Predictive Maintenance using Incipient Fault Detection
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
One focus of the Industry 4.0 paradigm is to enable Smart Factories with improved productivity and reduced down-times. In this context, Predictive Maintenance (PM) is a proactive approach to industrial services that optimises maintenance actions based on the system’s health. In order to monitor and understand the system’s status, effective PM requires dedicated tools capable of managing a large amount of data and discern the right data set required for analysis. As an aid for engineers, the software called MADe can be used. MADe is a model-based platform that can optimise maintenance actions following the information provided by the software itself, concerning sensor selection and functional models. In particular, among many others, MADe incorporates functionalities for incipient fault detection, which may be extremely useful when monitoring systems comprising fatigue or aging sensitive components. In fact, early fault detection enables scheduling of maintenance that will minimise the impact on production outputs. Owing to these considerations, this paper describes a technique for detection of incipient faults components affected by fatigue using an Equivalent Damage Index (EDI). This technique is tested on data taken from the literature in order to verify its potentials.
How to Cite
##plugins.themes.bootstrap3.article.details##
Anomaly Detection, Incipient Failure, Residual Life Estimation, CBM, PHM, MADe, Industry 4.0, Smart Factory
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.