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ABSTRACT

For prognostics in industrial applications, the degree of an-
omaly of a test point from a baseline cluster is estimated using
a statistical distance metric. Among different statistical dis-
tance metrics, energy distance is an interesting concept based
on Newton’s Law of Gravitation, promising simpler comput-
ation than classical distance metrics. In this paper, we re-
view the state of the art formulations of energy distance and
point out several reasons why they are not directly applica-
ble to the anomaly-detection problem. Thereby, we propose
a new energy-based metric called the P-statistic which ad-
dresses these issues, is applicable to anomaly detection and
retains the computational simplicity of the energy distance.
We also demonstrate its effectiveness on a real-life data-set.

1. INTRODUCTION

Prognostics is a critical requirement in many industrial fields
today owing to the potential of cost savings and operational
efficiency entitlement through elimination of unscheduled fail-
ures and shut-downs. One of the many important modules
used in a typical Prognostics and Health Management (PHM)
application is a health indicator module for the system un-
der consideration which not only estimates a health metric
but also tracks the evolution of this metric with time. The
health indicator is estimated from a collection of sensor read-
ings at different timestamps. Generally, one of many statis-
tical distances of a test-point from a baseline cluster may be
used as this health indicator. The data-points can be multi-
dimensional resulting from multiple sensor outputs that can
be tapped from the system under monitoring. This statisti-
cal distance or some function of it may be used as the health
metric or the health indicator.

Time trending of the health metric as a function of histori-
cal and future forecast usage patterns give us a visibility into
the Remaining Useful Life (RUL) which is the ultimate tar-
get of PHM. However, even before hitting the ultimate target
of RUL, doing anomaly detection as an intermediate step has
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value. Anomaly is flagged when the distance metric exceeds
a threshold and an alert is generated, thereby preventing sud-
den unplanned failures. Although as is captured in (Goldstein
& Uchida, 2016), anomaly may be both supervised and un-
supervised in nature depending on the availability of labelled
ground-truth data, in this paper anomaly detection is consid-
ered to be the unsupervised version which is more convenient
and more practical in many industrial systems.

Choice of the statistical distance formulation has an important
impact on the effectiveness of RUL estimation. In literature,
statistical distances are described to be of two types as fol-
lows.

1. Divergence measures: These estimate the distance (or,
similarity) between probability distributions. Some com-
mon divergence measures are Kullback-Leibler divergence,
Jensen-Shannon divergence and Hellinger distance.

2. Distance measures: These measures estimate the dis-
tance between a single point and a distribution by com-
paring it with a sample drawn from the distribution. The
most well-known measure in this category is Mahalanobis
distance (Mahalanobis, 1936). A few other distance mea-
sures are Bhattacharya distance (Bhattacharyya, 1943)
and the energy distance.

For the industrial anomaly detection problem, it is mostly the
second category which is more significant because most of
the times, we end up comparing a single point with a baseline
cluster.

In this paper, we are interested in the class of distances called
energy distance. These are interesting because they are based
on the notion of Newton’s law of gravitational energy and
considers statistical observations as celestial objects having
gravitational pull between each other. A distance metric called
E-statistic may be written to represent the energy distance be-
tween distributions.The E-statistic can be used to test the sta-
tistical hypothesis of equality of two distributions. This con-
cept was proposed and developed in (Székely, Rizzo, et al.,
2004; Székely & Rizzo, 2013; Szekely & Rizzo, 2017) where
it was shown the E-statistic is more general and powerful than
many classical statistics.
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Application of energy distances to single and multi sample
goodness of fit have been explored in (Rizzo, 2002b, 2002a;
Székely et al., 2004; Baringhaus & Franz, 2004; Székely &
Rizzo, 2005; Rizzo, 2009; Yang, 2012). Several other ap-
plications have been shown in (Szekely, Rizzo, et al., 2005;
Székely & Rizzo, 2009; Feuerverger, 1993; Matteson & James,
2014; Kim, Marzban, Percival, & Stuetzle, 2009).

In this paper, we are interested in exploring it further be-
cause of its ability to work with Euclidean distances between
data-points rather than with the data-points themselves. This
ability leads to reduced computational complexity compared
to the Mahalanobis distance and makes the E-statistic poten-
tially advantageous for memory and computation challenged
systems.

However, despite the aforementioned advantages, we found
some problems with the E-statistic when applied to anom-
aly detection. These problems arise from the fact that the E-
statistic has been developed primarily for comparing equality
between two distributions whereas for anomaly detection we
need to compare a single test point with a distribution (base-
line). In this paper, we analyse these problems and propose
a new metric called the modified energy distance (P-statistic)
based on the notion of Newton’s law which addresses these
problems and is more suitable to be used in an anomaly de-
tection problem.

Here, we would like to mention that detailed comparison of
the proposed metric against all other classical distance met-
rics is a task we would attempt in future work. In this work,
we focus on establishing the improvements over the E-statistic.

This paper is laid out as follows. In Section 2, we briefly
review the E-statistic and mention the reasons why it is com-
putationally simpler than other techniques. In Section 3, we
explain the issues which make the E-statistic less suitable
for anomaly detection and in Section 4, we propose the P-
statistic and through the use of synthetic data, show that it
addresses these issues. In Sections 5.1 and 5.2, we derive a
method for estimating probability from the P-statistic using a
chosen parametric distribution. In Section 5.4, we show how
the performance of this new metric compares in terms of dis-
crimination performance against that of the Mahalanobis Dis-
tance, a classical multi-dimensional distance metric. In Sec-
tion 6, we demonstrate a simple application of the P-statistic
on real-life data. In Section 7, we show how the training time
of the proposed metric compares against that of Mahalanobis
Distance for an incremental baseline update approach. Fi-
nally, in Section 8, we summarize the observations.

2. REVIEW OF ENERGY DISTANCE AND ITS COMPUTA-

TIONAL SIMPLICITY

Let X and Y be two independent real-valued random vari-
ables with probability density functions fX and fY respec-

tively. Let XS = {X1, X2, ..., Xn1} be a random sample of
size n1 drawn from the density function fX . Similarly, YS =
{Y1, Y2, ..., Yn2} is a random sample of size n2 drawn from
the density function fY . The energy distance E(X,Y ) be-
tween the distributions fX and fY has been defined in (Székely
et al., 2004; Székely, 1989, 2002). It is a population statistic
for the pair of random variables X and Y .

Now, a sample statistic En1n2 may be used as an estimate for
the population statistic E(X,Y ). It may be calculated from
the pair of samples (XS , YS) as defined in (Székely et al.,
2004; Székely, 1989, 2002) and has the following form.

En1n2(XS , Y1, Y2, ...Yn2) =
n1n2

n1 + n2

"
2

n1n2

n1X

i=1

n2X

m=1

||Xi � Ym||2 �
1

n
2
1

n1X

i=1

n1X

j=1

||Xi �Xj ||2 �
1

n
2
2

⇥

n2X

l=1

n2X

m=1

||Yl � Ym||2

#
. (1)

For a d-dimensional space, each observation Xi and Yj is a
d ⇥ 1 array. Mathematically, the entire sample may be rep-
resented as a d ⇥ n1 matrix for XS and d ⇥ n2 matrix for
YS .

In industrial systems, usually after a baseline data-set is ac-
cumulated, future test-points are compared against it and the
baseline itself is not frequently replaced except when there is
a need to re-establish the baseline. Thus, although the base-
line cluster varies depending on which time instant it was ac-
quired from sensor readings and hence has a random nature,
it is considered a constant in the anomaly analysis once it is
captured and saved. Hence, in subsequent analysis, it is con-
sidered invariant. Going forward, in this paper, we will be
referring to the sample XS as the baseline cluster (or base-
line, for simplicity).

For the anomaly detection problem, we want to compare a
single point against a baseline cluster having many members.
Hence, in (1), we assume that YS has sample-size 1 and con-
tains only one member Y1. We discard the notations n1 and
n2 as n2 = 1. We represent n1 by n going forward as the
subscript in n is no longer needed. For sufficiently large sam-
ple size for XS , n1 ⇡ n1 + 1. Also, we use y in place of Y1

in future analysis since the subscript is not crucial for clarity
in representing a single member set YS .
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From (1), we write a simplified form En for En1n2 as

En(XS , Y1) = En(XS , y)

⇡ 2

n

nX

i=1

||Xi � y||2

� 1

n2

nX

i=1

nX

j=1

||Xi �Xj ||2 . (2)

Reference (Székely et al., 2004) mentions that for En(XS , y)
to be a valid distance metric, there must exist a c↵ for every
↵ 2 (0, 1) such that

P (Z > c↵) = ↵. (3)

Here, Z is a random variable. A random sample z drawn from
the distribution of Z is a function of the baseline XS and
a random sample x drawn from the distribution fX defined
earlier. It takes a form

z = En(XS , x). (4)

As mentioned in Section 1 and in (Székely et al., 2004; Székely
& Rizzo, 2013; Szekely & Rizzo, 2017), the E-statistic is sim-
pler and more general than classical distance metrics. While
writing this paper, on comparing (1) with the classical dis-
tance metrics described in (Statistical distance, n.d.), the ad-
vantages which specifically interested us are

1. The Euclidean distances in (1) can be computed in paral-
lel and hence the computation time of E-statistic does not
scale with data size if implemented in a parallel manner.

2. Covariance matrices are not required in (1). For high-
dimensional data, this can take up a significant amount
of computation and memory

3. Matrix inversion is not needed. In many classical meth-
ods, inversion of covariance matrices is required. Again,
for high dimensional data, this can involve significantly
heavy computation.

3. SOME GAPS IDENTIFIED IN E -STATISTIC

In this section, we analyse the general requirements from any
anomaly detection metric and point out some weaknesses in
the E-statistic which prevent it from satisfying some of these
conditions. Going forward, these weaknesses form the basis
of the proposed innovation in this paper.

3.1. Requirements from an Acceptable Metric for Anom-

aly Detection

In anomaly detection, we usually obtain a single test sam-
ple y and compare it against the baseline (say XS) which
is a cluster of samples drawn from the distribution fX . Al-
though there is an element of randomness in the baseline

cluster based on when that data set was captured in time,
but once they are collected for any machinery, they are usu-
ally not changed during the comparison or anomaly detection
phase. Thus, for all practical purposes, they are same as a set
of multi-dimensional real-valued points.

From the way anomaly detection is usually implemented in
industrial systems, we intuitively desire the following condi-
tions from any acceptable anomaly measure (say E⇤

n) which
may be used in a practical anomaly detection system.

The desired characteristics with respect to cluster size and
distance from centroid along with their mathematical expres-
sions are as follows.

1. Relationship with cluster size

(a) For the test-point y situated at a given distance from
the centroid of the baseline cluster and outside the
baseline, it should appear less anomalous if it is
closer to the outer boundary of the baseline cluster.

Given the saved baseline XS , we define a random
variable R such that

R = ||X �XS ||2 and (5)

R has a probability density function fR whose model
parameters may be estimated from the sample XS .
Here, XS is the centroid of the baseline cluster which
is nothing but the sample mean.

For the test-point y, let r = ||y �XS ||2. Since, fR
is a function of the baseline cluster XS and from (5)
the domain of R is the set of Euclidean distances of
all possible samples of X from XS , the probability
density of any point with distance r from XS may
be expressed as fR(r,XS).

This problem may now be cast in the form of a hy-
pothesis test as follows.

Null hypothesis(H0): Random samples drawn from
fR will be more extreme than r. y is flagged as an
anomaly with respect to XS if the null hypothesis is
rejected.

Rejection criterion: The null hypothesis is rejected
if

pR(XS) = P (
����X �XS

����
2
> r) = P (R > r)

=

Z 1

r
fR(x,XS)dx < pth (6)

which is a pre-determined threshold.

Let there be a second cluster X
0

S(�) which is formed
by scaling the baseline with respect to its centroid
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such that its kth element X
0

S(�)k may be written as

X
0

S(�)k = �(Xk �XS) +XS where (7)

� > 0. If � > 1, the number of points, relative ori-
entation of points and cluster shape are maintained
unchanged between XS and X

0

S(�) with the second
cluster occupying a larger spatial volume. Hence,
the test-point will appear closer to the outer bound-
ary of X

0

S(�) than to that of XS . In this scenario,
if E⇤

n is a faithful indicator of anomaly, it should ap-
pear to be less in the former case. This behaviour
may be expressed mathematically as

E⇤
n(X

0

S(�), y) < E⇤
n(XS , y) if � > 1. (8)

Now, we saw that a larger radius of baseline is sup-
posed to make y appear less anomalous. Also, larger
the anomaly, less should be the value of the inte-
gral in (6) since larger anomaly would mean less net
probability of having points more extreme. Hence,

pr(X
0

S(�)) > pr(XS) if � > 1. (9)

(b) For an infinitesimally small baseline cluster, any test-
point would appear to have a very large anomaly,
irrespective of the value of the Euclidean distance
from the centroid. This is because the distance al-
ways appears large relative to the cluster size.

Hence,
lim
�!0

E⇤
n(X

0

S(�), y) = 1 (10)

With the anomaly metric increasing asymptotically,
we will have an asymptotic reduction of the integral
value in (6).

2. Relationship with distance from cluster centroid

(a) If the test-point is further away from the centroid of
the baseline cluster, it should appear more anoma-
lous and hence, the anomaly metric should increase.
Thus, if there are two test-points y1 and y2,

E⇤
n(XS , y1) > E⇤

n(XS , y2) if (11)����y1 �XS

����
2
>
����y2 �XS

����
2
. (12)

(b) If the test-point is at the center, the anomaly metric
should be close to zero. Hence,

E⇤
n(XS , y) ! 0 if

����y �XS

����
2
! 0. (13)

It should be noted that (7) and (11) indicate that the ideal
anomaly metric should follow a monotonic behaviour with
respect to the baseline size and also distance of the test-point
from the baseline cluster. These ideal conditions hold good

for data of any dimension.

3.2. Synthetic Dataset

In order to examine how En performs with respect to the de-
sired characteristics stated in Section 3.1, we consider a d-
dimensional random variable X which is distributed as a uni-
form ball. We sample from this distribution to create a syn-
thetic data-set following the method described in (Harman &
Lacko, 2010).

X can be written as

X = rb (Z1/ ||Z1||2)Z
1/d
2 where (14)

Z1 is sampled from a multi-variate uncorrelated standard nor-
mal distribution, Z2 ⇠ U(0, 1) and rb is the desired radius of
the ball.

For the purpose of this study, we restrict the dimension of X
in (14) to 2 to keep the analysis and visualization simple. If
the two dimensions of X are written as X(1) and X

(2), they
may be expressed in a simplified form as a function of two
random variables R and ✓ in the following way.

X
(1) = R cos ✓ and X

(2) = R sin ✓ where

R ⇠ (0, rb)
1/2 and ✓ ⇠ U(0, 2⇡) and (15)

rb is the chosen radius of the example cluster. It may be
shown from (15) that 8 (✓, R), the probability density func-
tion f✓,R = 1/(⇡r2b ). Thus, the distribution is uniform in
nature. We also consider a fixed test-observation with loca-
tion ✓ = 0 and R = 1.

3.3. Shortcomings of E-statistic

We sweep rb in (14) from 0 to 5 thereby progressively get-
ting a different-sized baseline and thereby changing � in (7).
This implies different probabilities of the fixed test-point be-
longing to this cluster. We then evaluate the simplified En in
(2).

Figures 1 and 2 show the baselines and test-points for two
different values of rb along with computed values of En for
both the cases. Figure 3 shows a continuous plot of how En
varies with rb.

From these plots, the E-statistic can be shown to violate the
desired characteristics mentioned in Section 3.1 in the follow-
ing manner.

1. Limiting condition behaviour: The E-statistic violates
the limiting conditions in the following manners.

(a) It has been shown in Appendix A (59) that the met-
ric En proposed in (2) has the following property.

lim
�!0

En(X
0

S(�), y) = 2
����XS � y

����
2
6= 1. (16)
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Figure 1. Baseline (blue) and test-point (red) with rb = 0.5
and En = 1.6107

Figure 2. Baseline (blue) and test-point (red) with rb = 5.0
and En = 2.363

This violates the condition required for the ideal
metric E⇤

n stated in (10). Thus, En in its present
form cannot function as the ideal metric.

From Figure 3, it is clear that when the baseline
cluster becomes progressively smaller and close to
0, the variation of En is not asymptotic to infinity
but hits a finite value equal to the distance of the
test-point from the baseline centroid.

(b) Appendix A (62) also proves the following.

lim
�!1

En(X
0

S(�), y) = 1. (17)

From Figure 3, it is clear that when baseline cluster
increases in radius, the value of En does not always
reduce tending towards 0. It goes through an in-

Figure 3. Variation of En with baseline cluster radius (rb),
given a fixed test-point.

flection point beyond which it increases instead of
reducing and reaches significantly high values in-
stead of very small ones. For the particular case in
Figure 2, the En value of 2.363 is not appropriate. It
should be very close to zero. Also, the En should be
higher in Figure 3 compared to Figure 2. However,
the opposite is actually observed.

(c) As stated above, in Section 3.1, E⇤
n = 0 if and

only if y = Xc for a viable distance-metric for
anomaly detection. But this condition is violated
by the E-statistic in its present form because in (1),
En1n2 = 0 if and only if the distributions X and
Y are identical i.e. X = Y . However the single
test-point y considered here forms a single member
distribution which cannot be identical to X under
any circumstance.

2. Monotonic behaviour: From Figure 3, it is seen that the
value of En goes through an inflection point as r varies
instead of varying monotonically as required in Section
3.1

The issues with E-statistic raised in this section have been fur-
ther addressed and a modified algorithm suggested in Section
4. Since the target in this paper is anomaly detection, we have
also extended the analysis to reach a closed form analytical
expression for the probability density function (PDF) based
on which the p-value of the test-point may be estimated.

4. MODIFIED ENERGY DISTANCE

The reason why energy distance is computationally simple is
that it works with distributions of Euclidean distances whereas
other distance metrics first fit a multivariate distribution and
then work our probabilities from that. The E-statistic is one of
the first energy-based metric proposed for anomaly detection.
However, we saw in Section 3.3 that it has a few weaknesses.
In this section, we borrow the concept of working with Eu-
clidean distances from a study of the E-statistic and propose
an alternative and slightly modified metric based on them.

The potential energy of a configuration consisting of two par-
ticles having masses m1 and m2 respectively and having po-
sitions X1 and X2 respectively is the work that needs to be
done to move one particle from infinity to its current position
against the gravitational force exerted by the other particle
already in place. It can be written as

PE(X1, X2) = � Gm1m2

||X1 �X2||2
. (18)

We define the incremental potential energy of y to be the
work that needs to be done to move the test-point y from infin-
ity to its present position against the collective force exerted

5
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by the baseline sample cluster XS . The incremental potential
energy may be written as

�P (XS , y) =
nX

k=1

PE(Xk, y)

= �
nX

k=1

C

||Xk � y||2
, (19)

where C is a positive constant if we assume that each data-
point in the baseline sample cluster XS as well as the test-
point y represent particles of equal mass.

The net potential energy for assembling the baseline cluster
XS may be written as

�P (XS) =
nX

j=2

X

k<j

PE(Xk, Xj) (20)

Since from (18), potential energy is inversely proportional to
distance, we may assume a modified energy distance En be-
tween XS and y such that

En(XS , y) = �1/�P (XS , y)

= 1

� nX

k=1

C

||Xk � y||2
from (19). (21)

Also, the effective modified energy distance of the entire clus-
ter XS with respect to itself may be written as

En(XS) = �1/�P (XS)

= 1

� nX

j=2

X

k<j

C

||Xk �Xj ||2
. (22)

Considering the fact that the degree of anomaly should factor
in the total energy content of the baseline cluster itself, we
define a potential energy statistic, the P-statistic based on the
modified energy distance formulated in (21) as

Pn(XS , y) =
En(XS , y)

En(XS)

=
nX

j=2

X

k<j

1

||Xk �Xj ||2

� nX

k=1

1

||Xk � y||2
(23)

One concern with (23) might be numerical stability as y over-
laps with any particular Xk and the denominator in (23) goes
to 1. In order to overcome this, we propose introducing a
saturation term ⌧ as

Pn(XS , y) =
nX

j=2

X

k<j

1

||Xk �Xj ||2

� nX

k=1

1

||Xk � y + ⌧ ||2
(24)

If the kth dimension of ⌧ be ⌧
k, ⌧1 = ✏ and ⌧

j = 0 8 j > 1.

Here, ✏ is an infinitesimal positive number on the real line.
The closer ✏ is to 0, the better is the match between (23) and
(24). A guideline may be to use

0 < ✏ < 1e�04
1

n

nX

k=1

����Xk �XS

����
2
. (25)

The reader may note that this is a guideline and one may use
smaller values of ✏ if they want. However, larger values of
✏ may not be advisable. We would like the reader to know
that a rigorous evaluation of the impact of the choice of this
value on the results needs to be conducted as future work but
at present, we do not see this as a big risk to this method.

We now examine the limiting conditions or � ! 0 and � !
1 which have been discussed with respect to En in (16) and
(17) respectively. Using the definition of � as given in (7),

lim
�!0

Pn(XS1, y) = lim
�!0

0

@
nX

j=2

X

k<j

1

||�(Xj �Xk)||2

1

A
�

 
X

k

1

||�Xk � �XS +XS � y||2

!

= 1. (26)

Using the same data-set and sweep parameters as in Figure
3, Figure 4 plots Pn vs. radius of baseline cluster for a fixed
test-point. In it, we notice the asymptotic behaviour of Pn

near infinitesimal baseline radius i.e., � = 0 as implied by
(26).

Figure 4. Semi-log plot for variation of Pn with baseline clus-
ter size, given a fixed test-point.

Since y is an n-dimensional point, Pn is a function of the dis-
tance r and several other variables related to the other degrees
of freedom. Thus, functionally, Pn may be written as

Pn(XS , y) = Pn(XS , r,D) where (27)

D represents the set of remaining degrees of freedom other
than r. While D represents the radial directional vector in
the high dimensional space with respect to XS , r indicates
position along that vector.

We now want to study the impact of r on Pn for any given D.

6
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Assuming XS to be a fixed baseline against which test-points
are compared, we can consider D and XS to be constants.
Hence, we have a simplified functional relationship as fol-
lows.

Pn(r) = Pn(XS , r,D). (28)

Thus, if we consider the space as a high dimensional ball, we
are studying the variation of Pn for points at different radial
distances along a given radial vector direction.

In Appendix B, we prove the following regarding the geomet-
ric properties for the function Pn() .

9 a finite r
⇤ such that 8 r > r

⇤
,
dPn

dr
> 0, (29)

lim
r!1

dPn

dr
= constant from (71), (30)

Pn(r) is finite 8 r < 1, from (72) and (31)
Pn(r) � 0 8 r from (73). (32)

Now, we examine the impact of increasing the spatial volume
of the baseline cluster. Following the proposition in (7), we
examine the impact of increasing �.

From (23), using the definition of � in (7),

Pn(XS1, y) = Pn

✓
XS ,

y

�
+XS

✓
1� 1

�

◆◆

) lim
�!1

Pn(XS1, y) = Pn(XS , XS) < 1 (33)

if all the dimensions of y are finite.

From (33), for large spatial volume of the baseline i.e., for
large values of �, Pn(r) will be finite unlike in (17) and in
Figure 3 where the E-statistic is seen to increase with increas-
ing � after a certain value and tends to infinity. Also, in Figure
4, we see that as the baseline cluster becomes progressively
larger thereby indicating a reduction in anomaly level, we see
a reduction of Pn to a value of 0 instead of the inflection seen
in Figure 3.

The variation of Pn with distance of test-point from base-
line centroid, for a few values of the baseline radius is shown
in Figure 5. It serves as a demonstration of the fact that as

Figure 5. Semi-log plot for variation of Pn with distance from
centroid, for different baseline sizes.

per (29), after a small initial value of r, Pn increases mono-
tonically with increase of distance of the test-point from the
baseline centroid. This is consistent with the fact that farther
the test point, the more anomalous it is.

We also observe from Figure 5 that the rate of increase of Pn

is less when the baseline cluster size is larger. This is because
for any fixed test-point, it will appear less anomalous when
the baseline cluster has a larger radius.

All of these observations are consistent with Pn being a valid
anomaly statistic. All the discrepancies observed in Figure
3 are addressed and Pn satisfies the requirements stated in
Section 3.1. The observations are further validated in Figures
6 and 7 where the P-statistic is used to evaluate the cases
earlier analysed in Figures 3 and 2. They show a much lower
P-statistic value for the case in Figure 7 where the test-point
is very close to the centroid X .

Figure 6. Baseline (blue) and test-point (red) with rb = 0.5
and Pn = 1636.5248

Figure 7. Baseline (blue) and test-point (red) with rb = 5.0
and Pn = 455.1863

The observations in this section establish that the variation
of P-statistic with baseline size and test-point distance is in
accordance with what is expected intuitively from an anomaly
metric. However, to fully establish its usefulness as a valid
anomaly metric, we should be able to compute a probability
density function (PDF) from this metric.

5. COMPUTATION OF PROBABILITY

5.1. Existence of a Valid Probability Measure using Pn

Let r represent the distance of the test-point from the centroid
of the baseline cluster. Also, in the space of real numbers, let

7
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R represent a single-dimensional random variable having a
density function fR from which the r-values are assumed to
be sampled. R has a range defined by

Range(R) = [0,1). (34)

Since R is a random variable, Z = Pn(R) is also a ran-
dom variable as the function of a random variable is itself a
random variable. Let fZ be the density function for Z and
z 2 Range(Z).

In Appendix B, it has been shown that Pn() is a continuous
function. Also, from (29), (30) and (32),

Range(Z) = [0,1) (35)

Thus, the domain and the co-domain of Pn() are both [0,1).

As mentioned in (Székely et al., 2004) and (3), for Pn(r) to
be a valid metric for anomaly detection,

P (Z > c↵) = ↵, 8 c↵ 2 Range(Z) and (36)
↵ 2 (0, 1), (37)

↵ being unique for every choice of c↵. (36) and (37) are char-
acteristics necessary for the existence of the cumulative den-
sity function (CDF) corresponding to the probability density
function fZ .

From (29) and (31), 9 r
⇤⇤ � r

⇤ such that

Pn(r) > Pn(r
⇤⇤), 8 r > r

⇤⇤ where (38)

Pn(r
⇤⇤) = max ({Pn(r)|r 2 [0, r⇤⇤]}) ,

= cmax (say), a finite quantity. (39)

These relations are true because r and r
⇤⇤ are all positive

numbers. Also, since probability is a non-negative quantity,
it may be shown that

min ({Pn(r)|r 2 [0, r⇤⇤]}) � 0. (40)

We now, analyse the behaviour of Pn(r) in two zones, i.e.,
c↵  cmax and c↵ > cmax. These are analysed as follows.

1. Case 1: c↵  cmax.

For any c↵ 2 [0, cmax],

P�1
n (c↵) = X↵ = {r|Pn(r) = c↵} . (41)

From (29), Pn(r) need not be strictly increasing or strictly
decreasing in nature if r  r

⇤⇤. Hence the set X↵ may
have more than one member as defined in (41). Since
c↵ < cmax, (39) tells us that all members of the set X↵

in (41) lie within the interval [0, r⇤⇤].

Let (X,⌃) and (Y, T ) be measurable spaces such that X
is a set comprising of all samples of R between 0 and r

⇤⇤.

X and Y are equipped with �-algebras ⌃ and T respec-
tively. Also, let Pn be a function from X to Y . Since
Pn(r) is strictly increasing for r > r

⇤⇤, max(X↵) de-
fined in (41) cannot be greater than r

⇤⇤ with c↵  cmax.
Also, by definition r � 0.

Hence, if we consider any open set of C consisting of val-
ues from [0, cmax], from (41), its inverse values P�1

n (C)
will map to the region [0, r⇤⇤]. None of it would lie out-
side of this. Mathematically, this may be written as

P�1
n (C) = {x|Pn(x) = C} 2 ⌃, for C 2 T

) Pn : X ! Y is a measurable function. (42)

Thus, Pn(R) is a valid choice for a random variable. We
can show that 8 c↵, 9 a unique values of ↵1

P (Pn(R) 2 [c↵, cmax] = ↵1 < P (R 2 [0, r⇤⇤]).
(43)

Also, from (29), P�1
n () is single-valued in for r > r

⇤⇤

and hence,

P (Pn(R) > cr) = P (R > P�1
n (cr)) = P (R > r) (say).

(44)

From (43) and (44), for r 2 [0, r⇤⇤],

P (Pn(R) > c↵) = P (Pn(R) 2 [c↵, cmax])

+P (Pn(R) > cmax)

= ↵1 + P
�
R > P�1

n (cmax)
�

= ↵1 + P (R > r
⇤⇤)

) P (Pn(R) > c↵) = ↵ 2 (0, 1) (say). (45)

In (45), ↵ is uniquely defined for any chosen value of c↵,
since ↵1 is unique as shown in (43).

2. Case 2: c↵ > cmax.

Since Pn(r) is monotonically increasing for r > r
⇤⇤,

P�1
n () is well-defined and single-valued. Hence, for any

c↵,

P (Pn(R) > c↵) = P (R > P�1
n (c↵))

= P (R > r) (say). (46)
) P (Pn(R) > c↵) = ↵ 2 (0, 1), (say). (47)

It must be noted that (46) could be written only because
P�1
n () is well-defined in the chosen regime which is r >

r
⇤⇤. In (47), ↵ is unique for every chosen value of c↵

since the CDF of R is well-defined.

From (45) and (47), it is seen that (36) is validated over the
entire range of the random variable Z = Pn(R). Thus, Pn()
is a valid metric for anomaly detection.
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5.2. Calculating p-value

In order to calculate the p-value, we need to first choose a
suitable form for the PDF f(x) that best represents the data
being analysed. Different parametric distributions may be
chosen for the PDF f(x). Since Pn(x) > 0 8 x from (32), we
assume that it is sampled from a standard half-normal distri-
bution with mean µ = 0 and standard deviation �. We can
write a standard half-normal variant of Pn as

pn = Pn/� and pn = |Z| where Z ⇠ N(0, 1). (48)

Here, � can be estimated as

� =

vuut 1

n

nX

i=1

(Pn(XS � {Xi}, Xi))
2
. (49)

Here, it must be noted that since XS is defined as a set of ran-
dom samples, XS � {Xi} represents the set subtraction op-
eration resulting in the complementary set obtained by elimi-
nating Xi from XS .

The p-value for the test-point y is

p(y) = 1� 2

Z pn

0
e
�t2/2

dt

= 1� erf
✓
pnp
2

◆
. (50)

An efficient computation of p(y) would need a compact ap-
proximation for the error function erf(x). For this purpose,
we use the Bürmann series expansion which converges quickly
for real values of x (Schöpf & Supancic, 2014). As explained
in (Dixon, 1901; Schöpf & Supancic, 2014), the error func-
tion may be approximated as

erf(x) ⇡ 2p
⇡

sgn(x)
p

1� e�x2 ⇥
✓p

⇡

2
+

31

200
e
�x2

� 341

8000
e
�2x2

◆
. (51)

From (50) and (51), p(y) may be approximated as

p(y) ⇡ 1� 2p
⇡

p
1�A

✓p
⇡

2
+

31

200
A� 341

8000
A

2

◆
, (52)

where

A = exp
✓
�p

2
n

2

◆
. (53)

We henceforth use the compact expression of p(y) in (52) in
all calculations going forward.

Figure 8 shows how the p(y) varies with distance from cen-
troid and also the baseline sizes using the same test-cases as
in Figure 5. We see that for any given test-point, the baseline
cluster having a bigger radius will imply higher p-value and

thus less chance of rejecting the null hypothesis. This is be-
cause the larger cluster would make the test-point appear less
anomalous.

Figure 8. Semi-log plot for variation of p(y) calculated in
(50) with distance from the baseline centroid, for different
baseline sizes.

5.3. Algorithm Steps and Computation Requirement

We can now summarize the steps involved in the computation
of pd(y) in Algorithm 1.

Algorithm 1: Computation of p-value from Pn

Input: Baseline cluster X
Output: p(y)
Data: Test-point y
Initialization: flag = 0
/* If baseline has not been characterized,

enter baselining phase */
1 if flag == 0 then

2 Xc = 1/n
Pn

k=1 Xk

3 A = 0 for j = 2 : n do

4 for k < j do

5 A+ = 1/ ||Xk �Xj ||2
6 ↵ = 0
7 for i = 1 : n do

8 B = 0
9 for j = 1 : n do

10 if j 6= i then

11 B+ = 1/ ||Xj �Xi||2
12 Pn(Xi) = A/B � 1

13 ↵+ = (Pn(Xi))
2

14 Estimate �̂ =
p
↵/n.

15 Save �̂.
16 flag = 1

17 else
/* Estimate p-value for test point */

18 From (23), calculate Pn(y) for the test-point y.
19 pn = Pn/�̂ // Transform Pn to pn.

20 Calculate p(y) from (50).

9
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5.4. Comparison of P-statistic with Mahalanobis Distance

Since in this paper we are trying to formulate and establish a
new statistical metric for anomaly detection, it would be inter-
esting to see how it performs with respect to the Mahalanobis
Distance (MD) which is one of the established classical tech-
niques in this domain. The questions we are trying to answer
at this stage are the following.

1. Is there a one-to-one correspondence between MD and
pn ? Or, does every value of pn corresponds to one and
only one value of MD ?

2. Is it possible to estimate MD from pn for different di-
mensions of the data-points and different physical sizes
of the baseline clusters ? By answering this question, we
are trying to figure out if tribal knowledge about what
constitutes anomaly in terms of MD for a particular ap-
plication can be translated to the domain of the P-statistic.

Let us represent the Mahalanobis Distance (MD) (Mahalanobis,
1936) of test-point y with respect to baseline cluster sampled
from the random variable X as M(y,X). Thus,

M(y,X) =
q
(y �X)TS�1(y �X) where (54)

the d dimensions of y and X are represented along the rows
and S is the covariance matrix of the cluster sampled from X .
We now examine the relationship between pn and M(y,X)
in an empirical fashion by varying different parameters of the
synthetic data-set designed in (14).

Similar to Figure 8, we sweep the distance of test-point from
baseline centroid and calculate M(y,X) and pn for each po-
sition. Finally, the MD values corresponding to each value
of pn are plotted for comparison in Figure 9 for two different
values of baseline radius. Also, we assume different values
of dimension d in (14) and for each value of d, we define a
baseline cluster X and test-point y as in (14). For each d

and a given baseline radius, Figure 10 shows the relationship
between pn and M(y,X).

Figure 9. Relationship between pn and M(Y,X) for different
values of baseline radius.

From Figures 9 and 10, pn is linearly related to the Ma-
halanobis Distance and the relationship holds good for dif-
ferent dimensions of the problem-space. Thus, any thresh-

Figure 10. Relationship between pn and M(Y,X) for dif-
ferent values of dimension d and a given baseline radius of
0.5.

old in M(y,X) can be translated to a corresponding thresh-
old in pn by utilizing the linearity of the curves in Figure
10. This enhances the confidence that an existing threshold-
based alerting strategy that depends on values of Mahalanobis
Distance may be translated to an equivalent P-statistic-based
one. Hence, the pn-value in (48) and the corresponding p-
value calculated in (50) can be used effectively for anomaly
detection.

6. PERFORMANCE ON REAL-LIFE DATA

For verifying the performance of the P-statistic, we take the
Breast Cancer Data-set available publicly in the UCI Ma-

chine Learning Repository (Dua & Graff, 2017). We use
the version embedded inside Python’s scikit-learn package
and load it using the native python command. For details on
how to load and use the data-set, please check scikit-learn
documentation (Scikit-learn breast cancer data-set, n.d.).

6.1. Data Description

This data-set consists of features computed from a set of fine
needle aspirate (FNA) images of breast masses from a set of
patients along with the ground-truth of the diagnosis i.e. ma-
lignant or benign. The characteristics of cell nuclei in the
image are described in this data-set. There are a total of 30
features per image with more detailed descriptions available
in (Dua & Graff, 2017). The feature matrix is shaped 357⇥30
and in the label vector, 0 represents malignant and 1 repre-
sents benign.

In order to visualize this high dimensional data, we use t-
distributed Stochastic Neighbourhood (tSNE) (Maaten & Hin-
ton, 2008) to calculate a 2D embedding of the data so that it
can be plotted as a 2D scatter plot and examined manually
for proximity between data-points and clusters. Before ap-
plying tSNE, each of the feature columns are normalized to
extend from 0 to 1. Figure 11 represents the two clusters of
data available in this data-set. The subsequent analysis has
now been performed on this 2-D embedded version of this
data-set so that results can be visually related to the cluster
neighbourhood behaviour.
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Figure 11. tSNE embedding of the malignant and benign
clusters in the breast cancer data-set from UCI ML repository

6.2. Analysis with P-statistic

We now consider 40 % of the benign cluster as the training
baseline and the remaining points in the benign and malignant
groups as test set. We now use the steps summarized in Algo-
rithm 1 to estimate the p-values for all the data-points in both
benign and malignant clusters in the test set with respect to
the training baseline. Figures 12 and 13 show the P-statistic
and Mahalanobis Distance respectively, for all these points.
From these, we see that the capability for discrimination be-
tween the baseline and anomalous data are similar for both
the approaches.

Figure 12. P-statistic for benign and malignant data-points.

Figure 13. Mahalanobis Distance for benign and malignant
data-points.

In order to compare the discrimination capability between
these two metrics analytically, we plot the true positive rate
vs. false positive rate with varying detection thresholds (ROC
curve) in Figure 14. When calculating this ROC curve the be-
nign and malignant labels are considered negative and posi-
tive respectively. We can see that the curves are nearly over-

lapping indicating that the P-statistic is as effective as the
Mahalanobis Distance in classification tasks as visible from
this data.

Figure 14. ROC curve for P-statistic and Mahalanobis Dis-
tance

7. SOME OBSERVATIONS ON COMPUTATION TIME

7.1. Test Setup and Limitations in Field

Since one of the premises on which the choice of energy-
based distance was made was that of computation simplicity,
we analyse the computation requirement for training and in-
ference separately in this section for both P-statistic and MD.
We notice from (24) and (54) that the bulk of the computation
happens during training time when model parameters are be-
ing computed from the baseline cluster XS . However, the
inference phase has less computation to perform and is likely
to have similar computation time for both P-statistic and MD.
We henceforth focus our attention on the training time.

Since many field deployed Data Acquisition (DAQ) systems
like edge devices and protection relays are likely to be de-
ployed without a live internet connection, having the training
done in a cloud-based infrastructure and the trained model
transferred to these devices may not be feasible. Hence, any
algorithm that would reduce training computation require-
ment would be advantageous as these devices are usually chal-
lenged in terms of computation power.

It must be noted that the analysis in this section is conducted
on a CPU-based windows machine without parallel process-
ing. It has 16 GB RAM and an i5 processor from Intel. No
GPU is available. This is a valid test scenario because field-
deployed industrial DAQ systems are not likely to have GPUs
making massive parallel processing difficult to implement.

7.2. Computation Time Analysis

A practical industrial system cannot wait till the entire base-
line of a desired size is accumulated before producing results
as it might take a long time for an industrial machine to cap-
ture baseline samples from all possible operating conditions.
After each new data-point is received, the baseline cluster pa-
rameters are expected to be computed incrementally based on
the calculations of the previous stage and comparison run on
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the new baseline thus obtained.

The block of computation that needs to happen during base-
line computation phase is all that which can be done on the
baseline XS alone and without the test-point y being avail-
able.

From (24), the training computation for P-statistic calcula-
tion is limited to calculating the numerator N (say) as

N =
nX

j=2

X

k<j

1

||Xk �Xj ||2
. (55)

For the jth update step, Nj may be written incrementally as

Nj = Nj�1 +
X

k<j

1

||Xj �Xk||2
with (56)

N0 = 0.

For any such step, the computation time is written as TP .

Similarly, for computing the MD value in (54), the training
computation block may be defined by the following compo-
nents.

1. X: Centroid of baseline cluster.

2. S�1: Inverse of the covariance matrix for the input dataset.

From the above steps, only the centroid can be computed in-
crementally. Since it is not very straightforward to write the
covariance matrix in an incremental fashion, we have to re-
compute the covariance matrix after each step. The inversion
needs to be repeated any way. Let the computation time be
TMD for each of these update steps.

We consider a baseline distribution as one defined in Figure
6. Only now, the dimension d is considered more than 2 and
a variable. We assume that the data-points arrive serially and
compare computation times TP and TMD for a single update
step with a new data-point given an already existing baseline
size. Figure 15 shows how these two compare against each
other for varying baseline sizes and values of the dimension
d.

Figure 15. Time taken (ms) for a single incremental update
step when using P-statistic and MD, plotted for different al-
ready existing baseline sizes

For any baseline size along the x axis in Figure 15, the vari-
ability in CPU loading is accounted for by computing the
times as an average of those calculated for 20 random choices
of the baseline cluster from the data-set defined above. The
CPU time has been calculated by using time ns() function
from the time package in Python before and after each code
block during execution and taking the difference to be the
computation time for that segment.

For a given existing baseline size, the ratio of the two timings
is now plotted against the dimension in Figure 16.

Figure 16. Comparison of TP and TMD for different data
dimensions for a given baseline size.

From Figures 15 and 16, we have the following observations

1. Time taken for incremental baseline computation for MD
is more than that of the P-statistic after each update step.

2. MD calculation time scales up much more with data di-
mension than the P-statistic computation. Thus, the ad-
vantage offered by P-statistic is more pronounced for
data of high dimensions.

This demonstrates the computation advantage which is claimed
by energy-based distances over Mahalanobis Distance.

8. CONCLUSION

In this paper, we have reviewed the energy distance, a dis-
tance metric proposed in literature and shown to have simpler
computation than most classical distance metric. We have
shown that this metric possesses several shortcomings which
prevent it from being applied in a practical anomaly detection
application. We have proposed a modified metric called P-
statistic which works on distributions of Euclidean distances
just like the energy distance. Using a synthetic data-set, we
show that the above shortcomings are overcome by this modi-
fied metric. We have taken an example real-life data, the UCI
breast-cancer data and shown that the P-statistic and the Ma-
halanobis Distance have similar performance as a discrimina-
tion metric, as shown by an almost overlapping ROC curve.
We have also demonstrated that computation times for Ma-
halanobis Distance calculation are higher than those for P-
statistic when computed in an incremental fashion with each
new data arrival. Specially, we have seen that P-statistic of-
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fers pronounced advantage with data having high dimension.
Thus, we conclude that it is feasible to use this metric for an-
omaly detection without losing discrimination performance,
at the same time utilizing the simpler computation that en-
ergy distance based methods offer.
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A. LIMITING CONDITIONS OF E -STATISTIC

From (2) and (7),

En(X
0

S(�), y) =
2

n

nX

i=1

||�(Xi �XS) +XS � y||2

���

n2
where (57)

� =
nX

i=1

nX

j=1

||Xi �Xj ||2 < 1. (58)

) lim
�!0

En(X
0

S(�), y) = 2||XS � y||2 < 1. (59)
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Also, from (57),

lim
�!1

En = 2

✓
lim
�!1

�

n

◆ nX

i=1

||Xi �XS ||2 �
�

2n

!
(60)

Now,

||Xi �XS ||2 =
1

n

����

����nXi �
nX

j=1

Xj

����

����
2

=
1

n

����

����
nX

j=1

(Xi �Xj)

����

����
2

>
1

n

nX

j=1

||Xi �Xj ||2

>

nX

j=1

1

2n
||Xi �Xj ||2.

)
nX

i=1

||Xi �XS ||2 >
�

2n
from (58).

))

 
nX

i=1

||Xi �XS ||2 �
�

2n

!
> 0 (61)

From (60) and (61),

lim
�!1

En(X
0

S(�), y) = +1. (62)

Here, the reader should note that it was necessary to prove the
relationship in (61) to establish whether the above-mentioned
limit was +1 or �1. If the term on the LHS in (61) was
negative, the limit in (62) would be �1 and not +1.

B. SOME GEOMETRICAL PROPERTIES OF P -STATISTIC

Let y(d) be the value of the dth coordinate of the test-point
y in the D-dimensional space. We assume that y is situated
at a distance r from the origin. Since we are studying the
impact of r alone on the values of Pn for any given radial
direction, we may assume, without any loss of generality, that
the coordinate system is oriented in such a manner that

y(d) =

⇢
r, for d = 1,
0, for d = [2, 3, ..., D].

(63)

From (24), Pn(r) may be written as

Pn(r) = ↵

� nX

k=1

1

sk
where (64)

↵ =
nX

j=2

X

k<j

1

||Xk �Xj ||2
and

sk = ||Xk � y + ⌧ ||2

=

vuut(Xk(1) � r + ✏)2 +
DX

d=2

X
2
k(d)

=
q
||Xk||22 + (r � ✏)2 � 2(r � ✏)Xk(1).(65)

Here, Xk(d) is the value of the dth coordinate of the point Xk

which is D-dimensional in nature.

From (64) and (65),

dPn

dr
= �↵

 
X

k

1

sk

!�2X

k

d

dr

✓
1

sk

◆

= ↵

 
X

k

1

sk

!�2X

k

1

s
2
k

dsk

dr

= ↵

 
X

k

1

sk

!�2X

k

r �Xk(1) � ✏

s
3
k

. (66)

From (66), there exists r⇤ > Xk(1) + ✏ 8 k such that

dPn

dr
> 0 8 r > r

⇤ since ↵ > 0 and sk > 0 8 k. (67)

Also, from (66),

lim
r!1

dPn

dr
= lim

r!1
↵

X

k

r �Xk(1) � ✏

s
3
k0

@ 1

sk
+
X

j 6=k

1

sj

1

A
2

= ↵

X

k

✓
1� lim

r!1

Xk(1) + ✏

r

◆�⇣
lim
r!1

sk

r

⌘

0

@1 +
X

j 6=k

lim
r!1

sk

sj

1

A
2 (68)

Now, from (65),

lim
r!1

sk

r
= lim

r!1

s

�2 �
2�Xk(1)

r
+

✓
||Xk||2

r

◆2

= lim
r!1

�, where � = 1� ✏/r.

= 1. (69)
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Also, from (65),

lim
r!1

sk

sj
= lim

r!1

s
||Xk||22 + (r � ✏)2 � 2(r � ✏)Xk(1)

||Xj ||22 + (r � ✏)2 � 2(r � ✏)Xj(1)

= 1. (70)

From (68), (69) and (70),

lim
r!1

dPn

dr
= ↵

X

k

1

�0

@1 +
X

j 6=k

1

1

A
2

= ↵/N , a constant, (71)

since ↵ is a constant. Here N is assumed to be the number of
elements in the cluster XS .

A few other points about the nature of Pn(r) that need to be
mentioned here are

8 r < 1, Pn(r) < 1 since ↵ < 1 and sk < 1.

(72)
and

Pn � 0 8 r since ↵ > 0 and sk > 0 8 k. (73)
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