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ABSTRACT

In this paper, two probabilistic prognosis updating schemes
are compared. One is based on the classical Bayesian ap-
proach and the other is based on newly developed maxi-
mum relative entropy (MRE) approach. The algorithm perfor-
mance of the two models is evaluated using a set of recently
developed prognostics-based metrics. Various uncertainties
from measurements, modeling, and parameter estimations are
integrated into the prognosis framework as random input vari-
ables for fatigue damage of materials. Measures of response
variables are then used to update the statistical distributions
of random variables and the prognosis results are updated
using posterior distributions. Markov Chain Monte Carlo
(MCMC) technique is employed to provide the posterior sam-
ples for model updating in the framework. Experimental data
are used to demonstrate the operation of the proposed prob-
abilistic prognosis methodology. A set of prognostics-based
metrics are employed to quantitatively evaluate the progno-
sis performance and compare the proposed entropy method
with the classical Bayesian updating algorithm. In particu-
lar, model accuracy, precision, robustness and convergence
are rigorously evaluated in addition to the qualitative visual
comparison. Following this, potential development and im-
provement for the prognostics-based metrics are discussedin
detail.

1. INTRODUCTION

Fatigue damage is a critical issue in many structural and non-
structural systems, such as aircraft, critical civil structures,
and electronic components. The estimation of the reliability
and remaining useful life (RUL) is important in condition-
based maintenance of a system so that unit replacements
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can be done in time prior to catastrophic failures. Several
physics-based models have been proposed in order to de-
scribe the fatigue process and predict the damage propaga-
tion; among these, Paris-type crack growth models (Paris &
Erdogan, 1963; Forman et al., 1967; Walker, 1970) are most
commonly used (Bourdin, Francfort, & Marigo, 2008). How-
ever, experimental data indicate that fatigue crack propaga-
tion is not a smooth, stable and well ordered process (Virkler,
Hillberry, & Goel, 1979), thus a deterministic model is not
capable of quantifying the crack growth subject to various un-
certainties associated with the fatigue damage. Uncertainties
arising from a number of sources, such as measurement er-
rors, model prediction residuals, and non-optimal parameter
estimation, affect the quality of life predictions. These un-
certainties need to be carefully included and managed in the
prognosis process for risk management and decision-making.

In order to model the stochastic process of fatigue propaga-
tion and gain knowledge about a target system via monitor-
ing system responses, probabilistic updating methods based
on Bayes theorem have been used to evaluate the probability
density functions (PDF) of input parameters using response
measurements. For example, see (Madsen & Sorensen, 1990;
Zhang & Mahadevan, 2000). Entropy methods, such as
Maximum Entropy (MaxEnt) methods (Jaynes, 1957, 1979;
Skilling, 1988) and relative entropy methods (Van Camp-
enhout & Cover, 1981; Haussler, 1997), are alternative ap-
proaches for probability assignment and updating and have
been used in many applications such as statistical mechan-
ics (Caticha & Preuss, 2004; Tseng & Caticha, 2008), quan-
tum physics (Hiai & Petz, 1991; Vedral, 2002), and fatigue
prognosis (Guan, Jha, & Liu, 2009). This paper has two
objectives; the first is to develop a general prognosis ap-
proach based on maximum relative entropy (MRE) principles
for probabilistic fatigue damage prognosis and compare it to
the classical Bayesian approach, and the other is to explore
prognosis metrics to evaluate prognosis performance quan-
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titatively. One of the advantages of the proposed MRE ap-
proach is that the resulting confidence bounds are narrower
compared to the classical Bayesian method, which is benefi-
cial for decision making in a health management setting. The
rest of the paper is organized as follows. In section 2, we
review the classical Bayesian approach and formulate a gen-
eral MRE updating and prognosis framework. To the best
knowledge of the authors, this is the first attempt to apply the
MRE method as a general methodology in fatigue damage
problems. Section 3 presents two application examples and
methodology validation. Section 4 discusses algorithmic per-
formance metrics and extends the two examples of Section 3
in this context. Following that are discussions and conclusion.

2. PROBABILISTIC MODEL UPDATING

In this section, both the classical Bayesian probability updat-
ing and a general MRE prognosis framework for fatigue dam-
age problems are introduced. To evaluate the posterior proba-
bility distribution, Markov Chain Monte Carlo (MCMC) sim-
ulation is then introduced and employed in this framework to
approximate the target distribution. For a generic inference
problem with an uncertain parameter vectorθ ∈ Θ, the pos-
terior PDF ofθ is inferred on the basis of three pieces of in-
formation: the prior knowledge aboutθ (the prior PDF ofθ ),
the observation of a response event/variablex ∈ X , and the
known relationship betweenx andθ (the likelihood function
based on physical/mathematical models). The search space
for desired posterior PDF ofθ is X ×Θ . Both Bayesian and
MRE are capable of performing the search for an optimized
posterior. However, these two approaches are based on differ-
ent mechanisms. This is discussed in details in the following
paragraphs.

2.1 Classical Bayesian Model Updating

Bayes’ theorem provides a model for inductive inference or
the learning process. A Bayesian posterior PDF is a mea-
sure of known information about parameters with uncertainty.
Bayes’ theorem is a means for combining the observation re-
garding the related parameters through the likelihood function
(Gregory, 2005). Letp(θ) denote the prior PDF ofθ. Accord-
ing to the Bayes’ theorem, the posterior PDF of a variableθ
that reflects the fact that we observedx′ is

p(θ|x′) ∝ p(θ)p(x′|θ) (1)

The Bayesian formulation of a posterior is straightforward
and has an enormous variety of applications. Detailed deriva-
tion and demonstration can be found in the referred article and
is not repeated here. One issue with the classical Bayesian ap-
proach is that only response observations can be used for up-
dating. Other types of information, such as the expected value
of a parameter and statistical moments, cannot be directly in-
corporated into the classical Bayesian framework. For exam-
ple, coupon level experiment testing and failure analysis can

reflect statistical features of batch productions. The statis-
tical information can further help to improve the individual
prognosis performance. In order to include this type of in-
formation in the probabilistic prognosis and model updating,
an entropy-based probabilistic inference framework has been
developed. Details are discussed below.

2.2 MRE Approach for Model Updating

The relative information entropy, also referred to as Kullback-
Leibler divergence (Kullback & Leibler, 1951), of two PDFs
p1(θ) andp2(θ) is defined as,

I(p1 : p2) = −
∫

Θ

p1(θ)ln
p1(θ)

p2(θ)
dθ, (2)

whereθ is the parameter vector andΘ is the associated vec-
tor space. The axioms of maximum entropy indicate that the
form of Eq. (2) is the unique entropy representation for in-
ductive inference (Skilling, 1988).

The three axioms are:

1. Locality. Local information has local effects.

2. Coordinate invariance. The ranking of the two proba-
bility densities should not depend on the system coordi-
nates. This indicates that the coordinates carry no infor-
mation.

3. Consistency for independent subsystem. For a system
composed of subsystems that are independent; it should
not make a difference whether the inference treats them
separately or jointly.

Using the similar notation above, letp(x, θ) be a prior joint
PDF andq(x, θ) be the posterior joint PDF. According to the
entropy axioms, the selected joint posterior is the one that
maximizes the relative entropyI(q : p) in Eq. (3), subject
to all available constraints, such as statistical moments and
measures of a response variable.

I(q : p) = −
∫

X×Θ

q(x, θ)ln
q(x, θ)

p(x, θ)
dxdθ. (3)

In Eq. (3),p(x, θ) = p(x)p(x|θ) contains all prior informa-
tion, p(x|θ) is the conditional PDF or likelihood function and
p(θ) is the prior PDF ofθ. The same relationship applies to
q(x, θ). When new information is available in the form of a
constraint, the updating procedure will search in the spaceof
X × Θ for a posterior which maximizesI(q : p) . Measure-
ments of the response variablex can be used to perform the
updating, which is performed in a similar way as the classi-
cal Bayesian updating. The benefit of MRE updating is that it
can incorporate other information for inference, which cannot
be included in the classical Bayesian updating. For example,
the expected value of a function ofθ from experiments or
the empirical judgment on the mean value ofθ. This flexi-
bility of applicable information can pose more constraintson
a posterior thus yield a more accurate result given that those
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constraints are justified. If a new observationx′ is obtained,
the posteriors that reflect the factx is now known to bex′ is
a constraint such that

c1 : q(x) =

∫

Θ

q(x, θ)dθ = δ(x− x′). (4)

Other information in the form of moment constraints, such as
the expected value of some functiong(θ), can be formulated
as

c2 :

∫

X×Θ

q(x, θ)g(θ)dxdθ = 〈g(θ)〉 . (5)

The normalization constraint is

c3 :

∫

X×Θ

q(x, θ)dxdθ = 1. (6)

Maximizing Eq. (3) using the method of Lagrange multipli-
ers, subject to constraints Eqs. (4-6) and the posterior PDFof
θ is obtained as

q(θ) ∝ p(θ)p(x′|θ)exp[βg(θ)]. (7)

The detailed derivation of Eq. (7) and the computation of the
Lagrange multiplierβ can be found in (Guan et al., 2009).
The right side of Eq. (7) consists of three terms.p(θ) is the
parameter prior,p(x′|θ) is the likelihood, andexp[βg(θ)] is
the exponential term introduced by moment constraints. Eq.
(7) is similar to Bayesian posterior except for the additional
exponential term. This equation further indicates that, ifno
moment constraint is available, i.e.,β is zero, MRE updat-
ing will be identical to Bayesian updating. In other words,
Bayesian updating is a special case of MRE updating. Sim-
ilar to that of a Bayesian updating problem, the likelihood
function is usually constructed using the physics-based model
depending on different realistic applications.

2.3 Fatigue Mechanism Model and Likelihood Function
Construction

In this section, a general procedure of constructing the like-
lihood equation is presented. Letd be a response variable
measure of our target system andy be the prediction value
of a prediction modelM . If the model is sufficiently accu-
rate to describe the system output, the observed value is equal
to model prediction value, i.e.y = d. However, noise and
errors usually exist for both modeling and measurements. In-
corporating a modeling uncertainty terme and a measurement
noise termǫ into consideration and assuming both errors are
additive to obtain

d = M(θ) + e+ ǫ, (8)

whereM(θ) is the deterministic model prediction andθ is
the associated model parameter variable. Without the ev-
idence thate and ǫ are correlated to each other, the two
terms are assumed to be two independent zero-mean nor-
mal variables and can be collected as a new normal variable
τ = (e+ ǫ) ∼ Norm(0, στ ), the likelihood function for mul-
tiple observations can be constructed as

p(d1, . . . , dn|θ) = 1
(
√
2πστ )n

exp

[

− 1
2

∑n
i=1

(

di−Mi(θ)
στ

)2
]

. (9)

Substituting Eq. (9) in Eq. (7), the MRE posterior ofθ is
obtained as

p(θ|d1, . . . , dn) ∝ p(θ)exp

[

− 1
2

∑n
i=1

(

di−Mi(θ)
στ

)2

+ βg(θ)

]

. (10)

For fatigue damage modelM(θ), various deterministic mod-
els have been proposed to describe the fatigue crack accumu-
lation, among which Paris type of models are commonly used
in cycle based fatigue crack growth calculation. In this study,
Paris model (Paris & Erdogan, 1963) is employed for illus-
tration purposes. In a realistic situation, other model might
be adopted accordingly. Leta be the crack length,N be the
number of cycles, the Paris’ model reads,

da

dN
= c(∆K)m = c[∆σ

√
πaF (a)]m, (11)

wherec andm are model parameters,∆σ is the stress vari-
ation during one cyclic load,∆K is the variation of stress
intensity in one cyclic load, andF (a) is the geometry correc-
tion factor. The crack size can be calculated by solving Eq.
(11) given the parameterc andm and the applied number of
loading cyclesN . Early studies have show thatlnc follows a
normal distribution andm follows truncated normal distribu-
tion (Kotulski, 1998). Given this information, the posterior of
the joint distribution of(lnc,m) can be expressed as,

p(lnc,m) ∝

exp

[

−1

2

(

lnc− µlnc

σlnc

)2

+ βlncglnc(lnc)

]

×

exp

[

−1

2

(

m− µm

σm

)2

+ βmgm(m)

]

×

exp

[

−1

2

(

di −Mi(lnc,m)

στ

)2
]

.

(12)
Settingβlnc andβm to zero in Eq. (12) gives the Bayesian
formulation of the same problem. The PDF of one parameter
can be obtained by integrating over the rest of the parame-
ters. But for a large dimension parameter space, more gen-
eral and computationally efficient methods, such as sampling
techniques, might be applied.

2.4 MCMC Simulation Method

Direct evaluation of the PDF in Eq. (12) is difficult because
of the multi-dimensional integration needed for normaliza-
tion. In order to circumvent the direct evaluation of Eq. (12),
Markov Chain Monte Carlo sampling technique is used in
this study. MCMC was first introduced by (Metropolis et
al., 1953) as a method to simulate a discrete-time homoge-
neous Markov chain. The merit of MCMC is that it over-
comes the normalization of Eq. (12) and ensures that the state
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of the chain converges to the target distribution after a large
number of steps from an arbitrary initial start. The widely
used random walk algorithm, Metropolis-Hastings algorithm
(Hastings, 1970), is summarized here.

The transition between two successive samplesxt andxt+1

is defined by Eq. (13).

xt+1 =

{

x̃ ∼ π(X|xt) with probabilityα(xt, x̃)
xt else

(13)
π(X|xt) is the transition distribution, andα(xt, x̃) =
min(1, r) is the acceptance probability. The Metropolis ra-
tio r is defined as,

r =
p(x̃)

p(xt)

π(xt|x̃)
π(x̃|xt)

, (14)

wherep(·) is the target distribution. In our case,p(·) is Eq.
(12). For a symmetric transition distributionπ(·), such as a
normal distribution, the property ofπ(xt|x̃) = π(x̃|xt) re-
duces Eq. (14) tor = p(x̃)/p(xt). In this study, 100,000
samples of(lnc,m) are generated with a 5% burn-in period
using a normal transition distribution. In addition, the mo-
ment information of these samples is then integrated into the
proposed MRE updating procedure.

3. APPLICATION EXAMPLES

Two fatigue crack growth experimental datasets are used to
demonstrate the proposed MRE updating procedure and show
the benefits of this approach.

3.1 Virkler’s 2024-T3 Aluminum Alloy Experimental
Data

An extensive fatigue crack growth data under constant load-
ing for Al 2024-T3 plate specimens with center through
cracks was collected in (Virkler et al., 1979). The dataset
consists of 68 fatigue crack growth trajectories and each tra-
jectory contains 164 measurement points. All specimens have
the same geometry, i.e., an initial crack sizeai = 9mm,
lengthL = 558.8mm, width w = 152.4mm and thickness
t = 2.54mm. The loading information is∆σ = 48.28MPa
and stress ratioR = 0.2. The geometry correction factor
for these specimens isF (a) = 1/

√

cos(πa/w). (Kotulski,
1998) reported the statistical information of the parameters
in Paris’ model, namely, mean valuesµlnc = −26.155 and
µm = 2.874 with standard deviationsσlnc = 0.968 and
σm = 0.164, respectively. Assuming the total error term is
τ = 0.1mm and substituting the statistics information into
Eq. (12) withglnc = lnc and gm(m) = m, the updating
procedure can be performed when observation data become
available.

One crack growth trajectory in Virkler’s dataset was selected
arbitrarily for fatigue crack length prediction updating from
(Ostergaard & Hillberty, 1983). Five data points in the early
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Figure 1. MRE and Bayesian prognosis (Virkler’s dataset)

stage of the crack propagation are randomly chosen to rep-
resent the measured ground truth values of crack length ob-
tained from health monitoring system or nondestructive in-
spection. These data points are listed in Table 1.

Number Crack size (mm) Cycles

1 9.733 21269

2 10.527 42734

3 11.256 56392

4 12.171 73161

5 15.055 110487

Table 1. Data used for updating (Virkler’s dataset)

Predictions from MRE updating and Bayesian updating pro-
cedures are shown in Figure 1. To keep the figure clear, the
median prediction (expected value) is omitted. As can be
seen, MRE updating gives a narrower prognosis confidence
interval as compared to classical Bayesian updating. It fur-
ther justifies that the additional moment constraints imposed
on the posterior yield a more compact results.

3.2 McMaster’s 2024-T351 aluminum alloy
experimental data

In (McMaster & Smith, 1999), a large set of 2024-T351 alu-
minum alloy experimental data under constant and variable
loading conditions were reported. The experimental data of
center-cracked specimens with lengthL = 250mm, width
w = 100mm and thicknesst = 6mm under constant loading
∆σ = 65.7MPa and stress ratioR = 0.1 are used. Pri-
ors of the parameters are obtained byln(da/dN) ∼ ln(∆K)
regression using the experimental data. Five data points as
shown in Table 2 are chosen arbitrarily to represent sensor
measurements from health monitoring system. The prior
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Figure 2. MRE and Bayesian prognosis (McMaster’s dataset)

PDFs are artificially set asµlnc = −26.5 andµm = 2.9,
which is not sufficiently accurate enough to match the ex-
perimental records as seen in Figure 2. Predictions of crack
growth trajectories are also shown in Figure 2, where interval
predictions obtained by MRE updating are narrower than that
by Bayesian updating. One interesting observation is that the
difference between MRE and Bayesian interval predictions in
Figure 2 is larger than that in Figure 1. One possible expla-
nation is that the prior PDF settings in the two datasets have
different level of uncertainties. The prior PDFs in Figure 1
are sufficiently accurate. We can observe this because the
prior point estimate in black dash line (computed using the
mean value reported by Kotulski) is very close to the experi-
ment records in solid blue line. For the McMaster’s dataset,
the prior PDFs for the Paris’ equation parameters are artificial
set. The prior estimate is far from the experiment records. The
affect of prior PDFs settings is further discussed in Section 5.
In the two examples, MRE updating shows the advantages
over Bayesian updating by visual observation. This is more
likely due to the additional statistical moment constraints of
MCMC samples added to posteriors. To quantify the perfor-
mance, prognosis metrics need to be considered to provide
a rigorous comparison between MRE updating and Bayesian
updating as given below.

Number Crack size (mm) Cycles

1 11.361 4875

2 11.928 8475

3 12.325 11550

4 13.856 17775

5 14.877 21375

Table 2. Data used for updating (McMaster’s dataset)

4. METRIC-BASED PERFORMANCE EVALUATION

Various metrics are available to quantify the performance of
prognosis algorithms (Saxena, Celaya, Balaban, et al., 2008).
In this section, classical error based statistical measures and
several prognosis metrics are applied to quantify the predic-
tion performance of application examples in the previous sec-
tion.

4.1 Statistical Metrics

Metrics, such as mean squared error (MSE), mean abso-
lute percentage error (MAPE), average bias, sample stan-
dard deviation (STD), and their variations are widely used in
medicine and finance fields where large datasets are available
for statistical data analysis (Saxena, Celaya, Balaban, etal.,
2008). The results for those classical metrics shown in Table
3 and Table 4 (rows 1-4) are computed using the prediction
residuals (the difference between actual RUL and predicted
RUL) obtained after the fifth updating. The proposed MRE
approach shows its advantages over Bayesian method in all
cases.

4.2 Prognosis Metrics

The statistical metrics mentioned above are general purpose
metrics and were not specifically designed for prognosis.
In (Saxena, Celaya, Saha, Saha, & Goebel, 2008) authors
proposed several metrics, such as Prognostic Horizon (PH),
Alpha-Lambda (α−λ) Performance, Relative Accuracy (RA),
Cumulative Relative Accuracy (CRA), and Convergence; that
were designed specifically for prognosis to incorporate the
prediction distributions and the structure of the prognostics
process. These metrics help assess how well prediction esti-
mates improve over time as more measurement data become
available. For readers’ reference, we present a brief definition
of these metrics here.

1. Prognostic Horizon is defined as the length of time be-
fore end-of-life (EoL) when an algorithm starts predict-
ing within specified accuracy limits. These limits are
specified as±α% of the true EoL.

2. α− λ Accuracy determines whether predictions from an
algorithm are within±α% accuracy of the true RUL at
a given time instant, specified by the parameterλ. For
instance aλ = 0.5 would specify midway between the
first time a prediction is made and EoL.

3. Relative Accuracy quantifies the percent accuracy with
respect to actual RUL at a given time (specified byλ).
It’s an accuracy measure normalized by RUL, signifying
that predictions closer to EoL should be more accurate
and precise.

4. Cumulative Relative Accuracy is a weighted average of
RAs computed at different time instances. Weights can
be assigned to the predictions based on how critical they
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become as EoL approaches, and hence the accuracy of
the predictions.

5. Convergence quantifies the rate at which any perfor-
mance metric of interest improves to reach its desired
value as time passes by.

For more description, implementation details and applica-
tion examples on these metrics; the reader may referred to
(Saxena, Celaya, Saha, et al., 2008). In general, these metrics
were designed to capture the time varying aspects of prognos-
tics. As more data become available prognostic estimates get
revised. It is, therefore, important to track how well an al-
gorithm performs as time passes by as opposed to evaluating
performance at one specific time instant only. Further, these
metrics also incorporate the notion of increased criticality as
EoL approaches, which imply that a successful prognosis al-
gorithm should improve as the system approaches its EoL. In
this paper we compare the two approaches based on Bayesian
and MRE updating. In addition to evaluating performance
based on prognosis metrics, we also include some classical
statistical metrics. For this purpose, in our approach we in-
clude an additional updating point from the end of time series
to establish EoL and compute the RUL curves. Results ob-
tained from this evaluation exercise are presented next.

Performance Results for Virkler’s Dataset

The visual results for PH andα − λ accuracy are shown in
Figure 3. Numerical values of those metrics are listed in Ta-
ble 3. For computing CRA (see Table 3), the starting point
is cycle zero because the specimens have initial cracks. We
evaluated RA at 20, 40, 60, and 80% of EoL and did not
use weighting factors. This assumes that relative accuracy
is equally weighted at all time instants. Though, this may
not always be preferable, a simplistic evaluation was carried
out to observe the natural behavior of the algorithm itself.
Figure 3 compares the prediction horizon for the two algo-
rithms with 10% error bound around EoL value. Using the
strict definition for PH as laid out in (Saxena, Celaya, Saha,
Saha, & Goebel, 2009), we observed that MRE yields a larger
PH. The plot of PH performance in Figure 3 shows that 90%
MRE interval prediction enters the 90% accuracy zone at the
fifth updating, while Bayesian prediction enters the zone at
the sixth updating showing that MRE is slightly better than
Bayesian. It is worth mentioning that there is no specific rea-
son to choose , which is very conservative and strict. Typi-
cally 50% corresponds to evaluating mean value being inside
the alpha bounds. It depends on specific reliability require-
ment and actual application constraints to pick up a proper
value. In general, it indicates that, for engineering practice,
the proposed MRE can give an informative prediction at an
earlier stage of the whole lifecycle. The statistical metrics,
MAPE, Average Bias, STD, MSE, are computed after the
fifth updating. The prognosis metrics of PH, RA, and CRA
are computed using the 90% interval predictions of RUL at
each updating points. For the convergence metric, the median
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Figure 3. Performance comparison for PH andα−λ accuracy
atα = 0.1 (10% error bound) on Virkler’s dataset

prediction is used here. Looking at Table 3 one can see that
on Virkler’s dataset MRE performs better than Bayesian ap-
proach under all performance measures. One must note that
although classical metrics conclude the same as the new prog-
nostics metrics, they do not take into account the time varying
nature of the prognostics and hence may not always be useful
in practice.

Metrics MRE Bayesian

MAPE 8.66 10.93

Average Bias(cycle) 10956.27 14051.92

STD(cycle) 7628.77 9115.78

MSE(cycle2) 178.23×10
6 280.5×10

6

PH(cycle) 132016 83583

RAλ=0.4 0.92 0.89

CRA 0.89 0.87

Convergence 74365.72 77349.24

Table 3. Comparison of metrics between MRE and Bayesian
approaches (Virkler’s dataset, statistical metrics (rows1-4)
are computed after fifth updating)

Performance Results for McMaster’s Dataset

A similar analysis for the McMaster’s dataset is performed.
The visual results for PH andα−λ accuracy metrics compar-
ing Bayesian and MRE updating are shown in Figure 4. The
rest of the metrics are included in Table 4. The general con-
clusion about the superior performance of the MRE procedure
from Virkler’s dataset is further strengthened. The MRE’s su-
perior performance over Bayesian approach is attributed to
the ability to incorporate additional knowledge about the sys-
tem using additional constraints. For this dataset, these met-
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Figure 4. Performance comparison for PH andα−λ accuracy
atα = 0.1 (10% error bound) on McMaster’s dataset

rics clearly distinguish the two approaches and show better
outcomes from the MRE method. For example, the PH and
α − λ performance metrics shown in Figure 4 present clear
visual comparisons, e.g., the prognosis bounds obtained by
MRE enters the cone area at the fourth updating which is ear-
lier than that of Bayesian.

Metrics MRE Bayesian

MAPE 4.06 22.53

Average Bias(cycle) 418.76 4561.93

STD(cycle) 1413.53 6888.38

MSE(cycle2) 2.17×10
6 68.26×10

6

PH(cycle) 32475 N/A

RAλ=0.4 0.99 0.86

CRA 0.95 0.87

Convergence 13757.94 22175.16

Table 4. Comparisons of metrics between MRE and Bayesian
approaches (McMaster’s dataset, statistical metrics (rows 1-4)
are computed after fifth updating)

5. DISCUSSION

As observed in the previous section, there are a few aspects
where these metrics can be further enhanced to improve per-
formance evaluation. The significant difference between the
PHs for the two algorithms may also be an artifact of the fre-
quency at which these algorithms make a prediction. We also
observed that in a probabilistic prognosis updating scheme,
the selection of priors may produce different prognosis results
and affect the performance. Consequently, different updating
methods may exhibit different robustness with inappropriate
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Figure 5. Comparison of convergence performance on
Virkler’s dataset

priors. Next, we discuss some of these issues as they relate to
prognosis metrics.

5.1 Convergence Metric

The convergence metric computes a value to quantify how
fast prognostic estimates improve and converge towards the
ground truth. A metric like convergence is meaningful only
if an algorithm improves with time and passes various cri-
teria defined by other prognostic metrics. For example, the
convergence in terms of RUL relative error (RE) defined in
Eq. (15), which is the difference between an actual response
measure (R) and the inferred value (R0) divided by the ac-
tual response measure. The result of Virkler’s dataset shows
a monotonic decreasing trend after the second update (Figure
5). Both MRE and Bayesian methods show diverging trends
for McMaster’s dataset (Figure 6). The results (converging
and diverging trends) suggests that a metric like convergence
will not make complete sense if the algorithms do not show
improvements with time and hence additional fine tuning of
the algorithms is required. The length of the dash line (Figure
5 and Figure 6) between the coordinate origin and the centric
point of the area covered by the RE curves serves as a quan-
titative value of convergence metric. The details of that can
be found in (Saxena, Celaya, Saha, et al., 2008). It is worth
mentioning that different applications may require different
measures instead of RE and the choice of measures depends
on which aspect of the algorithmic convergence we would like
to investigate.

RE :=

∣

∣

∣

∣

R0 −R

R

∣

∣

∣

∣

. (15)

5.2 Robustness metric

From the above examples, it is shown that the selection of a
prior PDF is critical for a meaningful prognosis using prob-
abilistic updating schemes such as Bayesian and MRE. An
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Figure 6. Comparison of convergence performance on Mc-
Master’s dataset
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Figure 7. MRE and Bayesian prognosis with an inaccurate
prior (McMaster’s dataset)

inaccurate prior may render a poor prediction of RUL. For ex-
ample, when the prior prediction (shown in Figure 7) is very
different from the actual crack growth trajectory, the Bayesian
predictions lead to inaccurate estimates with very wide con-
fidence bounds. The MRE updating approach performs well
while using the same inaccurate prior distributions. On the
other hand, starting with a relatively accurate prior prediction,
both MRE and Bayesian give similar predictions as shown in
Figure 8. It is valuable to define a robustness metric that can
quantify the sensitivity of different algorithms with respect
to the algorithm parameters, such as prior distribution, initial
conditions, and training data size.

A preliminary study on the robustness metric is shown be-
low. The basic idea is to quantify the change of prognosis
confidence bounds due to the changing of algorithm param-
eter values. The range of investigated parameter is first de-
fined based on specific application requirements (e.g., 10%
variation around the mean value) or based on the underlining
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Figure 8. MRE and Bayesian prognosis with an accurate prior
(McMaster’s dataset)

physics requirement (e.g., parameter should be non-negative).
In this paper, we used a parameterη to specify the range of in-
terested parameter (i.e., the parameter is in the range of mean
±η). For a robust algorithm, the change of algorithm param-
eters will not affect the prognosis confidence bounds much.
In view of this, the area in a confidence bound vs. parame-
ter variation plot is a good indication of algorithm robustness
(shaded area in Figures 9 and 10). In order to perform the
metric comparison across different parameter spaces, a nor-
malization process is proposed. A reference area is defined
by specifying an allowable prediction error level (e.g.,±20%
in the current investigation). This allowable level is expressed
using parameterδ. The reference area can be calculated as
4ηδ and is shown as the area by the dashed lines in Figures
9 and 10. Mathematically, the robustness metricRb can be
defined as

Rb :=

∫ xmean+η

xmean−η
f(x)dx

4ηδ
, (16)

wherex is the investigated algorithm parameter andf(x) is
the confidence bound variation function with respect tox.
The physical meaning of Eq. (16) is the shaded area nor-
malized by the dashed line area in Figures 9 and 10. The per-
formance of the two updating algorithms is investigated using
the above mentioned robustness metric for Virkler’s dataset
first. In this case,η = 0.2 and δ = 0.2 are used to in-
vestigate the parameterm in the crack growth model (Eq.
(12)). The mean value ofm is 2.874. All predictions are
made after six updatings and the 99% confidence bounds are
shown in Figure 9. The robustness metric (Eq. (16)) of the
Bayesian approach is 2.6 while that for the MRE approach is
0.7. The similar investigation if performed for McMaster’s
dataset with the mean value ofm equaling to 2.9. The ro-
bustness metric of the Bayesian and MRE approach are 3.0
and 0.4, respectively. The metric configuration and the visual
comparison for McMaster’s dataset are shown in Figure 10.
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Figure 9. Comparison of robustness metric after six updatings
with varying values of m in prior PDF (Eq. 12) for parameter
m (Virkler’s dataset)

From the above results we can see that, under this specific pa-
rameter configuration, MRE exhibits more robust against the
variation of m in prior PDFs. In fatigue damage problems, the
model parameters are usually tuned using extensive experi-
ments on standard specimens. The realistic systems are usu-
ally different from specimens in geometric dimensions, load-
ing profiles, and usage environment. Extensive experiments
on the actual engineering systems are sometimes prohibitive
due to the time and cost constraints. Therefore, it may be
valuable in a practical perspective since most of the time an
accurate prior is difficult to obtain with a limited data source.
One issue with this robustness metric is that it does not re-
flect how the performance changes with time. More compli-
cated metrics based on this idea maybe developed by adding
another dimension to record the performance variation with
time. Since Bayesian updating algorithms are associated with
many factors, such as the total number of updating points, the
training data size, noise levels, etc., further studies areneeded
to establish such concepts regarding the algorithmic robust-
ness.

To make further comparison between different Bayesian up-
dating and prognosis approaches, more data points and even
the whole dataset can be used as observation data to see with
enough measures of response whether MRE and Bayesian
give similar prognosis results and show convergence. Though
in practice it is more desirable to get an early stage accu-
rate prognosis, it is necessary to explore the characteristics
of different updating algorithms using experimental data as
we showed in previous sections.

6. CONCLUSION

A general framework for probabilistic prognosis using max-
imum entropy approach, MRE, is proposed in this paper to
include all available information and uncertainties for RUL
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Figure 10. Comparison of robustness metric after six updat-
ings with varying values of m in prior PDF (Eq. 12) for pa-
rameterm (McMaster’s dataset)

prediction. Prognosis metrics are used for model compari-
son and performance evaluation. Several conclusions can be
drawn based on the results in the current investigation:

The proposed MRE updating approach results in more ac-
curate and precise prediction compared with the classical
Bayesian method.

The classical Bayesian method is a special case of the pro-
posed MRE approach and MRE approach is more flexible
to include additional information for inference, which cannot
be handled by the classical Bayesian method. The prognosis
metrics can be successfully used for algorithm comparison
and can give quantitative values in model (algorithm) perfor-
mance evaluation.

A robustness metric measuring the updating algorithmic sen-
sitivity to prior uncertainty is proposed and applied to both
Bayesian and MRE updating approaches. The application ex-
amples show that MRE exhibits more robustness against the
uncertainty introduced by parameter distribution priors in the
sense of prognosis performance.

It is important to realize when to apply these metrics to arrive
at meaningful interpretations. For instance, use of the conver-
gence metric makes sense only when the algorithm predic-
tions converge (get better) with time.
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NOMENCLATURE

I(·) Relative information entropy
p(·) Probability distribution
M(·) Fatigue crack growth model
F (·) Geometry correction factor
a Crack length
N Number of loading cycles
d Crack length measurements
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