosis with an inaccuratd 2nd 10. Mathematically, the robustness metticcan be
prior (McMaster’s dataset) defined as

N 99.9% Bayesian
[| = Prior estimate

w
o

Crack length (mm)
N N
9 a1

=
[¢)]

=
o

Tmean 17
e U f(x)dw
Rb = f mean —1] ( ) , (16)

inaccurate prior may render a poor prediction of RUL. For ex- no

ample, when the prior prediction (shown in Figure 7) is veryywnherez is the investigated algorithm parameter af{d) is
different from the actual crack growth trajectory, the Bsig@  the confidence bound variation function with respect:to
predictions lead to inaccurate estimates with very wide contpe physical meaning of Eq. (16) is the shaded area nor-
fidence bounds. The MRE updating approach performs welgjized by the dashed line area in Figures 9 and 10. The per-
while using the same inaccurate prior distributions. On th@grmance of the two updating algorithms is investigatedgsi
other hand, starting with a relatively accurate prior pt&dn,  the above mentioned robustness metric for Virkler's datase
both MRE and Bayesian give similar predictions as shown ijyst.  |n this case;) = 0.2 andd = 0.2 are used to in-
Figure 8. It is valuable to define a robustness metric that Caflestigate the parameten in the crack growth model (Eq.
quantify the sensitivity of different algorithms with resg (12)). The mean value af: is 2.874. All predictions are

to the algorithm parameters, such as prior distributiotialn 1 ade after six updatings and the 99% confidence bounds are
conditions, and training data size. shown in Figure 9. The robustness metric (Eq. (16)) of the
A preliminary study on the robustness metric is shown beBayesian approach is 2.6 while that for the MRE approach is
low. The basic idea is to quantify the change of prognosi®.7. The similar investigation if performed for McMaster’s
confidence bounds due to the changing of algorithm parandataset with the mean value of equaling to 2.9. The ro-
eter values. The range of investigated parameter is first déustness metric of the Bayesian and MRE approach are 3.0
fined based on specific application requirements (e.g., 10%nd 0.4, respectively. The metric configuration and thealisu
variation around the mean value) or based on the underliningpmparison for McMaster’s dataset are shown in Figure 10.
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Figure 9. Comparison of robustness metric after six updatin Figure 10. Comparison of robustness metric after six updat-
with varying values of m in prior PDF (Eq. 12) for parameterings with varying values of m in prior PDF (Eq. 12) for pa-
m (Virkler's dataset) rameterm (McMaster’s dataset)

From the above results we can see that, under this specific pa-
rameter configuration, MRE exhibits more robust against the

variation of m in prior PDFs. In fatigue damage problems, th rediction. Prognosis metrics are used for model compari-

model parameters are usually tuned using extensive expe on and performance evaluation. Several conclusions can be

ments on standard specimens. The realistic systems are u awn based on the results in the current investigation:

ally different from specimens in geometric dimensionsdioa The proposed MRE updating approach results in more ac-
ing profiles, and usage environment. Extensive experimen@Hrate and precise prediction compared with the classical
on the actual engineering systems are sometimes prolibitiBayesian method.

due to the time and cost constraints. Therefore, it may b&he classical Bayesian method is a special case of the pro-
valuable in a practical perspective since most of the time aposed MRE approach and MRE approach is more flexible
accurate prior is difficult to obtain with a limited data sceir  to include additional information for inference, which can

One issue with this robustness metric is that it does not rebe handled by the classical Bayesian method. The prognosis
flect how the performance changes with time. More complimetrics can be successfully used for algorithm comparison
cated metrics based on this idea maybe developed by addiagd can give quantitative values in model (algorithm) perfo
another dimension to record the performance variation wittmance evaluation.

time. Since Bayesian updating algorithms are associatéd wi p ropystness metric measuring the updating algorithmie sen
many factors, such as the total number of updating poirgs, thsitivity to prior uncertainty is proposed and applied tofbot
training data size, noise levels, etc., further studiemesgled  gayesian and MRE updating approaches. The application ex-
to establish such concepts regarding the algorithmic t0busamples show that MRE exhibits more robustness against the
ness. uncertainty introduced by parameter distribution priorthie

To make further comparison between different Bayesian upsense of prognosis performance.

dating and prognosis approaches, more data points and evgf important to realize when to apply these metrics tovarri
the whole dataset can be used as observation data to see ‘{‘&t[r}neaningful interpretations. For instance, use of theeen
enough measures of response whether MRE and Bayesignce metric makes sense only when the algorithm predic-
give similar prognosis results and show convergence. Tiougions converge (get better) with time.

in practice it is more desirable to get an early stage accu-

rate prognosis, it is necessary to explore the charadtsrist

of different updating algorithms using experimental dega a

we showed in previous sections.
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NOMENCLATURE Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A.
Teller, E., et al. (1953). Equation of state calculations
by fast computing machinesthe journal of chemical
physics21(6), 1087.

Ostergaard, D., & Hillberty, B. (1983). Characterizatidn o
the variability in fatigue crack propagation datrob-
abilistic Frature Mechanics and Fatigue Methods: Ap-
plications for Structural Design and Maintenan&¥.

Paris, P., & Erdogan, F. (1963). A critical analysis of crack
propagation lawsJournal of Basic Engineerin@®5(4),

I(-) Relative information entropy
(+) Probability distribution

M(-) Fatigue crack growth model
F(-) Geometry correction factor
a Crack length

N Number of loading cycles

d Crack length measurements
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