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ABSTRACT 

This paper presents results on applying deep neural networks 

to analysis of images from borescope inspections of large tur-

bofan engines, carried out in the field. Such inspections are 

done as a part of routine monitoring and maintenance as well 

as an initial, investigative response to alerts from automatic 

monitoring systems, pilots or engineers. Across GE’s com-

mercial engines fleet, a substantial number of images have 

been gathered this way. The deep learning techniques that 

have come out of computer vision and machine learning re-

search in the last decade offer new possibilities for analyzing 

and mining such data collections. This paper presents initial 

results on separating borescope images from images created 

with regular digital cameras, as well as classifying images 

containing various engine parts, with average accuracy of 

95% and 77%, respectively, on unseen validation data. 

1. INTRODUCTION 

Borescope inspections are vital in the monitoring and mainte-

nance of jet engines and other industrial assets. They allow 

visual inspection of parts inside the engine, without disas-

sembly of the engine, by inserting a fixed or flexible probe, 

at the end of which is a camera and a light source. They are 

very similar to endoscopes, that are used e.g. for medical pur-

poses, such as investigations of the human gastro-intestine 

tract. Figure 1 shows an example of a commercial borescope 

system. In addition to allowing an immediate view inside the 

engine undergoing inspection, most borescopes will allow the 

operator to ‘take a picture’ saving the current borescope view 

as a digital image. This is useful to document the current con-

dition of the engine as well as any problems found and may 

aid in planning any remedial actions required. 

GE Aviation is one of the world’s leading manufacturers of 

jet engines and there are currently tens of thousands of GE 

Aviation engines in operation around the world. GE Aviation 

is also involved in a lot of the monitoring, maintenance and 

repair of these engines. Borescope inspections are undertaken 

by GE Aviation field service engineers and other staff, and 

over the years, GE Aviation has accumulated a considerable 

amount of borescope images (BIs). These image collections 

contain information that could potentially be used to better 

understand how engines are affected by day-to-day opera-

tions and the normal deterioration processes that set in over 

time. Thus, GE Aviation is working on developing methods 

for extracting useful information from collections of BIs. 

In the last decade, important developments at the intersection 

of machine learning and computer vision has led to dramatic 

improvements across a range of learning tasks. Based on es-

tablished machine learning models known as neural net-

works, the new generation of deep convolutional neural net-

works has delivered ground-breaking improvements on vis-

ual processing tasks. Computers are now able to successfully 

distinguish between objects from over thousand categories in 

just a fraction of a second. These developments have been 

driven by the availability of low-cost, high-performing 

graphic processing units, mass-produced for home entertain-

ment devices such as games consoles, as well as dedicated 

software libraries for building and experimenting with deep 

neural networks that can exploit such hardware. 

 

Figure 1 An example of a borescope showing the main unit 

with display and controls along with the flexible probe that 

is inserted into the engine. 
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This paper presents the first results on applying deep neural 

networks in the analysis of BIs collected in the field. Two 

initial tasks are being considered: 

1. Separation of BIs and digital photographs. This is 

being driven by the fact that GE Aviation’s current 

collections of engine images are not fully labelled 

and there is a considerable number of images for 

which we do not know whether they originate from 

a borescope inspection or from another source.  

2. Recognition of key parts in the engine hot section. 

While part recognition is desirable for all engine 

sections, the hot section is a natural starting point, 

since it is being inspected more frequently than any 

other engine sections and thus constitutes the largest 

amount of training data. The reason for this is that 

the hot section is subject to the highest temperatures 

and pressures in the engine, and many of its parts 

have a limited lifespan. 

These tasks represent the initial building blocks for an image-

based condition monitoring system. A system that ultimately, 

given images from an engine, would be capable of producing 

statistics that summarise aspects of the health of that engine 

in a meaningful way, e.g. the location and degree of wear of 

various engine parts. 

The next section provides a review of deep convolutional 

neural networks. Section 3 describes the data we used in our 

experiments, experiments that are described in detail in the 

following section, before conclusion and discussion.  

2. DEEP CONVOLUTIONAL NEURAL NETWORKS 

Neural networks have been subject to research bridging biol-

ogy, neuroscience, computer science and statistics over the 

last 60 years. Their popularity has varied over the years, but 

the last decade has seen a surge of interest following signifi-

cant advances with architectures known as deep neural net-

works. This has been brought about, in part, by advances in 

hardware and software, as well as the use of crowdsourcing 

for producing large, labelled data sets. 

2.1. Neural Networks 

Neural networks (Bishop 2006) are general, parameterized 

non-linear regression models. They owe their name to simi-

larities between their underlying computational model and 

processes assumed to occur in networks of connected neurons 

in the human brain. A neural network consists of a set of com-

putational units (‘neurons’) organized in layers, with 

weighted connections between units in different layers (but 

typically no connections between units within a layer). Each 

unit forms the weighted sum of the outputs from the previous 

layer; the result is either output directly or transformed using 

some kind of non-linear transfer function, such as the tanh-

function. Units in the first layer act as inputs to the network 

and simply replicate their input on their output. A simple neu-

ral network is illustrated in Figure 2. With an input value fed 

to the inputs of the network, computation can proceed one 

layer at the time, eventually producing values on the outputs 

of the units in the output layer; this procedure is referred to 

as forward propagation.  

The weights of the connections between layers form the ad-

justable parameters of a neural network. Given a data set of 

input value and matching, desired output values, the weights 

can be adapted by forward propagating input values through 

the network and then compare the output that the network 

produces with the corresponding desired output, using some 

suitable error measure (e.g. sum-of-squares error in case of 

least squares regression). This error can then be propagated 

back through the network, from outputs to inputs to produce 

a gradient with respect to each weight in the network, a pro-

cedure known as back-propagation. These gradients can be 

used to adjust the weights in order to reduce the total error 

over the data set. This adaption of the weight parameters is 

sometimes referred to as learning or training, highlighting 

analogies with learning in the human brain, but can also be 

understood as adjusting the weights to maximize the likeli-

hood of the data used for training under the model. 

2.2. Convolutional Neural Networks 

It has been proven that the neural networks discussed in the 

previous section are universal function approximators 

(Bishop 2006), i.e. they can in principle learn any mapping 

between inputs and outputs, given a sufficient number of hid-

den units and training data. However, relying on this theoret-

ical property will rarely work in practice for hard problems 

Figure 2 An illustration of a simple neural network with 

an input, an output and, in between, a hidden layer. The 

arrows between the layers represent the weighted connec-

tions between the units, with the arrows indicating the di-

rection of the forward propagation. 
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such as object recognition. It has long been understood that 

tackling such problems is more likely to succeed if the net-

work structure can exploit structure present in the data. The 

prime example of this is image data. The pixels in an image 

get their meaning not just from their own RGB/grayscale val-

ues, but also from the values of neighbouring pixels. Simi-

larly, local patches of pixels often form patterns that carry 

meaning in the context of patterns in neighbouring local 

patches. It is this property of image data that is being ex-

ploited in convolutional neural networks (CNNs) (LeCun, 

Boser, et al. 1989) (LeCun, Bottou, et al. 1998).  

Figure 3 shows an illustration of a simple convolutional neu-

ral network. The units in each hidden layer are organised into 

feature maps, typically with a common shape and size, 

matching the shape of the preceding layer. Units in convolu-

tional feature maps take their inputs from a patch of units in 

the preceding layer and all the units in one feature map uses 

the same weights for the connections to their respective 

patches. As in conventional neural networks, each unit forms 

the weighted sum of its inputs. In effect, the feature map at 

this stage equals the convolution of the input ‘image’ and the 

discrete spatial filter defined by the connection weights. The 

weighted sums are typically then transformed using some 

kind of non-linearity; deep CNNs often use the computation-

ally attractive rectified linear units (ReLU) (Krizhevsky, 

Sutskever and Hinton 2012). Normally, a layer of convolu-

tional features maps is followed by a corresponding subsam-

pling layer, in which ‘patches are mapped to pixels’ by means 

of some sort of aggregation, such as averaging or computing 

the mode or the maximum over the patch. Convolutional fea-

ture maps act as detectors of local patterns, the output of 

which is then smoothed by the following subsampling. CNNs 

can contain multiple such paired convolution-subsampling 

layers. The last hidden layer, before the output layer, is typi-

cally fully connected to the preceding layer and the following 

output layer, with no internal, spatial structure (as the hidden 

layer in Figure 2). 

                                                           
1 See e.g. www.tensorflow.org, http://deeplearning.net/software/theano/, 

http://caffe.berkeleyvision.org/.  

2.3. Deep Convolutional Neural Networks 

While CNNs have featured in the machine learning literature 

for almost 30 years, it is only in the last decade that these 

models have found more widespread use. Several develop-

ments, that have to some extent happened in parallel, have 

contributed to this. In the early–mid 2000s, neural network 

research focussed on successfully training networks with 

multiple hidden layers, known as deep neural networks, 

started to yield results (Hinton, Osindero and Teh 2006) 

(Bengio, et al. 2007). Although these results did not in them-

selves have a direct impact on how CNNs are trained, they 

stimulated research into training deep CNNs (Krizhevsky, 

Sutskever and Hinton 2012), i.e. CNNs with more layers than 

had been used previously. The creation of large labelled im-

age databases, such as the ImageNet database (Deng, et al. 

2009), which contains millions of labelled images, has meant 

that there are now sufficient data to train also very large mod-

els, with millions of weights. At the same time, hardware ca-

pable of delivering the necessary computational power to 

train large neural networks on large data sets has become af-

fordable. This was initially driven by demand for home 

games consoles and gaming PCs, but now there is a consid-

erable market for hardware dedicated to (e.g.) train and use 

large neural network models. Another, more recent develop-

ment is the availability of free, high-quality, cross-platform 

software libraries1 that significantly eases the building, train-

ing and evaluation of deep CNNs. Finally, the idea of transfer 

learning (Yosinski, et al. 2014), means that learning tasks 

where only more moderate amounts of labelled data are read-

ily available can still be attempted using deep CNNs. The 

idea is to reuse models that have been trained on ‘general’ 

tasks, such as general object recognition, and re-train these 

models by adapting only a subset of the network weights, typ-

ically those connecting to the final, fully connected layer. The 

part of the network that is left unchanged in effect act as an 

Figure 3 An illustration of a convolutional neural network; see text in Section 2.2 for details. 

http://www.tensorflow.org/
http://deeplearning.net/software/theano/
http://caffe.berkeleyvision.org/
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advanced feature extractor, yielding a representation of the 

image data that is suitable for the learning task at hand.  

3. IMAGE DATA  

GE Aviation has large collections of images from its fleets of 

different engines. These collections mostly contain BIs, but 

there is a substantial proportion of digital photographs, most 

of which have been collected when engines have come in for 

visits in workshops. Images are generally stored as they were 

collected, without any additional processing. As is the case 

with collections of general images, there is substantial varia-

bility across these engine images, e.g. in terms of lighting, 

viewpoint and engine condition.  

For the experiments reported below, we used images col-

lected from the GEnx fleet. Images were rotated, cropped, 

resized and transformed as necessary to obtain a data set of 

23186 320×240 JPG images. However, during subsequent 

data exploration work, it was established that among these 

images were a significant number of duplicates and there 

were also images that had no relationship to jet engines, so 

that the actual number of distinct, relevant images ended up 

being closer to 18800. 

While the images have associated annotations in various 

forms (meta-data, image filenames, etc.), there is no estab-

lished system by which images of a particular kind or show-

ing a particular engine part can be readily identified. It would 

thus be useful to develop analytic modules for automatically 

and consistently labelling images, e.g. according to the type 

of image or the engine part shown in the image. These would 

become initial links in a chain of increasingly sophisticated 

analytic modules forming an image-based condition monitor-

ing system. 

4. EXPERIMENTS 

In this section, we consider these two applications of deep 

CNNs to engine image data, for the purpose automatic image 

labelling.  

4.1. Borescope Images vs Digital Photographs 

The first task we try to address is the separation of BIs and 

digital photographs, collected by handheld digital cameras, 

including tablets and mobile phones. While human observers 

can relatively easily learn to distinguish these two kinds of 

images with a high level of accuracy, it is difficult to develop 

a general, algorithmic solution to this problem. This is one of 

the hallmarks of a problem where supervised machine learn-

ing techniques can provide a solution, provided a sufficient 

labelled data is available. 

While images may not have dedicated labels immediately 

available, many images carry ‘markers’ that reliably identify 

them as either BIs or digital photographs. The most promi-

nent example is found with BIs collected using GE produced 

borescopes. Many of these BIs feature the GE monogram in 

the top or bottom left hand corner of the image, as shown in 

the example images in Figure 4. The placement of the mono-

gram as well as its spatial pattern and colours are all highly 

consistent across images where it appears, making it rela-

tively straightforward to apply a simple correlation test with 

a corresponding template to determine whether the mono-

gram is present in either one of the two possible locations. If 

it is, the image can be labelled as a BI. Another feature that 

was found useful for labelling images was the original reso-

lution of the image (before it was cropped and resized as de-

scribed in Section 3); images that have a resolution of more 

than 2000 pixels either horizontally or vertically will be as-

sumed to originate from a digital camera. Finally, some of the 

raw source images come with Exif meta-data (Wikipedia 

contributors n.d.) that explicitly named the camera make and 

model; where present, these invariably identified known dig-

ital cameras or borescopes.  

Using these ‘markers’ to label images, we ended up with 

12165 BIs, 3016 digital photographs and 3624 images that 

did not meet the criteria for labelling and hence remained un-

labelled. The labelled data was divided into training and val-

idation sets as detailed in the bottom row of Table 1. This 

division was done such that the images from any one engine 

all ended up in either training or validation data. Finally, the 

images were cropped to a size of 290 × 180, excluding the 

regions potentially containing the GE monogram. The result-

ing data were used to build and evaluate a CNN for the task 

of separating BI and digital photographs. This CNN was rel-

atively small and shallow by today’s standards. It used a se-

quence of two identical blocks, each containing a 3 × 3 × 32 

convolutional layer with ReLU activation, followed by a 

2 × 2  max-pool layer; these were followed by a similar 

block, but where the convolutional layer had shape of 

3 × 3 × 4; finally, there was a flat, fully connected layer with 

32 ReLU activated units feeding the (single) logistic output 

unit. The size of the final convolutional layer as well as the 

number of units in the fully connected layer was determined 

by experimentation, while monitoring the performance on 

validation data. We also experimented with using different 

degrees of regularisation and drop-out (Krizhevsky, 

Sutskever and Hinton 2012); for results reported below, we 

only used drop-out at a rate of 0.5 for the final, fully con-

Figure 4 Two example BIs showing the GE monogram 

in the bottom-left (left image, also showing a fuel noz-

zle) and top-left (right image, also showing two high-

pressure turbine blades) corners of the images. 
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nected layer. We used Keras (Chollet and others 2015), run-

ning on top of Tensorflow (Abadi and others 2015), to build, 

train and evaluate the model. 

Figure 5 shows receiver operating characteristics (ROC) 

curves for this model evaluated on training and validation 

data; corresponding confusion matrices are shown in Table 1. 

ROC curves and confusion matrices are established ways of 

presenting and assessing the performance of classifiers 

(Fawcett 2006). An ROC curve shows the trade-off between 

the fraction of correctly classified positive data (true positive 

rate or TPR) and the corresponding fraction of incorrectly 

classified negative data (false positive rate or FPR). It is ob-

tained by varying the threshold used to separate positive and 

negative data, based on the probability of a datum being pos-

itive output by the classifier. The ideal classifier would have 

a TPR of 1.0 for an FPR of 0.0, with the corresponding ROC 

curve following the left and top axis of the ROC plot. A clas-

sifier that randomly picks its output according to the fraction 

of positive and negative data (known as the base-rate or no-

information-rate) would have an expected ROC curve (in the 

case of infinite data) in the shape of a 45° line from the lower-

left to the top-right corner. An ROC curve can be summarised 

in a single scalar by computing the area under the curve 

(AUC). The ideal classifier would have a AUC of 1.0 

whereas a base-rate classifier would have an expected AUC 

of 0.5. A confusion matrix provides an alternative, tabular 

summary of the performance of a classifier. Rows and col-

umns in the table correspond to predicted and true classes, 

respectively. The entry in the mth row and nth column indicate 

the number of data of class n that were classified as class m. 

The ideal classifier would thus only have non-zero entries 

along the main diagonal of the table. Dividing a diagonal el-

ement by the sum of the elements in the corresponding col-

umn yields a quantity known as recall for the corresponding 

class, which equals the TPR. Dividing the same element by 

the sum of the elements in the corresponding row yields what 

is known as the precision for the class. Dividing the sum of 

all the diagonal elements by the sum of all elements in the 

table gives the average accuracy. 

From Table 1, we see that the average accuracy on the vali-

dation data is >95%, but predictions are more accurate on BIs 

than on digital photographs. We also used the trained CNN 

to generate predicted labels for the unlabelled images; while 

the lack of actual labels meant that no quantitative evaluation 

could be done, from visual inspection of some of the images 

and their predicted labels, it seemed the error rate would be 

somewhat higher. This is not unexpected, since the unla-

belled images deviated from the labelled images in certain 

ways (e.g. the imaging device used), so the CNN has to ex-

trapolate from the training data to a certain degree to generate 

the predicted labels. This does suggest that manually label-

ling of at least some of the unlabelled data could improve the 

generalisation capabilities of the model. 

 

Figure 5 ROC curves for the CNN separating BIs and digital 

photographs. The curve corresponding to the training data 

(solid) has an AUC of 0.994 while the curve corresponding 

to the validation data (dashed) has an AUC of 0.985. 

Table 1 Confusion matrices for the CNN separating BIs and 

digital Photographs for training and validation data. The 

bottom row shows the distribution of BIs and digital Photo-

graphs across training and validation data. 

 Training  Validation 

 BI Ph  BI Ph 

BI 8480 105  3445 114 

Ph 158 2035  82 762 

Total 8638 2140  3527 876 

 

Attempts were also made to retrain the final, fully connected 

layer of an instance of the VGG16 deep CNN (Simonyan and 

Zisserman 2014) on this task. However, these attempts failed 

to produce a model that was significantly better than the no-

information-rate (~80.0%, the fraction of borescope images 

in the data). This was a somewhat surprising result, but only 

a limited amount of effort was spent experimenting with this 

model, so it cannot be regarded as conclusive. At the same 

time, it may well be that the VGG16 model, which was de-

veloped to distinguish between 1000 of real world object cat-

egories may not provide useful features to separate BIs and 

digital camera photographs. It turned out to be more useful, 

however, in the task we tackled next.  

4.2. Engine Part Recognition 

The second task we considered was the detection of engine 

parts in BIs from the hot sections of the engine (combustor 

and high-pressure turbine); this section of the engine is ex-

posed to the highest level of stress in terms of temperatures 
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and pressures and is therefore subject to borescope inspec-

tions more frequently than other sections.  

For this task, automatic labelling was not a viable option, due 

to the limitations of the existing labelling information, and so 

we resorted to manually labelling 7098 images. However, ex-

isting labels, explicit and implicit (e.g. through file names), 

were used to aid the manual labelling. 2376 images were 

found irrelevant or too difficult to label with sufficient cer-

tainty and were hence excluded. Each image was labelled 

with one of the following labels: 

• Mixer 

• Combustor 

• Fuel Nozzle (an example is shown in the left image 

of Figure 4) 

• High-Pressure Turbine Blade (HPT Blade; an exam-

ple is shown in the right image of Figure 4) 

• Other 

The first four categories correspond to parts in the hot section 

of the engine whereas the last is a catch-all category for im-

ages of other parts of the engine, not necessarily from the hot 

section. It should be noted that these categories are not com-

pletely mutually exclusive. Fuel nozzles feed into the com-

bustor and so BIs of fuel nozzles will inevitably also contain 

part of the combustor; the labelling policy used was to label 

an image as Fuel Nozzle whenever one or more fuel nozzles 

were clearly visible in the image while all other images from 

the combustor were labelled Combustor. The data was di-

vided into training and validation sets in the same way as de-

scribed in the previous section, yielding the division shown 

in Table 2. 

As engine part recognition is a specific object recognition 

task, we took the approach of retraining the final, fully con-

nected layer of an instance of the VGG16 deep CNN 

(Simonyan and Zisserman 2014). In practice, this meant 

propagating training and validation images through a trun-

cated version of the VGG16 model and storing the outputs of 

the last layer before the final, fully connected layer. This 

stored data was then used to train a conventional neural net-

work, similar to the one illustrated in Figure 2 with 384 hid-

den units and 5 softmax output units. We used a drop-out rate 

of 0.5 to reduce the risk of overfitting. We also trained a sim-

ple generalised linear model (GLM) (Bishop 2006) that used 

spherical Gaussian basis functions centred on randomly cho-

sen images from the training data. While this is clearly too 

simple a model for such complex task, it is useful as a straw-

man model for gauging the performance of the CNN. For 

both models, values for the parameters controlling the model 

complexity were determined experimentally using the perfor-

mance on the validation data. 

Table 3 contains confusion matrices, with corresponding pre-

cision and recall figures, for both models on training and val-

idation data. From these, it is clear that the CNN does better 

than the GLM, which is not surprising given that the GLM is 

not able to exploit the spatial structure of the image data in 

the same way as the CNN. Comparing to the no-information-

rate of 28% (Combustor), both demonstrate better accuracy, 

CNN at 77% and GLM at 49%, evaluated on the validation 

data. For both models, there is a difference in the perfor-

  Training Validation  

Mixer 353 145 

Combustor 937 385 

Fuel Nozzle  836 342 

HPT Blade 758 310 

Other 466 190 

Table 2 The distribution of part recognition data across 

training and validation sets. 

Table 3 Confusion matrices for engine part recognition. 
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mance on training and validation data, which raises the ques-

tion whether there is a degree of overfitting to the training 

data by the models. This possibility is certainly there, and fu-

ture work will investigate this further using more training 

data and/or more elaborate validation schemes.  

5. CONCLUSION AND DISCUSSION 

The primary objective of this effort is to enable borescope 

imaging to become an integral part of the engine’s digital 

thread, through in-situ, automated measurement of key com-

ponent condition. In this paper we have described the initial 

steps towards achieving this aim by the application of deep 

CNNs to the analysis of borescope images. We have shown 

that it is possible to discriminate between borescope images 

and ‘standard’ digital camera photographs, which was neces-

sary to rationalise the historical data set under investigation. 

Secondly, we have demonstrated the feasibility of engine part 

identification from individual borescope images, for certain 

hot section components. 

In the short term, there are several directions along which this 

work will continue. An obvious step is to expand the current 

effort using historical data from other GE Aviation engine 

lines, for some of which there are considerably more data 

available. This will not only enable further verification of our 

current approach but should also allow recognition to be ex-

panded to additional, and possibly more detailed levels of 

parts. Whilst the current approach will detect whether an en-

gine part is present somewhere in an image, a significant ad-

vancement would be if it could also indicate where in the im-

age the part has been detected. Here there are different possi-

ble approaches, ranging from providing a bounding box 

around the part, to pixel level segmentation. The latter ap-

proach has already been successfully applied using fully con-

volutional neural networks to segment regions of degraded 

thermal barrier coating (TBC) in images of jet engine turbine 

blades (Bian, Lim and Zhou 2016). However, they were using 

images of blades that had been removed from the engine and 

mounted in a dedicated imaging rig (i.e. not BIs). If similar 

results could be obtained from BIs collected in the field, it 

would pave the way for more advanced analysis and use of 

BI data, allowing it to be integrated in a digital approach to 

engine monitoring, maintenance and management. Extract-

ing extent and severity of TBC degradation, for example, pro-

vides an indicator of component condition that can readily be 

understood in engineering terms and, if necessary, acted 

upon. BIs also provide snapshots of engine condition over its 

lifetime and the information contained could be used, assum-

ing it can be extracted in a suitable form, in conjunction with 

information from other sources, as validation points for ‘dig-

ital twin’ models of engines (Biba 2017). This would allow 

                                                           
2 Colored neural network uk.svg, contributed by Glosser.ca, https://com-
mons.wikimedia.org/wiki/File:Colored_neural_network_uk.svg. 

 

an ongoing ‘calibration’ of physics models with real data, 

which we can then adapt and learn from. 
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