
 1 

A Hybrid Model for on-line Detection of Gas Turbine                   

Lean Blowout Events 

Matteo Iannitelli1, Carmine Allegorico2, Francesco Garau3 and Marco Capanni4 

1,2,3,4Baker Hughes, a GE Company, Firenze, 50127, Italy 

matteo.iannitelli@bhge.com 

allegorico.carmine@bhge.com 

francesco1.garau@bhge.com 

marco.capanni@bhge.com 

 
ABSTRACT 

Modern dry low NOx combustors can target very low 

emissions levels by operating at a lean air/gas ratio. 

However, ultra-lean combustion is extremely susceptible to 

thermoacoustic combustion instabilities and Lean Blowout 

(LBO), which can lead to large pressure oscillations in the 

combustor and decreased durability of components.  

Conventional on-board diagnostics embedded in the Unit 

Control Panel (UCP) of a Gas Turbine (GT), continuously 

check the health status of the combustion section at a high 

scan rate and raise alarms when abnormal conditions occur. 

While ensuring protection and control, UCP control logics 

may not provide precise indications on the nature of the 

issue and further troubleshooting, also using specific tools, 

is typically required. 

In a changing environment where Industrial Internet of 

Things (IIoT) is offering a chance to drive productivity and 

growth, online Monitoring and Diagnostic (M&D) software 

and services on connected units are becoming strategic to 

increase asset availability and reliability, as well as reducing 

maintenance costs. 

In this paper, we present a hybrid analytic, which combines 

physics-based and data-driven models, for the detection of 

Lean Blowout conditions on Gas Turbines equipped with 

Dry Low NOx multi-can combustion system. Regarding the 

data-driven model, we face a problem of classification and 

exploit dimensionality reduction to reduce the number of 

variables under consideration. During the development, 

different techniques are tested and benchmarked. 

The analytic is trained on real LBO events and finally is 

deployed in a production environment to process incoming 

on-line data acquired from monitored units. Obtained results 

are presented.  

1. INTRODUCTION 

Rotating equipment and in particular gas turbines are often 

among the most critical items in Oil&Gas plants serving 

various applications, such as Liquefied Natural Gas (LNG), 

pipeline, refinery and petrochemical.  

Today, one of the most important aspects for the operators is 

to ensure the highest level of availability of the engine 

during its entire life-cycle. Unscheduled shutdown of the 

gas turbines can have impact on the whole plant downtime 

with associated significant loss of production. 

In this era of connected devices, plants operators often rely 

on connecting the most critical assets to remote diagnostic 

centers to support fast troubleshooting and optimization of 

operations & maintenance. A typical M&D workflow can be 

described as follow: data from on-board sensors is 

continuously stored in remote and/or local databases/cloud; 

the quality of the acquired sensors is checked; various 

analytics automatically process the incoming data to detect 

deviations from the expected behavior and to calculate asset 

performance KPIs; in the event that anomalies are 

identified, a dedicated analysis is started with subject matter 

experts and operators, and corrective actions are provided to 

site (Ozgur et al., 2000). 

Baker Hughes, a GE company, implements a similar 

approach for its monitored fleet, consisting of more than 

1000 rotating equipment. This large number of asset 

requires that all the analytics running in production have a 

high detection rate and low false positives. Furthermore, a 

continuous improvement process is required to sustain the 

fleet growth and to increase the detection capabilities. 

Given the critical nature of this context, the ability to 

promptly detect potential anomalies and provide robust 

diagnosis with corrective actions in few hours is one of the 

major challenges facing M&D today and is mission-critical 

for all operators. The key factors that determine the 
Matteo Iannitelli et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution 3.0 United States 

License, which permits unrestricted use, distribution, and reproduction 

in any medium, provided the original author and source are credited. 



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018 

2 

effectiveness of the M&D service are: deep knowledge of 

the assets, quality of data and analytics performance. 

2. THE LEAN BLOWOUT EVENT 

Starting from 1970s, when the emission controls were 

originally introduced (Pavri & Moore, 2001), Countries 

regulations have pushed the GT manufacturers to design and 

develop combustors capable to meet emission requirements.  

Regulations on pollutants, have become increasingly severe 

over time and technology moved from systems based on 

water/steam injection to Dry Low NOx (DLN) technology 

(Davis & Black, 2000). Nowadays modern combustors can 

target single digit NOx and CO emissions, with ultra-lean 

premixed combustion in very narrow air/fuel equivalence 

ratio. However, ultra-lean combustion is extremely 

susceptible to thermoacoustic instabilities and lean blowout 

phenomenon. 

In heavy duty gas turbines equipped with DLN multi-can 

combustors, LBO manifests itself with partial or complete 

flame-out of one or more combustion chambers and can lead 

to different consequences, based on the severity of the 

causes that activated it. Incipient LBO can randomly occur 

and disappear without significant impact on gas turbine 

operation, e.g. during load or combustion mode transients 

(Rebosio et al., 2011), or can take place with complete 

flame-out and consequent unscheduled engine stop. The 

latter results in an unavailability of the gas turbine, with 

accelerated degradation of parts and eventually loss of 

production. 

Potential sources of LBO have been identified in variation 

of the fuel gas composition, wrong fuel split, improper 

operation/tuning of control components, instrumentation 

failure or shift in calibration and issues of the combustion 

hardware. 

Tuning of the DLN system, i.e. optimizing the fuel streams 

distribution in the combustion chambers over the whole 

operating range, is therefore required to find the best trade-

off between emissions level, margin from LBO and 

acceptable level of dynamics. Even if the DLN system is 

properly tuned, extreme changes in ambient condition (in 

general any factors impacting the fuel/air ratio) may 

potentially impact the emissions or reduce the LBO margin 

(Muruganandam et al., 2005). 

When a severe LBO event occurs, the control system 

automatically shuts down the engine for “High Exhaust 

Spread” or “Loss of Flame”. However, clear evidences of 

LBO and the related corrective actions cannot be provided 

without the implementation of specific detection algorithms. 

The alarms generated by the control system in these cases 

are not very effective for the troubleshooting activity, with 

consequent impact on the time required to figure-out and 

correct the issue. Under these circumstances, the availability 

of a remote monitoring service can be extremely useful. 

3. METHODS 

Modern science and engineering is historically based on the 

usage of physics-based models, which are usually developed 

during the design phase of complex systems. The biggest 

advantage of using physics-based models is that they are 

based on physical equations and provide a sufficient 

explanation of the problem under analysis. Unfortunately, 

these models require substantial engineering time to be 

developed and in some cases, accurate models cannot be 

obtained due to complex or unknown physics of the system. 

On the other hand, the recent exponential growth of data is 

supporting the development and the diffusion of new 

approaches purely based on data. These data-driven models 

are built more easily by collecting measurements recorded 

over the operating range of the system, and relationship 

between the sensor measurements are learned or embedded 

in the model architecture through mathematical techniques. 

Peculiarity of these data-driven models is that they are only 

accurate in the learned space, so if the system operation 

changes significantly, the model is forced to extrapolate and 

the result cannot be trusted. 

The combination of data-driven and physics-based models is 

called hybrid modeling. This hybrid framework, if well 

designed, has the advantage of exploiting the strengths of 

both methodologies resulting in much better overall 

performance (Hines et al., 2008). 

In this paper we present a hybrid approach, where the 

challenging task of detecting LBO signatures in operational 

data is demanded to a data-driven model to simplify the 

modeling approach; then the results are further validated by 

a physics-based block, designed on the observations of real 

LBO events. 

3.1. Feature Engineering 

The feature engineering process is a fundamental step of the 

development of any intelligent analytic. It consists in 

transforming raw data into usable set of predictors (features) 

that better represent the underlying problem and make the 

machine learning algorithms work. Since each problem is 

domain specific, the selection of the best features is often 

the deciding factor of the resulting performance. 

For the problem of detecting lean blowout events of gas 

turbine combustors, the measurements of the thermocouples 

at the exhaust section, operating parameters and other 

calculated variables must be considered. In this work, the 

feature engineering process consisted in selecting the 

minimum number of predictor variables for the model 

development. A further simplification of the problem was 

then obtained by applying techniques of dimensionality 

reduction.  

In statistics, the dimensionality reduction is a strategy that 

allows to convert data from high dimensional space to low 
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dimensional space. The most popular methods are Principal 

Component Analysis (PCA) and Linear Discriminant 

Analysis (LDA). Both methods were used to achieve better 

model's performance, reducing the risk of overfitting and 

improving computational efficiency. 

3.2. Dimensionality Reduction Methods 

The Principal Component Analysis is a statistical procedure 

that uses an orthogonal transformation to convert a set of 

observations of possibly correlated variables into a set of 

values of linearly uncorrelated variables called principal 

components. The PCA transformation aims to find the 

directions of maximum variance within a high-dimensional 

dataset, and projects these directions into a new orthogonal 

subspace Z with dimensions k equal or lower than the 

original space (typically k<<p). The principal components 

of the new subspace Z can be interpreted as the directions of 

maximum variance along which the observations vary the 

most. All subsequent major components have the highest 

possible variance, since they are not correlated to the other 

main components as they are orthogonal. The PCA 

technique is widely used in various fields, mainly in 

exploratory data analysis to reduce the dimensionality of a 

high-dimensional problem, and for making predictive 

models by increasing computational efficiency and reducing 

the degree of overfitting. 

Similarly to PCA, the Linear Discriminant Analysis (LDA) 

is a statistical method that looks for linear combinations of 

variables which best explain the original dataset. The main 

difference from the PCA is that, under certain assumption, 

LDA uses the class information, when already present in the 

training dataset, to maximize the separability between 

classes. Therefore, LDA analysis, if compared to PCA, is a 

superior technique for extracting features in a classification 

task (Duda, Hart and Stork, 2001).  

3.3. Classification 

In machine learning and statistics, classification is the 

problem of classifying examples into given set of categories 

based on past observations. Today, many classification 

techniques, or classifiers, are available in literature. Some of 

these are: Logistic Regression, Artificial Neural Networks, 

K-Nearest Neighbors, Decision Tree and Support Vector 

Machines (James et al., 2013). In this work we investigated 

Logistic Regression and Decision Trees.  

Logistic regression algorithm is one of the most widely 

known algorithms for classification of linear and binary 

problems and, with appropriate techniques, it can also be 

extended to problems of multiclass classification. In a 

binary classification problem, where the response y falls into 

one of two categories, 0 or 1, logistic regression uses the 

logistic or sigmoid function 𝑔(𝑧) =
1

1+𝑒−𝑧  to predict the 

probability that y belongs to a particular category. 

Unlike other classification algorithms, decision tree models 

divide the original dataset by learning decisions based on 

the answers to a series of questions. Decision trees try to 

solve the problem by using a tree representation, where each 

internal node of the tree corresponds to an attribute 

(feature), and each leaf node corresponds to a class label. 

The process starts from the root of the tree and recursively 

divides the data according to the feature that produces the 

best split. The recursion is completed when all the samples 

in a node belong to the same class, or when further splitting 

no longer adds value to the predictions. In practice, this can 

produce a very deep tree with many nodes, which can easily 

generate overfitting if not properly controlled with 

appropriate techniques. Nevertheless, the biggest advantage 

of the decision tree algorithms, is that they are simple to 

understand and interpret (Raschka, 2015). 

4. DESIGN AND DEVELOPMENT 

The analytic presented in this work is designed for heavy-

duty gas turbines with DLN multi-can combustion system. 

As previously explained, LBO events may occur abruptly 

and may last even a few seconds. This requires the analytic 

to run on operational data with sampling frequency of at 

least one second. 

If a LBO event occurs, as the combustor loses the flame, the 

gas/air mixture continues entering the combustion chamber 

with reduced or absent burning taking place, thus producing 

two immediate consequences: load reduction and arise of a 

cold spot in the Exhaust Gas Temperature (EGT) profile. 

The magnitude of the power loss will depend on the load 

level that the gas turbine was delivering just before the 

event, and on the severity of the event itself, e.g. partial or 

complete flame-out of one or more combustion chambers. 

The distortion of the EGT profile, typically involves more 

than one thermocouple (TC) reading, as also shown by 

Allegorico and Mantini (2014). In fact, the number of 

thermocouples of these gas turbines is around twice the 

number of combustors, thus it follows that multiple adjacent 

readings showing deviations can be indicative of a real 

combustion issue. An example of distorted EGT profile can 

be seen in Figure 1, where the blue dashed line shows the 

normal operation, while the red line shows the cold spot 

area typical of a LBO event.  

From above observations, it can be deduced that the 

detection of LBO events requires at least the identification 

of the following patterns:  

• substantial power drop, in terms of absolute value 

and first derivative. Depending on engine 

application (generator or mechanical drive), 

measurements necessary are the electrical power or 

the shaft speed.  
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• asymmetric EGT profile showing a cold spot area, 

with at least two TCs readings colder than the 

average temperature. 

• high spread (i.e. maximum – minimum) among the 

EGT, as direct consequence of the cold spot.  

 

 
Figure 1 - Blowout effect on EGT profile 

As already explained, the hybrid model presented here is 

composed of two parts: one physics-based and the other 

data-driven. The physics-based model detects the sudden 

drop of power by verifying that the accounted power loss 

and its backward finite difference are below certain 

(negative) thresholds, which have been derived from the 

analysis of real LBO events. The second part instead, is the 

data-driven classifier, which detects the presence of cold 

spots and high spread in the EGT profile. This data-driven 

model has been trained over real data taken from known 

blowout events. The entire code has been developed with 

Python language and the predictive models have been built 

with the scikit-learn library for machine learning 

(Pedregosa et al., 2011). 

4.1. Data-driven classifier 

The availability of large amount of data is an important 

factor when building data-driven models; however, in real-

world applications, positive events may be a limited number 

(Allegorico & Mantini, 2014).  To overcome this problem, 

sometimes additional data can be generated using artificial 

data synthesis methods (Surendra & Mohan, 2017). 

For the training and testing of our data-driven classifier, we 

exploited M&D data opportunely selected from about 20 

real events of variable length, ranging from 15 seconds to 6 

minutes. The sampling rate of these datasets was 1 sample 

per second. 

The categories to be classified are two: fault-free and 

blowout. For most classifiers, a better performance is 

achieved if the training dataset is balanced among the 

classes. Even if the availability of data is much higher for 

the first category, we manually selected a number of fault-

free samples comparable to those including blowout 

signature.  

As discussed in section 3.1, when setting a classification 

problem, one of the first steps is the features selection. 

Based on the failure signature that has been described in 

Section 4, we selected the following set of four 

measurements for the detection of cold spot and high spread 

conditions: 

- the lowest TC reading and its two adjacent TCs; 

- median of the spreads calculated subtracting the 

maximum temperature and the four lowest ones.  

This set of four variables is the outcome of an iterative 

process based on the analysis of the results of different 

classification tests and which proved to be the most 

representative and robust. 

Since instrumental failures may compromise model results 

and generate fault alerts (e.g. broken thermocouples get 

negative full-scale values), we used a set of standard 

algorithms of data pre-processing, currently implemented in 

our M&D systems, to detect any potential instrumental 

issue. Example of checks performed are the signal range, 

excessive noise or signal freeze: all unreliable samples are 

excluded from calculations. 

Before model training, data is standardized subtracting the 

mean from each feature and then dividing the value of each 

feature by its standard deviation. Standardization is useful to 

not get conditioned by the feature magnitude while 

computing model parameters. After this step, a split 

between training and test dataset is performed. Considering 

the volume of data, we decided to keep 80% of dataset for 

training and remaining 20% for testing purposes.  

At this point, dimensionality reduction techniques are 

applied and benchmarked, specifically the Principal 

Component Analysis and the Linear Discriminant Analysis. 

By applying PCA to the training dataset, it came out that the 

first two principal components retain about 96% of the 

entire problem variance. Hence, it was convenient to reduce 

the original 4-dimensional space R4 to a 2-dimensional 

space R2, without significant information loss. 

The score plot of Figure 2 shows the projection of the data 

onto the first two PCs, where the green round markers 

represent normal conditions, while the red stars are the 

blowout conditions. For classification purpose, a linear 

decision boundary could be enough accurate to separate the 

two categories. To this purpose, we used the logistic 
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regression and the decision tree algorithms, described in 

Section 3.3. 

 

Figure 2 - Dataset transformed in bi-dimensional space 

using PCA. 

For the implementation of the first method, the scikit-learn 

class called LogisticRegression was used with its standard 

parameters: first order polynomial decision boundary, 

default value for the regularization parameter λ, and the 

“liblinear” optimization solver, which implements a 

conjugate gradient method (Fan et al., 2008).  

For the decision tree model, we selected the information 

entropy as the criterion to measure the quality of a split, and 

tuned the minimum samples per split and the maximum 

depth of the tree to avoid overfitting.  

As explained before, we also implemented the LDA method 

to reduce the dimensionality of the problem. To make sure 

that the hypothesis under which LDA is applicable are valid, 

data was double-checked for outliers and a good balance 

between classes samples was ensured. The dimensionality 

of the LDA output is expected to be the number of problem 

classes - 1: since we are handling a binary classification 

problem, the output is mono-dimensional. 

 

Figure 3 - Dataset transformed in mono-dimensional space 

using LDA. 

Projection of the samples in the output space is shown in 

Figure 3, where green round markers represent the normal 

class, while the red stars are the blowout samples. The two 

sets are vertically offset for a better visualization. 

The separation between the two categories is quite evident. 

By setting the threshold x = -2 as a separation boundary, we 

got only one sample wrongly classified. 

5. RESULTS ON REAL DATA AND IMPLEMENTATION 

The three data driven models, PCA + Logistic Regression 

(LR), PCA + Decision Tree (DT) and LDA + threshold (th) 

were validated on real M&D operational data. 

Purpose of the validation was to check if each sample is 

correctly placed in the right class; performance results are 

summarized in a confusion matrix (James at al., 2013). For 

this purpose, we used several batches of data, sampled 1 per 

second, containing real blowout events. Results obtained for 

each of the three models are shown in the confusion matrix 

of Table 1. 

  Target 

 Prediction Blowout Normal 

PCA + LR 
Blowout 17.2% 1.5% 

Normal 0.6% 80.7% 

PCA + DT 
Blowout 17.6% 0.5% 

Normal 0.2% 81.7% 

LDA + th 
Blowout 17.2% 0.1% 

Normal 0.6% 82.1% 

Table 1 - Confusion Matrices, percentages of the total 

amount of data 

A deeper analysis of these results revealed that most False 

Negatives (FN), namely the blowout observations classified 

as normal (lower left of each submatrix), were due to some 

samples wrongly labelled during the manual selection of the 

training data. In particular, some portions of the test dataset 

are transient’s data and they could neither be categorized as 

“normal”, nor as “blowout”. Instead, the False Positives 

(FP), namely the normal samples predicted as blowout 

(upper right of each submatrix), are due to the wrong 

labelling of the samples near the blowout event and the 

improper classification of other combustion issues different 

from LBO. 

Some additional metrics, precision and recall, are also 

calculated. Precision measures the probability that an event 

selected by the classifier is relevant (true), while recall 

represents the classifier capability to retrieve a relevant 

(true) event. They are defined as follows: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
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𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

A combination of them is the metric F1-score, which is the 

harmonic mean of the two, formulated as: 

𝐹1 = 2 ·
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

In this study we avoided using the accuracy metric, which is 

defined as the ratio between well-predicted and overall 

cases, since a predictive model may have high accuracy, but 

be useless (Valverde-Albacete & Peláez-Moreno, 2014).  

The overall metrics are reported in Table 2 and show that 

LDA + th model is the better candidate to build the hybrid-

model, since it gives slightly better performance.  

 Precision (%) recall (%) F1-score (%) 

PCA + LR 92.2 96.6 94.3 

PCA + DT 97.2 98.7 97.9 

LDA + th 99.7 96.7 98.2 

Table 2 - Precision, recall and F1-score for the three 

methods. 

The final hybrid-model, which results from the aggregation 

of the physics-based and the data-driven part, is then 

validated by verifying that the algorithm is able to correctly 

detect some known LBO events. Purpose of this diagnostic 

analytic is to raise an alarm when a LBO event is detected; 

to avoid repeated alarms, the alert is triggered only if all the 

conditions are verified for at least 5 seconds. An example of 

a successful catch is in Figure 4, which shows respectively 

the EGT readings, calculated spreads, power and shaft 

speed, classifier output and hybrid model output. Note that a 

failed thermocouple (TC) is identified and the LBO event 

lasts less than 10 seconds. 

The final hybrid-model, tested on all real available LBO 

events, proved capable of capturing all cases without false 

positives, and it achieved following performance: 100% 

precision TP/(TP+FP) and 0% False Discovery Rate 

FP/(FP+TP). 

The analytic was finally deployed on a proprietary platform 

to run on the on-line operational data acquired on all gas 

turbines under monitoring. Since this analytic has to process 

a huge amount of data, to maximize computational 

resources we implemented a cascade architecture, where in 

the upper layer a simple code uses 1-minute data to check if 

the turbine is running, and only under such condition the 

blowout analytic is executed on faster data (1 per second).  

 

Figure 4 - Blowout event and its identification 

 

6. CONCLUSIONS 

Nowadays, monitoring and diagnostic of gas turbines and 

other critical equipment is getting growing importance in 

the industry. An effective M&D service can only be 

possible by merging together the knowledge of subject 

matter experts and intelligent analytics in a single workflow. 

Within this context, the analytic presented in this work has 

been designed to enable the quick identification of the lean 

blowout phenomenon which occurs on modern gas turbines 

equipped with Dry Low NOx multi-can combustion system. 

The advantages of such analytic are: 

• speed up and simplify troubleshooting activities; 

• catch the events that could remain undiscovered. 

The latter typically allows corrective and preventive actions 

to be taken more effectively; in fact, about 15% of the 

observed LBO didn’t cause a machine unscheduled stop, 

since the combustor was able to relight and the unit 

continued running: recognizing the phenomenon in this 

condition would have been extremely difficult. 

To build this capability, a hybrid model has been developed 

and it consists of two main components: a physic-based 

model and a data-driven model. The first model checks the 

occurrence of a power drop, while the second one uses a 

machine learning classifier to detect blowout signatures in 

the EGT profile. Training and testing data are properly 

selected from a proprietary database of known cases of 

combustion blowout. The classification problem is solved 



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018 

7 

by firstly reducing the dimensionality of the problem, and 

then implementing a classifier algorithm. Three different 

methods have been tested: PCA + Logistic Regression, PCA 

+ Decision Tree and LDA + threshold. It was demonstrated 

that the last approach is the one giving slightly better 

performance, so it was selected to be implemented, together 

with the physics-based model, in the M&D platform. 

Appropriate precautions have also been taken to manage 

any problems of data quality and to avoid overload of 

computational resources due to the amount of data being 

processed. 

Future research focuses on the identification of blowout 

causes, which could lead to further acceleration of the 

current troubleshooting process, and on the use of this 

technology for the control and optimization of gas turbine 

combustion. Possible enhancements of this analytic will 

probably require the use of additional sensors, such as 

combustion chamber pulsations, CO and NOx emissions 

and other. Another improvement could be the use of the 

swirl angle to automatically identify the combustor chamber 

affected by blowout.  
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