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ABSTRACT 

Turnouts play a central role in the railway infrastructure 
since they enable increased network capacity and allow for 
minimal impact of train delays. Their performance is of 
paramount importance for infrastructure managers, who face 
large maintenance cost in order to secure proper turnouts 
operability. Railway turnouts are complex mechanical 
systems, whose dynamic performance depends on the health 
state of the different components of the superstructure and 
substructure. A key component is the ballast as it provides 
the elastic support to the track and the sleepers and it largely 
contributes to the safety and reliability of the infrastructure. 
Ballast degradation can be a root cause of excessive failures 
in other components. A track recording car is typically used 
to collect geometry data that is used to assess the quality of 
the railway tracks; however this type of data has not been 
widely used for ballast quality evaluation in turnouts. One 
reason is that maintenance decision for turnouts are 
dominantly made based on visual inspections and/or manual 
measurement of track geometry, as turnouts are significantly 
more complex that traditional railway track.  This study 
presents the application of fractal dimensioning of track 
longitudinal level for the monitoring of ballast degradation 
in railway turnouts. In other words, the irregularities of the 
track vertical profile related to the ballast degradation are 
quantified as a ballast quality index. The ballast quality 
index is the basis for developing ballast degradation models 
in different sections of the turnout based on a segmentation 
scheme. Using track geometry data of 88 turnouts in the 
Danish railway network for the period 2012-2017, this study 
develops and compares ballast degradation models based on 

regression analysis and stochastic processes (lognormal and 
Gamma processes). The models are estimated for different 
sections of the single turnout, for different turnouts at 
distinct geographical locations. The proposed method 
provides an efficient tool for the analysis of the effect of 
tamping on ballast degradation rate. Moreover, the effects 
on ballast degradation of track loading rate, train speeds and 
seasonal changes of weather conditions are quantified. 
  

1. INTRODUCTION  

Track geometry degradation is a major hindrance for safety, 
availability and ride quality. Modelling track degradation is 
an indispensable part of a track maintenance support system 
and is essential for prognostics function of predictive 
maintenance.  

During the last three decades, a number of track geometry 
degradation models have been developed to predict the 
railway track geometry condition (Ferreira & Murray, 1997; 
Soleimanmeigouni, Ahmadi, & Kumar, 2016).  With respect 
to the level of detail, Ferreira & Murray (1997) divide track 
models into three categories: microscopic models (involving 
detailed engineering analysis), deterioration models 
(involving condition forecasting based on engineering 
judgement) and macroscopic models (involving network 
analysis, investment and maintenance support system).  

The approaches used for modelling track geometry 
degradation are classified into mechanistic/physical and 
statistical models (Soleimanmeigouni et al., 2016). 
Mechanistic models are based on modelling of the 
mechanical interactions of track components and usually 
make no use of geometry data (Zhang, Murray, & Ferreira, 
2000). A major barrier towards the practical application of 
mechanistic models for track degradation forecasting is the 
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high level of required details. In the face of uncertainty of 
the track behavior, missing only one influencing factor can 
give rise to a model generating invalid results.   

On the other hand, statistical models by employing concepts 
from probability theory and statistical estimation can 
address uncertainty of track degradation more efficiently. 
Moreover developments of technology and methods for 
track geometry measurement as well as integrated data 
collection systems have favored the statistical modelling 
approach.  

The successful application of the statistical approach 
requires having a proper measure to quantify track quality or 
track degraded level. The majority of studies use standard 
deviation of track longitudinal level as the track quality 
measure to be used for triggering preventive tamping 
actions (UIC, 2008; Vale & Lurdes, 2013; Andrade & 
Teixeira, 2015; Soleimanmeigouni et al, 2018). Other 
quality numbers based on a combination of geometry 
parameters with speed and lack of super elevation (Veit and 
Wogowitsch, 2002; Lyngby, 2009) however can be found in 
literature.  

Identifying the factors that can influence the track geometry 
degradation is an essential part of degradation modelling. 
The significant factors studied in the literature are train 
speed, axle load, wheel quality (flats and shells), number of 
past tamping operations (maintenance actions aiming at 
restoring the quality of the ballast layer), weather condition 
(temperature, precipitation), type of rail, pads, sleepers and 
ballast, imperfections in the rail surface (corrugations, 
joints, welds, defects), and subgrade stiffness (Sato, 1995; 
Ferreira & Murray, 1997; Iwnicki, Grassie, & Kik, 2000; 
Lyngby, 2009; Guler, 2014). According to Andrade & 
Teixeira (2011), the initial quality of track in switches can 
also affect its degradation rate. Specific to turnouts, the 
discontinuity of rail in the switching or in the crossing 
sections can generate high impact forces that, in turn, can 
lead to accelerated ballast degradation.  Based on unstressed 
measurement of track geometry in 13 turnouts, Jönsson et 
al. (2016) showed the geometry of turnouts on the straight 
main track to have a vertical elevation tendency towards the 
mid-section. 

Currently, the monitoring of track geometry is performed by 
measuring geometry parameters 3-4 times per year with an 
average of approximately 100-day time intervals. Therefore, 
the problem of forecasting ballast degradation rate in the 
next 100 days is of relevance for railway infrastructure 
managers. The aim of this study is to propose a model for 
forecasting ballast degradation in the next coming 100 days.  

1.1. Significance and Contribution 

The current study performs a comprehensive investigation 
of the track geometry evolution in 88 turnouts of the Danish 
railway network. It proposes a statistical approach for 

ballast degradation modelling in the turnouts. The paper 
contributes to the scientific field by proposing an integrated 
methodology for ballast degradation modelling in turnouts. 
The advantage of this methodology is two-fold. First, it is 
the first turnout-focused study that uses fractal 
dimensioning as a validated technique to monitor the health 
state of the ballast based only on vertical track geometry 
profile. Moreover, the effects of different influencing factors 
on the ballast degradation rate are examined by a regression 
model. Second, it proposes a Bayesian updating scheme to 
provide information on the type and the parameters of the 
probability distribution function best fit to the ballast 
degradation rate in turnouts. The Bayesian updating allows 
integrating the prior knowledge of ballast degradation in 
turnouts with the new information collected for a specific 
turnout. This is especially important for building predictive 
models for ballast degradation which helps railway 
infrastructure managers in the transition to a predictive 
maintenance strategy.  

The rest of the paper is organized as follows. Section 2 
presents the methodological steps for the development of 
the ballast degradation model in turnouts. Section 3 presents 
results of ballast degradation modelling and Bayesian 
updating. The paper ends in Section 4 with main findings 
and conclusions. 

2. BALLAST DEGRADATION MODEL 

This section presents the methodological steps for the 
development of the ballast degradation model in turnouts. 
Figure 1 provides a schematic overview of the overall 
proposed method by illustrating the path from raw data 
(turnout longitudinal level) to ballast degradation model. At 
the first step, the time-series data available for the turnouts 
are preprocessed to ensure their spatial alignment. Next, the 
fractal method is applied to calculate the time-series of 
fractal2, an index for ballast degradation over time.   Then 
the degradation rate of the ballast is calculated as the slope 
of the best straight line fitted to the time-series of fractal2 
(referred to as deltafractal2). Having deltafractal2 
calculated for all the turnouts under study, a prior 
probability distribution function (pdf) is fitted. The 
candidate pdfs are Weibull, Gamma and lognormal 
distributions. Moreover, a multiple linear regression 
modelling is used to estimate the effects on deltafractal2 of 
different contributing variables like the number of past 
tamping, maximum permissible train speed; passing million 
gross tons (MGT), the weather condition (seasonality, 
temperature and precipitation), the current degraded state of 
the track geometry, the current degraded shape of the 
turnout, the type of the turnout and also the section of the 
turnout. Finally, the information generated by the regression 
modelling is used to update the prior distribution to a 
posterior distribution of the deltafractal2, which can be 
utilized as a leading indicator for ballast degradation rate in 
turnouts.  
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Figure 1: Ballast degradation model development 

2.1. Data alignment 

Each turnout has been measured several times over the years 
2012-2017 (3-4 measuring campaigns each year). The track 
recording car can enter the turnout from two directions and 
the turnout’s divergent track can be on the left or right side. 
For the track recording car going into the straight track, this 
introduces 4 types of time-series data as shown in Figure 2. 
To simplify data analysis, all the time-series data are 
reconfigured to be type 1.  In the type 3 configuration, the 
rail sides are switched. In the type 5, the direction of the 
data is reversed and rail sides are switched and in the type 7, 
the direction of the data is reversed. If a switch of the rails is 
performed, the sign of specific variables are changed based 
on the definition of the variables discussed in (Fongemie 
and Jensen, 2017) and (DIN Standards Committee Railway, 
2008).  

 
Figure 2: Definition of turnout type 

The track recording car uses a GNS (Global Navigation 
Satellite) system for establishing the spatial position of the 
time-series data. Due to measurement uncertainty small 
spatial shifts occur in the time-series data from campaign to 
campaign within the same turnout. Therefore spatial 
alignment is performed as described in  Hovad et al. (2018). 
A two steps procedure is performed to align the data: first a 
“within turnout alignment algorithm” followed by a 
“between turnout’s alignment algorithm”. The “within 
turnout alignment algorithm” uses the cross-correlation 
function (CCF) to perform a date to date aligment within the 
individual turnout’s removing the small spatial shifts. The 
“between turnout’s alignment algorithm” is based on a peak 
in the track gauge parameter monitored at the crossing nose 
position. An overall spatial position of this peak is 
determined as the average position of the peaks from all the 
turnout’s. This overall peak is used as a reference point to 
which each turnout is aligned (Figure 3). For some of the 
turnout’s the peak in the track gauge was not present. The 
cross-correlation function is used in a similar way to “the 
within turnout alignment algorithm” to align these 
remaining turnouts.  

 
Figure 3: The alignment of the track recording car time-
series data, a) un-aligned sample data, b) aligned data 

2.2. Fractal analysis of track vertical profile 

Fractal analysis is used to characterize irregular geometry 
patterns and to quantify patterns that are seemingly chaotic 
and random (Mandelbrot, 1983). Fractal analysis has proven 
potential to obtain useful information about the substructure 
condition of the track by meaningfully quantifying the 
vertical-profile geometry patterns (Hyslip, 2002; Landgraf, 
Hansmann and Marschnig, 2014; Vidovic, Landgraf & 
Marschnig, 2017). For details of fractal dimensioning and 
its calculation procedure the interested readers are referred 
to the above references.  
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Applying the fractal method to railway track geometry data 
includes calculating the roughness of the geometry signal 
for different wavelength regions. According to Hyslip 
(2002) the track vertical geometry profile has two orders of 
roughness, first-order and second order fractal dimensions. 
Irregularities associated with the first order fractal 
dimension are related to superstructure components like the 
rail and the sleepers while second order fractal dimension 
relates to track irregularities caused by the substructure 
components. Landgraf et al. (2014) also evidenced that three 
orders of roughness can be drawn from open track 
longitudinal level, from which the dimension for 
wavelengths between 3 and 30 meters can reflect the 
condition of the ballast. However, in the experiments 
performed in the current study, the fractal dimensioning for 
track longitudinal level in turnouts results in two orders of 
roughness, one for wavelength below 3 meters and another 
for wavelengths between 3 and 20 meters, due to the limited 
area of the turnouts. The length of the type of turnouts under 
study does not exceed 60 meters and this puts a limit on the 
maximum wavelength possible for fractal dimensioning. 
Therefore, the irregularities of the track vertical profile 
related to the ballast degradation are quantified as the 
second order fractal dimension, which we address as 
fractal2. 

To illustrate the applicability and usefulness of the fractal 
dimensioning of track longitudinal level for the monitoring 
of ballast degradation in railway turnouts, Figure 4 
exemplifies the effect of a tamping operation in September 
2016. This is clearly observable in the proposed ballast 
quality index (fractal2). Moreover, the gradual deterioration 
of the ballast (increasing irregularities of the vertical profile) 
from November 2016 to November 2017 is traceable from 
the ballast quality index. It is noted that fractal 
dimensioning always generates a negative output for ballast 
quality index: smaller values relate to higher degradation of 
the ballast layer. 

 
 Figure 4: Ballast quality changes in a turnout system. 

 

Figure 5 shows the time series of fractal2 in two other 
turnouts. In these plots, the evolution of fractal2 is shown 
for three different sections of the turnout system; the switch 
panel, the mid-section and the crossing panel. As seen, the 
change in fractal2 is different for the sections of the same 
turnout, which indicates that the degradation does not occurs 
homogeneously across the turnout. Moreover, tamping 
operations which are characterized by a sudden jump in 
fractal2 do not have the same effect across all the sections. 
For example, in Fig (5a), a tamping had occurred around 
1000 days before 1/1/2018, and this tamping has restored 
the ballast condition in the crossing section from about -0.5 
to -0.17 (reduction in the geometry roughness) but the 
change is minimal in the mid-section and not noticeable in 
the switch panel.   

Since fractal2 is an index of ballast quality, the change of 
this index over time gives an indicator of degradation rate. 
The main maintenance operations that can change the 
quality of the ballast in turnouts, in the order of expected 
service life, are ballast profiling and stabilization, tamping 
and ballast cleaning/replacement. Between every two 
consecutive tamping/cleaning operations, the decrease in 
fractal2 is due to traffic-induced gradual ballast degradation. 
But looking at the trend of fractal2 between two consecutive     
tamping, there are also some minor ups and downs which 
are treated as the noise in the fractal2. This uncertainty in 
the time series of fractal2 can be addressed by fitting a 
linear degradation trendline (bold dotted lines in Figure 5). 
This is a linear regression model where the dependent 
variable is fractal2 and the only independent variable is time 
(number of days). This single-variable regression line is 
estimated by the ordinary least squares method. According 
to Dahlberg (2001), the settlement of ballasted track occurs 
in two phases: the first phase directly after tamping in which 
track settlement best modeled by a logarithmic function of 
track loading cycles. The second phase in which the 
settlement occurs linearly with cumulative load.  As track 
measurement with the loaded car is normally performed a 
few days after tamping, it is assumed that the measurements 
of track geometry are collected during the second phase of 
track settlement and this justifies the linearity assumption. 
The quality of this linear fit is quantified by the regression 
coefficient of determination (R2). Deltafractal2 is the slope 
of the fitted lines multiplied by 100. In other words, 
deltafractal2 is the change in fractal in a time period of 100 
days.  

One observation with deltafractal2 in the turnouts under 
study is the high level of variation from one turnout to 
another and even for a single turnout in two different time-
periods. This observation can be both seen in Fig (5a,b) 
where deltafractal2 -0.19 and -0.04 are calculated for the 
crossing section for the turnout in Fig (5a). The variation of 
deltafractal2 in the other turnout (Fig 5b) is even higher 
with the calculated values of -0.62, -0.07, and -0.03 for the 
switch panel.  
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(a) 

 
(b)  

 
Figure 5: Delta-fractal2 calculation in two turnouts. 

Another observation with deltafractal2 is the linearity of 
ballast degradation between consecutive tamping which 
justifies the assumption of linear ballast degradation in 
turnouts. Figure 6 depicts the regression coefficient of 
determination (R2) versus the estimated deltafractal2. It is 
noted that in the cases where R2=1, there are only two 
measurements. Generally, as the estimated deltafractal2 
decreases, the degradation path shows better fit to linear 
degradation, due to higher R2 value.  Especially, when 
degradation rate is below -0.01, R2 is mostly above 60%. 
That is to say that when a considerable degradation occurs, 
fractal2 follows a linear descending trajectory.  

2.3. Prior distribution 

The method described for deltafractal2 is used to calculate 
degradation rate for all the turnouts under study in the time 
period 2012-2017. The calculation has been performed for 
the longitudinal level for both the right and the left rail in 88 
turnouts. Table 1 presents the descriptive statistics of 
deltafractal2. The counting for deltafractal2 shows the total 
number of the degradation paths drawn between consecutive 
tamping operations in the 3 sections of all the 88 turnouts 
under study.  

 

 
Figure 6: Linearity of fractal-based ballast degradation. 

 
Figure 7 shows the histogram of deltafractal2 estimated for 
all the turnouts under study.  

 
Figure 7: Histogram of deltafractal2.  

The proposed deltafractal2 is compared with another 
common feature extracted from the track longitudinal level, 
a measure of the geometric quality of railroad tracks which 
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Table 1. Descriptive statistics of deltafractal2. 
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is calculated as the standard deviation of the band-pass 
filtered longitudinal measurements taken 25 mm apart 
within a 50 m track section of the turnout area.  The 
engineering idea to monitor the track substructure is to filter 
the measurements in waveband 3-25 m (Berggren 2010). It 
should be noted that according to the study by Spooner, 
Thyregod, Stockmarr & Ersbøll (2015) a section of 120 m 
of track in the turnout area would give more stable and 
reliable results for standard deviation calculation, however 
there are practical issues with applying this length of the 
track in the turnout area as it may include another turnout in 
the case of two very close turnouts or it may include a great 
portion of open track in the analysis which is undesirable for 
a turnout-focused study.  

In this study, the method described in Figure 5 to calculate 
the rate of degradation is also applied for the standard 
deviation of the longitudinal level and the calculated 
statistics is called delta standard deviation (DSD). In order 
to compare deltafractal2 with DSD, deltafractal2 is 
multiplied by (-1) to have positive values.  

The common distributions for geometry degradation 
modelling are Gamma, lognormal and Weibull distributions. 
For prior distribution of deltafractal2, these distributions are 
considered and among them lognormal and Gamma 
distributions show better fit to the data. Figure 8 shows the 
probability plot of deltafractal2 and DSD displayed on a 
lognormal plot. As it is seen, deltafractal2 calculated both 
for longitudinal level for the right and the left rail has a 
good fit to the lognormal line. However, DSD show 
discrepancy from lognormal and better fits to Gamma 
distribution.  

 
Figure 8: Distribution fit for deltafractal2 and DSD. 

Table 1 compares the log-likelihood of the lognormal and 
Gamma distributions fits to the deltafractal2 and DSD data. 
Due to higher likelihood, deltafractal2 has better fit to the 
lognormal distribution whereas DSD best fits to the Gamma 
distribution.  

 
As fractal2 and deltafractal2 are dimensionless quantities, it 
is worth to find a relationship between deltafractal2 and 
DSD, as DSD, being the change in the standard deviation of 
track longitudinal level, is more recognized among 
practitioners. Figure 9 shows the relationship between 
deltafractal2 and DSD values calculated in the turnouts 
under study. As seen, the average line fitted to this 
relationship shows that one unit change in deltafractal2 
implies 2.6 mm change in DSD. 

 
Figure 9: Relationship between deltafractal2 and DSD.  

2.4. Bayesian update  

In this section, the posterior distribution for deltafractal2 is 
drawn based on a Bayesian update scheme. The prior 
distribution of deltafractal2 (y) is assumed to follow a 
lognormal distribution with parameters 𝜇𝜇0 and 𝜎𝜎0, that is 

𝑦𝑦~𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝜇𝜇0,𝜎𝜎02) 

𝑓𝑓(𝑦𝑦) =
1

√2𝜋𝜋 𝑦𝑦𝜎𝜎0
𝑒𝑒−

1
2�
log(𝑦𝑦)−𝜇𝜇0

𝜎𝜎0
�
2

, 𝑦𝑦 > 0,  

−∞ < 𝜇𝜇0 < ∞,𝜎𝜎0 > 0 

                      (1) 

Regression model implies 

log(𝑦𝑦) = 𝑦𝑦�𝑅𝑅 + 𝜀𝜀;     𝜀𝜀~𝑁𝑁(0,𝜎𝜎2)  (2) 

In which 𝑦𝑦�𝑅𝑅 is the mean value estimate for the logarithm of 
y. Here, the observations on the explanatory (independent) 
variables of the regression model are used to update the 
prior distribution. Therefore, assuming that 𝑦𝑦�𝑅𝑅 is a random 
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variable, we are interested in the conditional pdf: 𝑓𝑓(𝑦𝑦�𝑅𝑅|𝑦𝑦). 
From the regression model (2), we have  

𝑦𝑦�𝑅𝑅 = log(𝑦𝑦) − 𝜀𝜀 (3) 

Conditional on the value of y, from Equation 2, we have:   

𝑓𝑓(𝑦𝑦�𝑅𝑅|𝑦𝑦) = 𝑁𝑁(log(𝑦𝑦) ,𝜎𝜎2) = 1
√2𝜋𝜋 𝜎𝜎

𝑒𝑒−
1
2�
𝑦𝑦�𝑅𝑅−log(𝑦𝑦)

𝜎𝜎 �
2

 (4) 

Bayes’ rule reads 

𝑓𝑓(𝑦𝑦|𝑦𝑦�𝑅𝑅) =
𝑓𝑓(𝑦𝑦�𝑅𝑅|𝑦𝑦)𝑓𝑓(𝑦𝑦)

𝑓𝑓(𝑦𝑦�𝑅𝑅)  

Plugging (1) and (4) into Bayes’ rule will give 

𝑓𝑓(𝑦𝑦|𝑦𝑦�𝑅𝑅)

=
1

2𝜋𝜋𝑦𝑦𝜎𝜎𝜎𝜎0𝑓𝑓(𝑦𝑦�𝑅𝑅) 𝑒𝑒
−12��

log(𝑦𝑦)−𝜇𝜇0
𝜎𝜎0

�
2
+�𝑦𝑦�𝑅𝑅−log

(𝑦𝑦)
𝜎𝜎 �

2
�
 

(5) 

After doing some algebra, from (5) we will have  

𝑓𝑓(𝑦𝑦|𝑦𝑦�𝑅𝑅) =
1

√2𝜋𝜋 𝑦𝑦𝜎𝜎1
𝑒𝑒−

1
2�
log(𝑦𝑦)−𝜇𝜇1

𝜎𝜎1
�
2

,     

𝑦𝑦 > 0,−∞ < 𝜇𝜇1 < ∞,𝜎𝜎1 > 0 

(6) 

in which 

𝜇𝜇1 =
𝜎𝜎2

𝜎𝜎2 + 𝜎𝜎02
𝜇𝜇0 +

𝜎𝜎02

𝜎𝜎2 + 𝜎𝜎02
𝑦𝑦�𝑅𝑅 (7) 

𝜎𝜎12 =
𝜎𝜎2

𝜎𝜎2 + 𝜎𝜎02
𝜎𝜎02 

(8) 

The distribution in Eq. (6) shows that the posterior 
distribution of deltafractal2 is a lognormal random variable 
with parameters 𝜇𝜇1  and  𝜎𝜎1 . The posterior mean parameter 
𝜇𝜇1 is a linear combination of the prior mean parameter 𝜇𝜇0 
and the estimated mean value  𝑦𝑦�𝑅𝑅 , each weighted 
proportional with the inverse of their variance.  

The posterior standard deviation parameter 𝜎𝜎1 is a fraction 
of the prior standard deviation parameter 𝜎𝜎0. The fraction is 
determined by the ratio of the error variance of the 
regression model to the total variance of regression error 
and the prior lognormal distribution.  

Based on these results, an average and two-sided 95% 
confidence interval (CI) can be set for deltafractal2 as:  

𝐸𝐸(𝑦𝑦/𝑦𝑦�𝑅𝑅) = 𝑒𝑒�𝜇𝜇1+𝜎𝜎12/2� (9) 

95% 𝐶𝐶𝐶𝐶 𝑓𝑓𝐿𝐿𝐿𝐿 𝑦𝑦/𝑦𝑦�𝑅𝑅
= [𝐹𝐹0.025

−1 (𝜇𝜇1,𝜎𝜎12)   ,    𝐹𝐹0.975
−1 (𝜇𝜇1,𝜎𝜎12)] 

(10) 

 where 𝐹𝐹𝛼𝛼−1  is the inverse of lognormal cumulative 
distribution with  Pr (𝑦𝑦 < 𝐹𝐹𝛼𝛼−1) = 𝛼𝛼. 

3. RESULTS 

3.1. Regression modeling for ballast degradation rate 

Regression analysis estimates the relationship between a 
dependent variable (response) and a set of independent 
variables (explanatory variables). According to the related 
literature (Sato, 1995; Ferreira & Murray, 1997; Iwnicki, 
Grassie, & Kik, 2000; Lyngby, 2009; Guler, 2014; Jönsson et 
al., 2016), the variables that can affect geometry degradation 
in open tracks are the number of past tamping operations, 
maximum permissible train speed; passing tonnage (MGT), 
the weather condition (seasonality, temperature and 
precipitation) and the current degraded state of the track 
geometry. Specific to the turnouts, the current degraded 
shape of the turnout and the section of the turnout can also 
influence degradation rate. In this study, the effects of all 
these factors on the ballast degradation rate are examined by 
using a linear regression model.   
The degraded shape of the turnout is depicted in Figure 10 
where the level of degradation in different sections of the 
turnout is different. This factor contributes in the regression 
model by introducing a variable named front2mid which is 
the ratio of degradation level in the front section (switch 
panel) to the level in the middle section.   

 
Figure 10: Degraded shape of turnout. 

The regression model is shown in Eq. (11) 

log (𝑑𝑑𝑒𝑒𝐿𝐿𝑑𝑑𝐿𝐿𝑓𝑓𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑𝐿𝐿𝐿𝐿2)
= 𝑓𝑓(𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑑𝑑,𝐿𝐿𝑑𝑑𝐿𝐿𝐿𝐿𝑠𝑠, 𝑠𝑠𝑒𝑒𝑑𝑑𝑑𝑑𝑠𝑠𝐿𝐿𝐿𝐿,𝑀𝑀𝑀𝑀𝑀𝑀,𝑌𝑌0, 𝑠𝑠𝑒𝑒𝐿𝐿𝑠𝑠𝐿𝐿𝐿𝐿,
𝑓𝑓𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑2𝐿𝐿𝑠𝑠𝑑𝑑, 𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑑𝑑 ∗ 𝑀𝑀𝑀𝑀𝑀𝑀, 𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑑𝑑 ∗ 𝑌𝑌0,𝑀𝑀𝑀𝑀𝑀𝑀 ∗ 𝑌𝑌0,
𝑠𝑠𝑒𝑒𝑑𝑑𝑑𝑑𝑠𝑠𝐿𝐿𝐿𝐿 ∗ 𝑓𝑓𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑2𝐿𝐿𝑠𝑠𝑑𝑑  ) +  𝜀𝜀 

(11) 

in which f(.) is a linear function and 𝜀𝜀~𝑁𝑁(0,𝜎𝜎2) is the error 
term. The normality of the error term is justified because 
deltafractal2 has shown best fit to lognormal distribution. 
Hence it is reasonably assumed that the dependent variable 
in this regression model i.e. log(deltafractal2) is normally 
distributed. The variable speed is the maximum permissible 
train speed in the turnout and can be 120 or 250 km/h. The 
variable ntamp is the number of past tamping operations for 
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the turnout and can be 0, 1 or 2. The variable section 
indicates if deltafractal2 is calculated for the switch panel, 
mid-section or the crossing panel. MGT is the average 
annual passing tonnage over the turnout. Y0 is the 
degradation level or the fractal2 at the time t=0 where 
deltafractal2 is calculated for its next 100 days interval i.e. 
[t, t+100]. The variable season represents an index of 
cold/warm seasons in the time period [t, t+100]. For 
calculation of the season, the warmth of the seasons is 
accounted for by the values of 0,1,2,3 for the winter, 
autumn, spring and summer, respectively. The asterisk (*) in 
Eq. (11) shows the interaction of two variables. Four second 
order interactions of speed*MGT, speed*Y0, MGT*Y0, and 
section*front2mid are included in the model. It should be 
noted that in the regression model (11), the first three 
variables speed, ntamp and section are categorical variables 
since each can get discrete values.  

A preliminary analysis of differences between the two rails 
right and left shows that the degradation rate of standard 
deviation of the longitudinal level is similar for both rails. 
This is also verified by Vale and Lurdes (2013), therefore, 
in the rest of the paper the analysis is presented for the rail 
right.  

 
With the data of all the turnouts under study, the regression 
model in the Eq. (11) is estimated (Table 3). The total 
number of data observation, as presented in Table 1 is 1801. 
The model is estimated with the ordinary least squares 
method.  As seen, all the variables in the model are 
significant in 99.9% confidence level since the P-values of 

t-tests all are below 0.1%. The regression model is 
significant and the estimated variance for the error term is 
𝜎𝜎�2 = 1.32.  

The results of estimated coefficients show that increasing 
speed limit, tamping, being in the crossing section, MGT, 
initial degradation level (Y0), warm season, higher ratio of 
the front to the mid-section, all have increasing effect on 
ballast degradation rate in turnouts.  

3.2. Bayesian updating for posterior distribution 

The new information generated based on linear regression 
for the logarithm of degradation rate is used to update prior 
distribution of deltafractal2 to posterior distribution.  The 
prior lognormal distribution has parameters 𝜇𝜇0 = −4.21 
and 𝜎𝜎02 = 1.314 with mean 0.029 and 95th percentile 0.13. 
The error term in the regression model has the 
variance  𝜎𝜎2 = 1.32. Figure 10 shows the relation between 
the degradation rates from the regression i.e.  𝑒𝑒𝑒𝑒𝑠𝑠(𝑦𝑦�𝑅𝑅) and 
from the posterior distribution, where the mean value and 
95% CI for the posterior degradation rate are presented.  

As it can clearly be seen, the mean value of posterior 
degradation rate remains lower than the rate estimated by 
the regression model. From the prior distribution the 95th 
percentile for degradation rate is 0.13. Therefore, rates 
higher than 0.13 should be considered as severe 
degradation. For these high degradation rates, Figure 11 
suggests a relatively wide confidence interval which implies 
a high level of uncertainty in the modelling environment.   

   
Figure 11. Posterior mean and 95% confidence interval for 

ballast degradation rate 
 

From the results in Figure 11, it is also possible to compare 
the results of regression modelling and Bayesian updating 
for ballast degradation rate. For example, when the 
degradation rate from the regression model is 0.2, the 95% 
CI from the posterior distribution is [0.02, 0.2] which 
indicates regression model is over-estimating the 
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Table 3. Estimation of linear regression 
 

Coefficient Estimate SE tStat Sig  
(Intercept) -6.41 0.20 -32.74 0.000 
speed_250 0.61 0.18 3.43 0.001 
ntamp_1 0.30 0.06 4.77 0.000 
ntamp_2 0.63 0.09 6.90 0.000 
section_mid (2) 0.86 0.20 4.33 0.000 
section_crossing (3) 1.23 0.22 5.55 0.000 
MGT 0.07 0.01 6.26 0.000 
Initial deg. (Y0) -2.26 0.43 -5.20 0.000 
season 0.22 0.05 4.07 0.000 
front2mid 0.54 0.13 4.21 0.000 
speed_250*MGT -0.07 0.01 -6.57 0.000 
speed_250*Y0 -8.25 1.02 -8.06 0.000 
MGT*Y0 0.21 0.05 4.46 0.000 
section_2*front2mid -0.76 0.16 -4.59 0.000 
section_3*front2mid -1.02 0.19 -5.52 0.000 

Estimated Dispersion: 1.32; R2 = 25% 
F-statistic vs. constant model: 40.6, p-value = 0.000 
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degradation rate compared to Bayesian approach and this 
comparison remains valid for rates above 0.13.   

4. CONCLUSION 

This article proposes a methodology for blending 
information of a generic ballast degradation rate model with 
the turnout-specific information to generate new 
information about ballast degradation rate in turnouts. The 
methodology uses the aligned measurements of track 
longitudinal level to calculate an index of ballast 
degradation. The proposed index is based on fractal 
dimensioning of vertical track profile. A regression 
modeling is introduced to estimate the effects of turnout-
specific contributing factors on the ballast degradation rate. 
The paper also suggests a Bayesian updating scheme to 
estimate posterior distribution of ballast degradation rate.  A 
demonstration of the methodology has been done on a large 
set of data coming from Danish railway turnouts. 
Lognormal distribution was the best fit distribution to the 
ballast degradation rate in turnouts. By building a posterior 
distribution, it is shown that the property of lognormal 
distribution is still valid for posterior distribution and the 
updated variance of posterior lognormal becomes 
considerably smaller when the variance of the error term in 
the regression model decreases. This paper produces 
distributions of the magnitude of ballast degradation in a 
100-day time period. This degradation distribution is 
therefore of relevance to the turnouts’ maintenance 
managers, avoiding the need to use generic and possibly 
inappropriate data for asset management.  

The paper contributes to the scientific field by proposing an 
integrated methodology for ballast degradation modelling in 
turnouts. The advantage of this methodology is two-fold. 
First, it is the first turnout-focused study that uses fractal 
dimensioning as a validated technique to monitor the health 
state of the ballast based only on vertical track geometry 
profile. Second, its Bayesian updating allows integrating the 
prior knowledge of ballast degradation in turnouts with the 
new information collected for a specific turnout. This is 
especially important for building predictive models for 
ballast degradation which helps railway infrastructure 
managers in the transition to a predictive maintenance 
strategy.  

Results also showed that the level of uncertainty in ballast 
degradation rate in turnouts is high, thus constructing 
degradation model based on the historical loaded track 
geometry data entails a high level of uncertainty in the 
estimated degradation rates. This conclusion calls for new 
monitoring strategies which are based on more frequent 
measurements or even continuous monitoring of ballast 
degradation. One possible solution is to use track-side 
measurement systems that make it possible to base ballast 
monitoring on track dynamic response when loaded by 
passing trains.  
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