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ABSTRACT

In this paper, we present an innovative method to forecast
time series. We focus on a long-term forecasting model deal-
ing with main periodicities in addition to short term effects.
The consolidation of Fourier transformations, which covers
the basic oscillation of a time series, with machine learning
algorithms approximating the error term, is at the heart of
our forecasting model. Later on, we compare different re-
gressions such as kernel and logistic regression, a combina-
torial technique on sparse grids and finally a special repre-
sentative of neural networks. Thereby we are able to forecast
power consumption in certain locations of a given network
and we show the results of those forecasts as functions of
various inputs. The results presented are used for power de-
mand planning of cities and are consequently prognostic in
nature. In the context of Health Management, however, one
usually works with anomaly detection and supervised learn-
ing methods. Nevertheless, a time series forecast in neigh-
boring applications, e.g. the power consumption of a traction
system in railway vehicles, could substantially benefit from
these prognostic functionalities. This also means that devia-
tions of physical quantities measured under real-time condi-
tions from their expected behavior indicate a likely prevailing
malfunction.

1. INTRODUCTION

In the course of smart grid activities, the power demand fore-
cast becomes a basic ingredient for further optimization steps.
Only if the future can be predicted well enough, the conse-
quences such as the investment in battery/storage solutions
and network effects depending on price policies will become
solvable. This is the main motivation for power demand fore-
casts on any voltage level. We focus our activities on the
distribution grid and are confronted with grid nodes, that are
producing energy, consuming energy and a combination of
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both. Particularly, weather conditions have a strong impact
on power production. In this paper we will present our data
driven response surface solution.

2. PRE-PROCESSING

In this section we start with the analysis of a multidimen-
sional observable input data set X, representing a sample of
the N-dimensional stochastic processX = (X1, X2, ..., XN ).
X consists of N signals and T records (~xi)i=1,...,T , such that
X ∈ RT×N can be written as

X =


x11 x21 · · · xN1
x12 x22 · · · xN2
...

...
. . .

...
x1T x2T · · · xNT

 =


~x1
~x2
...
~xT

 (1)

On the other hand there is an output process Y ∈ RT×K ,
which captures the measurements of the power consumption/
generation of a certain grid node. It is conceivable to distin-
guish signal characteristics such as idle power and the differ-
ent phases. Here, our focus is on the prediction of the aggre-
gated power signal. The K-dimensional stochastic process is
defined as follows

Y =


y11 y21 · · · yK1
y12 y22 · · · yK2
...

...
. . .

...
y1T y2T · · · yKT

 (2)

Industrial data usually call for some pre-processing steps, which
will be described below.

2.1. Comparability

This section is concerned with some primary steps applicable
to huge data sets. The signal ranges vary from parameter to
parameter, thus a data point standardization is required. Fur-
thermore, high sampling frequency over a long-time period
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results in many records and this impacts the performance of
all statistical analysis steps. Additionally, we must cope with
problems such as measurement errors and signals carrying no
information. To facilitate comparability, we will use normal-
ized or standardized signals as inputs for all analysis methods.

Normalization

A normalization maps the entire signal range into the interval
between zero and one and is defined as

xji =
xji −min(Xj)

max(Xj)−min(Xj)
(3)

where i denotes the i-th record and max(Xj) or min(Xj) are,
respectively, the minimum and maximum of signal Xj of our
training matrix.

Standardization

A standardization transforms a random variable such that the
transformed variable has a mean of zero and variance of one

xji =
xji − µj

σj
(4)

2.2. Outlier Detection and Date time synchronization

In real life one cannot exclude certain errors in the data set.
Within the progress and the extraction of data, measurement
errors are possible. Moreover, in the case of different mea-
surement sources a date time synchronization is indispens-
able.

Figure 1. The top figure is the power times series for the year
2017; the middle figure shows daily power curves dependent
on the season; the bottom figure shows the weekly behavior.

Figure 2. The periodogram represents the most relevant peri-
ods of a time series.

2.3. Record Dependencies

A record is defined as an N-dimensional process sample at
a particular time. Depending on a distance metric, two con-
secutive records exhibit spatial nearness or not. Over time
a multidimensional process passes frequently through signal
range constellations represented by cluster points. We try to
figure out which records are similar and collect them in clus-
ters. Clustering refers to a method, which reduces large num-
bers of multidimensional records to a much smaller number
of clusters. Moreover, the fact of having a highly periodic
process extends the cluster notation. We will use cluster re-
sults, which includes the analysis of periodicities, to increase
the computational performance on the one hand and to in-
crease the accuracy of the forecasting model. Obviously, the
power signal possesses oscillating effects. Figure 1 illustrates
the most relevant periodicities. Particular emphasis should
be put on daily curves marked in red, showing the different
daily behavior especially in comparison between Sunday and
workdays.

Therefore, the computation of the Fourier transformation de-
composes the signal into frequencies as shown in figure 2. It
is easy to see, that visually observed cycles can be found in
the periodogram.

2.4. Record Classification

Obviously, the day of week is a good classifier for the node
behavior. Thus, the forecast model takes the day of week as
an input. Holidays or other running days have to be classified
additionally. We also use non-linear regressions as classifica-
tion methods. The ”Whit Monday” on the 5th of June 2017
for instance is a workday, which behaves like a typical Sun-
day. Such adaptations are integrated in the forecasting model
and increase, in some cases, the forecast results significantly
(see results in subsection 4.3.1.).
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Figure 3. Daily power consumption curves between the 6th of
June and the 5th of July 2017. Dark green = Sundays; Light
green = other days; Red = 15th of June (holiday), which is
not a Sunday.

3. FORECASTING MODEL

3.1. State Space

A good forecast does not only depend on the type of regres-
sion or model used, it also depends on the definition of the
state space. First, we will give a short introduction to the state
space, which we used in this paper. The state space depends
on the following parameters. On the one hand, the state space
includes all chosen time series data (X = (~x1, ..., ~xT )), as
well as weather forecast data (Y = (~y1, ..., ~yT )). Both time
series can be multidimensional. On the other hand, it includes
technical parameters such as step size S, embedding window
L and the aggregation of the parameters. Our pre-processing
routine generates an equidistant, computable time series with
an appropriate parameter choice.

Figure 4. Sketch of the state space generation. Blue circles
represent the aggregated values of the embedding window
L=3, green circles represent the actual aggregated value in
each coordinate direction.

From now on, if we writeX = (~x1, ..., ~xT ) or Y = (~y1, ..., ~yT ),
we always mean the time series transformed into the defined
state space.

If we want to forecast a time series for a certain progno-
sis horizon H, we always try to approximate the relation be-
tween the input X = (~x1, ..., ~xT−H) and the output Y =
(~y1+H , ..., ~yT ).

3.2. Time Series Forecasting Model

The long-term forecasting model uses response surface ap-
proximation techniques in order to forecast certain outcomes
e.g. power. This scenario in particular, requires the input
vector predictions such as weather, in order to improve the
auto-associative estimates.

Response Surface Forecast Let Y be the observed multivari-
ate process Y = (~y1, ..., ~yT ) and let X = ( ~x1, ..., ~xT ) de-
fine additional parameters such as weather. As introduced the
forecasting model distinguishes between observable X and
non-observable Y data sets. Time dependent features such
as the day of week or the hour are important regressors be-
cause of periodicities. The following definition holds for the
response surface method

Yh = fh,d(X̂h(t)) (5)

where for given date time t, time dependent features are cal-
culated:

• h ∈ N+ : time period of the forecasting day in [min]
e.g., h = x

60 , x ∈ [1, · · · , 1440]

• d ∈ [1, · · · , 7] : day of week of the forecast day

Response Surface with Classification In addition to the Re-
sponse surface method daily curves are classified at the begin-
ning of the training phase. The knowledge of special calendar
days such as holidays can be approximated with a higher ac-
curacy, if they are classified in the history. The estimation
function is rewritten by

Yh = fh,C(d)(X̂h(t)) (6)

where C(d) is the classification function, i.e. learned feast
days, for a certain day d.

Fourier transformation with Residua Response Surface
Forecast The consolidation of the Fast Fourier transforma-
tion, which covers the basic oscillation of a time series, with
machine learning algorithms approximating the error term, is
at the heart of this forecasting model. The FFT approach is
described by Press at al. (2007). Subsequently, the error func-
tion f is approximated by nonlinear regressions, whereby the
error term is the consequence of the FFT approximation.

Yh = Ŷ FFTh − fh,d(X̂h) (7)

Let F s be the Fourier transform sorted by the magnitude and
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defined as follows

FS(ŷ) = (F (ŷπ(1)), · · · , F (ŷπ(M)))(8)

with

π = {π(1), ..., π(M) : |F (ŷπ(1))| ≥ ... ≥ |F (ŷπ(M))|} (9)

By the aid of a distance-neighborhood

Upt = {F (ŷπ(1)), · · · , Q(F s)(p)} (10)

where Q(F s)(p) is the quantile function of the sorted Fourier
transformation the estimate follows by

ŷFFTt =
1

M

∑
y∈Up

t

y · e(2πi
j·k
M ) (11)

and p controls the amount of ’relevant’ periods.

3.3. Non-Linear Regressions

The main challenge is to find a problem specific, non-linear
regression minimizing the target function. We used four dif-
ferent regressions to forecast the power consumption. For
more details, see the appendix.

4. VERIFICATION OF FORECASTING RESULTS

4.1. Error Functions

The objective is to find an appropriate error function. The
following error functions are mostly used in the literature.

Mean Absolute Percentage Error

The mean absolute percentage error (mape) is a measure of
prediction accuracy of a forecasting method in statistics, for
example in trend estimation. It usually expresses accuracy as
a percentage and is defined by the formula:

e =
1

n

n∑
t=0

∣∣∣∣yt − y∗tyt

∣∣∣∣ (12)

Symmetric Mean Absolute Percentage Error

The symmetric mean absolute percentage error (smape) is an
accuracy measure based on percentage (or relative) errors. It
is defined as follows:

e =
1

n

n∑
t=0

|yt − y∗t |
(|yt|+ |y∗t |)/2

(13)

Mean Absolute Error

The mean absolute error (mae) is a measure, as the name sug-
gests, averaging the mean absolute error:

e =
1

n

n∑
t=0

∣∣∣∣yt − y∗tYRange

∣∣∣∣ (14)

For comparability purposes we scale the error by the signal
range.

4.2. Forecasting Results

In this section we present forecasting results depending on:

1. State Space
• Input Parameters
• Embedding Window - L
• Step Size - S

2. Methodology
• Response Surface - RS
• Fourier transformation - FT
• Response Surface with Classification Inputs - RSC

3. Regressions
• Kernel
• Logistic
• RBFNN
• Sparse Grids

The goal is to forecast the power consumption p of a certain
location by using different settings (as described before). The
input parameters are forecast weather data (temperature, hu-
midity, sun etc.). To compare different models, we use the
estimation of the mean absolute error (mae).

Tables 1 - a photovoltaic asset with consumers - and 2 - con-
sumers only - present the results for two defined locations by
using air temperature and global radiation (forecasts) as in-
puts. Further, the step size is one hour, and the embedding
window is three hours. As shown in the following table, we
examine different regressions, months and methodologies.

RS FT RSC
Month Regression mape smapemae mape smapemae mape smapemae
7-2017 Kernel 40.4 22.5 2.9 131.7 42.9 5.2 41.4 22.8 2.9
7-2017 Logit 63.8 26.2 3.0 156.3 52.2 8.5 73.2 26.5 3.2
7-2017 RBFNN 57.9 33.1 3.5 93.4 39.3 5.4 51.0 34.8 3.6
12-2016 Kernel 21.5 24.8 6.0 22.6 27.0 6.0 21.6 24.9 6.0
12-2016 Logit 17.6 20.1 5.0 34.0 43.6 8.8 18.5 20.9 5.0
12-2016 RBFNN 17.7 19.7 4.7 23.3 27.5 6.2 18.3 20.4 4.9

Table 1. Location 1 - summer versus winter.
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RS FT RSC
Month Regression mape smapemae mape smapemae mape smapemae
7-2017 Kernel 5.9 5.6 2.9 7.8 7.7 3.8 6.1 5.9 3.0
7-2017 Logit 8.1 8.0 4.2 13.1 13.0 6.9 7.8 7.7 4.0
7-2017 RBFNN 6.3 6.2 3.0 8.0 8.4 4.1 6.5 6.4 3.1
12-2016 Kernel 7.5 7.7 5.3 7.0 7.1 4.7 7.2 7.4 5.1
12-2016 Logit 7.1 7.3 5.1 10.6 10.7 7.5 6.7 6.8 4.8
12-2016 RBFNN 6.8 6.8 4.6 6.1 6.3. 4.2 6.3 6.4 4.3

Table 2. Location 2 - summer versus winter.

There are some interesting observations:

• The error functions mape and smape are very sensitive
with require to location 1. The reason is that the sig-
nal value is very close to zero. An actual value close to
zero, increases the percentage error. In cases of nodes
with power generation behavior, mae is the appropriate
measure.

• The Response Surface (with/ without classification) seems
to be a robust method

Figure 5. Daily power consumption forecast for location 1.
Light green = prognosis. Green = real aggregated power con-
sumption. Black markers = real power consumption.

Figure 6. Monthly prognosis (kernel regression, July 17, Lo-
cation1).

4.3. Influence of the methodology

The following tables 3 and 4 present the results of the RS-
and FT-methodology and different input parameters (t:= tem-
perature and r:= radiation; S=1 hour; L=3):

FT RS
Location Input Regression mape smape mae mape smape mae

Location 1 t + r Kernel 462.5 52.0 9.5 193.1 34.2 3.2
Location 1 t + r Logit 866.8 57.3 8.6 102.2 34.5 3.7
Location 1 t + r RBFNN 311.1 42.8 6.7 129.47 40.3 3.8
Location 2 t + r Kernel 13.0 11.4 6.3 6.5 6.4 3.5
Location 2 t + r Logit 13.8 13.8 6.8 9.9 10.2 5.5
Location 2 t + r RBFNN 8.0 7.9 4.2 8.1 8.1 4.2
Location 1 r Kernel 165.7 43.3 5.8 225.5 43.2 4.3
Location 1 r Logit 656.7 57.0 9.3 106.2 45.3 4.8
Location 1 r RBFNN 239.3 42.4 6.7 387.8 94.2 16.3
Location 2 r Kernel 8.1 7.9 4.2 8.6 8.2 4.2
Location 2 r Logit 12.4 12.9 6.9 11.3 11.4 6.0
Location 2 r RBFNN 11.2 8.6 6.0 17.0 19.3 8.3
Location 1 t Kernel 194.0 44.1 7.0 335.8 44.2 5.6
Location 1 t Logit 937.5 63.1 10.7 234.0 38.3 4.5
Location 1 t RBFNN 1034.1 44.1 8.0 307.1 39.7 4.8
Location 2 t Kernel 7.6 7.4 3.9 6.3 6.1 3.3
Location 2 t Logit 15.1 15.2 7.6 9.0 9.1 4.9
Location 2 t RBFNN 8.1 8.1 4.3 6.9 6.8 3.6

Table 3. June 2017 - FT versus RS.

FT RS
Location Input Regression mape smape mae mape smape mae

Location 1 t + r Kernel 12.1 11.4 2.9 21.5 24.8 6.0
Location 1 t + r Logit 16.1 16.4 4.1 17.8 20.0 5.0
Location 1 t + r RBFNN 12.3 12.3 3.1 17.7 19.6 4.7
Location 2 t + r Kernel 5.1 5.1 3.4 7.5 7.7 5.3
Location 2 t + r Logit 8.2 8.6 5.3 7.2 7.3 5.1
Location 2 t + r RBFNN 4.5 4.5 3.1 6.8 6.9 4.7
Location 1 r Kernel 9.1 9.0 2.3 29.5 35.5 8.2
Location 1 r Logit 12.2 12.6 3.0 27.0 32.1 7.4
Location 1 r RBFNN 13.3 12.7 3.4 83.0 66.5 20.9
Location 2 r Kernel 4.5 4.5 3.0 12.3 13.1 8.4
Location 2 r Logit 5.9 6.0 4.1 12.1 12.8 8.2
Location 2 r RBFNN 4.6 4.5 3.0 21.3 26.7 13.2
Location 1 t Kernel 10.3 10.0 2.6 26.9 33.3 7.4
Location 1 t Logit 18.3 18.6 4.6 20.5 24.0 5.5
Location 1 t RBFNN 12.5 12.6 3.2 21.8 25.1 5.7
Location 2 t Kernel 4.3 4.3 2.8 8.2 8.5 5.8
Location 2 t Logit 9.1 9.6 6.0 7.2 7.4 5.1
Location 2 t RBFNN 4.8 4.5 3.3 6.6 6.7 4.6

Table 4. December 2016 - FT versus RS.

Table 3 includes the results of the FT- and RS-Forecast in
summer depending on the regression. It obvious, that in gen-
eral the values of the mae of the RS-Forecast are lower than
the FT-Forecast. This can be explained by a higher influ-
ence of weather such as temperature in summer. Contrary to
this, the FT-Forecast is better in winter, see table 4. The next
methodology extends the response surface model by feast day
treatment.

4.3.1. Influence of holidays

Mondays in general have a common behavior. Moreover,
calendar phenomena such as holidays can change the whole
power consumption for a certain day. It makes sense to clas-
sify the forecasting day to get better results. For both loca-
tions, we forecasted the power consumption for the 5th of
June 2017 (Whit Monday) and 1st of November 2016 (All
Saints’ Day) by changing only the methodology (additional
settings: S=1 hour; L=2; Inputs = global radiation). There-
fore, see table 5 and table 6.

The RSC-Forecast is a logical extension of the classical re-
sponse surface technique and therefore produces better results
in case of defined classifications and remain the same results
in the ordinary case for certain periods and locations. The
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FT RS RSC
Day Regression mape smapemae mape smapemae mape smapemae

2017-06-05 Kernel 45.0 32.0 3.8 53.4 40.4 3.6 53.4 40.4 3.6
2017-06-05 Logit 43.8 31.4 4.1 36.5 31.7 5.1 36.5 31.7 5.1
2017-06-05 RBFNN 233.7 83.3 16.4 182.8 72.2 13.8 182.8 72.2 13.8
2017-06-05 SparseGrids 85.0 45.1 8.4 68.8 58.3 6,3 68.8 58.3 6.3
2016-11-01 Kernel 13.4 13.8 2.5 22.9 30.3 3.2 25.3 34.7 3.6
2016-11-01 Logit 18.5 22.9 2.9 25.6 34.5 3.3 27.0 36.0 3.5
2016-11-01 RBFNN 73.0 43.8 14.6 99.8 74.9 18.8 102.9 80.3 19.4
2016-11-01 SparseGrids 32.4 38.3 3.4 31.5 37.9 3.5 26.7 33.8 3.5

Table 5. Location 1 - FT versus RSC.

FT RS RSC
Day Regression mape smapemae mape smapemae mape smapemae

2017-06-05 Kernel 21.6 18.7 9.4 25.7 21.9 10.9 6.6 6.2 2.6
2017-06-05 Logit 22.3 19.2 9.8 18.8 16.4 7.8 11.0 11.1 4.7
2017-06-05 RBFNN 85.0 54.5 35.0 36.9 40.8 17.2 21.1 26.1 9.6
2017-06-05 SparseGrids 29.3 23.3 12.2 20.5 17.9 8.9 8.4 7.9 3.6
2016-11-01 Kernel 12.8 12.5 6.0 20.6 17.6 11.0 5.1 5.0 2.9
2016-11-01 Logit 13.4 13.1 6.2 21.4 18.3 11.4 5.2 5.0 3.0
2016-11-01 RBFNN 55.7 37.9 26.5 32.3 35.9 17.4 23.3 29.6 12.5
2016-11-01 SparseGrids 12.9 12.6 5.9 24.2 20.6 13.2 7.5 7.1 4.5

Table 6. Location 2 - FT versus RSC.

RSC-methodology generates the best results for location 2 -
only consumer - in winter and summer (see table 6). For loca-
tion 1 - photovoltaic asset with consumer - a holiday is not a
significant factor for the prognosis in winter. As observed be-
fore, the FT-Forecast is better than the RS- and RSC-Forecast
in winter. In summer, we observe the same behavior as in
subsection 4.3.: The effect of the weather is greater than the
normal oscillation. Further, the holiday has another common
effect on the power consumption (with exception to the logis-
tic regression for the selected state space).

If we classify the 12th of June 2017, as a ’normal’ Monday,
there is no change to the RS-forecast. The FT-Forecast on that
special day is better than the RS-method and worse than the
RSC-method, because of supposed periodic holiday behavior.

4.4. Influence of the state space

From tables 3 and 4, it is observable, that the input param-
eters have a huge impact on the prognosis results, too. A
well-chosen input space guarantees good forecasting results.
It is observable, that global radiation and air temperature have
a huge impact of the prognosis results. Without these param-
eters, it is not possible to approximate day-specific behaviors
represented for instance by several weather conditions with
the response surface methodology.

The embedding window L is another important ingredient. A
larger embedding window catches the locally temporal state
space representation for each time stamp. It does not directly
yield a better forecasting KPI, but for regressions with more
elasticity, a high degree of freedom improves the results. The
results for different values of the embedding window L (and
additional settings: S=1 hour; global radiation as input) are
presented in tables 7 - 10.

As mentioned before, a larger embedding window implies a
more precise input space. On the one hand, a higher dimen-

Figure 7. From top to bottom: RS, FT, RSC.

sionality enables the opportunity to identify similar points/
separate non-similar points, on the other hand the performance
decreases. It is conspicuous, that the Fourier methodology
generates better KPI’s in summer at location 2 (see table 8)
in contrast to the observations in 4.3., which is explainable
by the node behavior, location 2 - consumers only, and the
modification of the value of the embedding window.

4.5. Influence of the regression

Summarizing the results of tables 3 - 10 it is observable, that
kernel regression delivers the most robust forecasts. In cases
of full observation, regressions with more degrees of freedom
are getting more powerful. This is similar to the observation
that the results of the RBFNN get better by increasing the
embedding window. The combinatorial techniques of sparse
grids do not perform well in high dimensions. Further, the
choice of the ’right’ regressions also depends on the season-
ality (summer/ winter), the methodology and the state space.
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Figure 8. From left to right: Kernel, Logit, RBFNN. Top line: L=3. Bottom line: L=30. (all: methodology FT)

FT RS
L Regression mape smape mae mape smape mae
3 Kernel 165.7 43.3 5.8 225.5 43.2 4.3
3 Logit 656.7 57.0 9.3 106.2 45.3 4.8
3 RBFNN 239.3 42.4 6.7 387.8 94.2 16.3
6 Kernel 154.6 43.7 6.1 318.8 40.3 3.9
6 Logit 357.0 56.4 8.2 103.4 44.3 4.5
6 RBFNN 186.7 41.9 6.0 183.1 65.4 10.3
9 Kernel 156.3 43.9 6.4 212.2 35.6 3.6
9 Logit 361.7 59.7 8.3 225.1 42.5 4.3
9 RBFNN 188.8 41.8 5.9 80.8 35.9 4.5
12 Kernel 164.0 45.8 6.7 237.5 34.1 3.5
12 Logit 291.3 56.4 7.8 194.2 42.6 4.4
12 RBFNN 188.4 41.7 5.8 80.0 34.8 4.5
15 Kernel 166.0 45.2 7.1 235.4 31.4 3.3
15 Logit 243.6 50.5 7.0 170.7 42.5 4.6
15 RBFNN 184.5 41.2 5.8 91.0 35.9 4.5
18 Kernel 419.5 44.7 7.3 161.2 31.7 3.5
18 Logit 213.2 48.7 6.9 119.4 46.6 4.9
18 RBFNN 174.4 41.5 5.7 96.8 37.1 4.7
21 Kernel 677.6 45.5 7.5 189.0 30.0 3.4
21 Logit 314.3 47.4 6.9 289.3 48.5 5.1
21 RBFNN 270.2 41.4 5.7 113.3 37.5 4.9
24 Kernel 678.8 45.9 7.7 201.9 30.6 3.4
24 Logit 369.9 48.1 7.0 242.9 50.4 5.2
24 RBFNN 417.8 42.0 5.8 285.2 37.0 4.9

Table 7. June 2017 of Location 1 - Embedding window.

4.6. Conclusion

As presented in this chapter, external factors (such as loca-
tion and seasonality) and important model features (such as
methodology, state space and regression) obviously have a
vital effect on the prognosis results. This is underlined by the
following statements:

• In comparison to RS and FT, the RSC method improves
the forecasting results on feast days.

• Consumer behavior for winter days can be forecast best
with the FT method.

• Energy-generating behavior for summer days can be fore-
cast best with the RS method.

• The most robust nonlinear regression is the Kernel re-

FT RS
L Regression mape smape mae mape smape mae
3 Kernel 8.1 7.9 4.2 8.6 8.2 4.2
3 Logit 12.4 12.9 6.9 11.3 11.4 6.0
3 RBFNN 11.2 8.6 6.0 17.0 19.3 8.3
6 Kernel 8.3 8.0 4.3 8.1 7.7 4.0
6 Logit 12.4 12.8 6.8 11.1 11.2 5.9
6 RBFNN 10.2 8.5 5.6 13.0 13.8 6.5
9 Kernel 8.8 8.5 4.6 7.1 6.9 3.7
9 Logit 13.0 13.4 6.8 10.9 10.9 5.8
9 RBFNN 8.2 7.8 4.3 11.5 12.2 6.2
12 Kernel 9.3 8.9 4.8 6.8 6.6 3.5
12 Logit 12.4 12.6 6.5 11.1 11.0 5.9
12 RBFNN 8.0 7.8 4.2 11.5 12.1 6.2
15 Kernel 9.6 9.0 4.9 6.6 6.4 3.4
15 Logit 11.6 11.7 6.1 11.6 11.3 6.1
15 RBFNN 7.8 7.5 4.1 10.9 11.0 5.8
18 Kernel 9.5 8.7 4.8 6.5 6.3 3.4
18 Logit 10.8 10.8 5.7 12.1 11.7 6.4
18 RBFNN 7.8 7.5 4.1 11.0 11.2 5.9
21 Kernel 9.7 8.8 4.8 6.5 6.4 3.4
21 Logit 10.4 10.4 5.5 12.6 12.2 6.6
21 RBFNN 7.6 7.4 4.0 11.0 11.3 6
24 Kernel 9.8 8.8 4.8 6.5 6.4 3.5
24 Logit 10.2 10.1 5.4 12.6 12.3 6.7
24 RBFNN 7.6 7.3 3.9 11.1 11.4 6.0

Table 8. June 2017 of Location 2 - Embedding window.

gression.

• The RBFNN performs best in high-dimensional model
parameter state spaces caused by the embedding window.

• The choice of state space (input parameters, step size and
embedding window) is more relevant for less-periodic
time series.

Figure 9 summarizes KPI’s by best regressions in each cir-
cumstance. We classify our forecasting portfolio by the ex-
ternal factors such as location and seasonality. Recommenda-
tions are given in figure 10.
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FT RS
L Regression mape smape mae mape smape mae
3 Kernel 9.1 9.0 2.3 29.5 35.5 8.2
3 Logit 12.2 12.6 3.0 27.0 32.1 7.4
3 RBFNN 13.3 12.7 3.4 83.0 66.5 20.9
6 Kernel 9.1 8.9 2.3 26.2 30.9 7.3
6 Logit 11.7 11.8 2.9 25.3 29.7 6.9
6 RBFNN 12.4 11.8 3.0 57.8 48.8 14.0
9 Kernel 9.6 9.4 2.4 24.0 27.9 6.7
9 Logit 12.5 12.6 3.1 23.5 27.3 6.5
9 RBFNN 12.4 11.8 3.1 24.6 28.8 6.7
12 Kernel 9.9 9.7 2.5 22.3 25.6 6.3
12 Logit 12.4 12.4 3.1 22.2 25.5 6.1
12 RBFNN 11.9 11.5 3.0 23.5 27.3 6.4
15 Kernel 10.2 10.0 2.6 20.6 23.5 5.8
15 Logit 13.0 13.0 3.2 21.2 24.2 5.9
15 RBFNN 11.4 11.1 2.8 22.8 26.5 6.3
18 Kernel 10.6 10.3 2.7 19.3 21.8 5.4
18 Logit 12.8 12.7 3.1 20.4 23.2 5.7
18 RBFNN 10.1 10.0 2.5 22.4 25.9 6.2
21 Kernel 10.7 10.4 2.7 18.1 20.1 5.1
21 Logit 12.2 12.2 3.0 19.8 22.4 5.5
21 RBFNN 10.1 10.1 2.5 22.2 25.5 6.2
24 Kernel 10.9 10.6 2.8 16.9 18.5 4.7
24 Logit 11.4 11.3 2.9 19.3 21.8 5.4
24 RBFNN 10.0 9.9 2.5 21.9 25.1 6.1

Table 9. Dec 2016 of Location 1 - Embedding window.

FT RS
L Regression mape smape mae mape smape mae
3 Kernel 4.5 4.5 3.0 12.3 13.1 8.4
3 Logit 5.9 6.0 4.1 12.1 12.8 8.2
3 RBFNN 4.6 4.5 3.0 21.3 26.7 13.2
6 Kernel 4.7 4.7 3.1 11.1 11.7 7.5
6 Logit 6.0 6.0 4.2 11.3 11.9 7.6
6 RBFNN 4.5 4.4 3.0 15.5 17.9 9.6
9 Kernel 4.9 4.9 3.3 10.0 10.4 6.8
9 Logit 5.9 6.0 4.1 10.2 10.6 7.0
9 RBFNN 4.5 4.4 2.9 11.9 13.1 8.2
12 Kernel 5.1 5.1 3.4 9.0 9.2 6.3
12 Logit 6.5 6.5 4.3 9.3 9.6 6.5
12 RBFNN 4.2 4.1 2.8 10.9 11.8 7.7
15 Kernel 5.2 5.2 3.4 8.2 8.4 5.9
15 Logit 7.0 7.3 4.5 8.8 9.0 6.2
15 RBFNN 4.2 4.1 2.8 9.9 10.3 7.0
18 Kernel 5.3 5.2 3.5 7.8 7.9 5.6
18 Logit 6.5 6.6 4.3 8.5 8.6 6.0
18 RBFNN 4.0 3.9 2.6 9.9 10.3 7.0
21 Kernel 5.3 5.2 3.5 7.5 7.5 5.3
21 Logit 6.5 6.5 4.3 8.3 8.4 5.9
21 RBFNN 4.1 4.0 2.7 9.8 10.2 6.9
24 Kernel 5.1 5.0 3.3 7.2 7.1 5.1
24 Logit 6.1 6.2 4.0 8.2 8.3 5.8
24 RBFNN 4.0 3.9 2.6 9.7 10.1 6.9

Table 10. Dec 2016 of Location 2 - Embedding window.

Figure 10. Recommendations depending on the location and
seasonality.

Summarizing our experiences in the area of power demand

Figure 9. KPI’s by type of regression.

forecasting, one important lesson to be learned is the need to
consider the various behavior types and seasonality. In order
to perform best under all contingencies, the methodology has
to be flexible. Especially, the periodicity of a node influences
this choice. Beside the perennial difficulty to select ’opti-
mal’ regressors, the special knowledge of holidays impacting
power demand is central to this model and will improve re-
sults significantly.
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6. APPENDIX

6.1. Non-linear regressions

6.1.1. Kernel Regression

Kernel regression is a non-parametric method computing the
conditional expectation of a random variable through a ker-
nel density estimation. It is applicable to different time series
analysis problems and therefore Auto-Associative Kernel Re-
gression is introduced first. As mentioned in the introduction
a forecast can be accomplished by comparing the current sys-
tem state to states in the temporal or spatial neighborhood of
the historical data set.

Auto-Associative Kernel Regressions

The AAKR method is very useful in the detection of abnor-
mal states ~x ∈ RN , by searching for the most similar points to
the current one, interpreting a high difference as an abnormal
behavior. Therefore, AAKR is commonly used for anomaly
detection.
However, we will utilize kernel regression in order to locate
similar points. The comparison between a new measurement
~xt for time t and X as defined in chapter 2 is done by us-
ing the Nadaraya-Watson-Estimator defined below, which is
usually a Gaussian kernel in combination with a Euclidean
distance. The estimate is calculated through a weighted sum
of all records in the training matrix X or, more precisely, the
conditional expectation of a process X at time t given, we
have observed the sample ~xt for Xt

~xt
∗ = E[Xt|Xt = ~xt] =

∫
x∈X

xp(x|Xt = ~xt) dx (15)

≈
∑M
i K(~xt, ~xi)~xi∑M
i K(~xt, ~xi)

(16)

with a Gaussian kernel

K(~xt, ~xi) =
1√
2πσ

exp
(
− 1

2σ2
‖~xt−~xi‖2

)
, i = 1, . . . , N

(17)

or with the kernel for the nearest neighbor

K(~xt, ~xi) = δ(1A), A = {i =j=1,...,M ‖~xj − ~xt‖} (18)

Please note that the distance measure has naturally an impact
on the kernel weights. Typically, we think of the

• Euclidean distance

d(~x, ~y) = ‖~y − ~x‖2 =
√

(~y − ~x)>(~y − ~x) (19)

• Mahalanobis distance

d(~x, ~y) = ‖~y − ~x‖M =
√

(~y − ~x)>S−1(~y − ~x), (20)

where S is the covariance matrix.

The influence of different measures especially for highly cor-
related signals has to be analyzed.

Predictions with Kernel Regressions

The following analysis is discussed in Kantz and Schreiber
(2004) and Kantz and Ragwitz (2004), where the scalar lo-
cally constant predictor is defined and this predictor is gener-
alized to the vectoral case. Given a vector time series X =
(~x1, . . . , ~xT ), and an embedding dimension L we construct
ourselves a embedding vector xn = (~xn, ~xn−1, . . . , ~xn−L+1).
In order to predict a time 4t ahead starting in time t we first
choose a ε and generate a neighborhood Ut of xt defined
by Ut = {xn : ‖xn − xt‖L ≤ ε}, where ‖xn − xt‖L =∑L−1
i=0 ‖~xn−i − ~xt−i‖. The locally constant predictor for the

future time t+4t is then

x̂t+4t =
1

|Ut|
∑

xn∈Un

xn+4t. (21)

Remember that 4t can be the next time step or even a time
sequence (1, . . . ,H) defining a trajectory with horizon H.
The Kernel Regression introduced above is required to pro-
pose the following prediction algorithm. In contrast to the
simple locally Constant Predictor introduced in Kantz and
Schreiber (2004) the predictor with AAKR is not an average
of representative points. Instead it is a weighted sum over the
whole data set, where similar points receive higher weights

~x∗t+4t =

∑M
i K(xt,xi)xi+4t∑M

i K(xt,xi)
(22)

Clusters derived in the time series analysis step are useful
to increase the performance of the predictor, by referring to
records of a specific cluster C = C(~xt), which is the near-
est to the current observation ~xt. The estimate is defined as
follows

~x∗t+4t =

∑
xi∈C K(xt,xi)xi+4t∑

xi∈C K(xt,xi)
(23)

Furthermore, similarity grouping separates stochastically in-
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dependent signals, such that the approach presented can be
applied to similarity group. Thus, the identification of simi-
lar points is much more exact. For more details see for ex-
ample Hastie at al. (2008), Kantz and Schreiber (2004) or
Schoelkopf and Smola (2002).

6.1.2. Logistic Regression

Normally, logistic regression is used to find a probability that
a measurement ~yt belongs to a certain category (mostly two
categories) by transforming a given observation ~xt into an
interval [0, 1] (which is interpreted as the probability that ~yt
belongs to category 1).

P (Yt = ~yt | Xt = ~xt) =
exp(β0 + ~xTt · ~β1)

1 + exp(β0 + ~xTt · ~β1)
(24)

=
1

1 + exp(−(β0 + ~xTt · ~β1))
=: h~β(~xt) (25)

An optimal solution of ~β = (β0, ~β1) can be found by max-
imizing the logarithmic likelihood function using a gradient
descent for example.

L(~β | x) = P (Y | X; ~β) =

T∏
t=1

P (~yt+H | ~xt; ~β) (26)

=

T∏
t=1

h~β(~xt)
~yt(1− h~β(~xt))

(1−~yt) (27)

and the logarithmic likelihood function divided by T:

log(L(~β | X))

T

!
= maximize (28)

After the training step, a new prognosis for an observation
~xnew is done by solving

h~β?(~xnew) = ~y?new (29)

For more details see Backhaus at al. (2000) or Press at al.
(2007).

6.1.3. Sparse Grids

The combination technique of sparse grids to approximate a
functional relation is not a common method, this time. Zenger
and Bungartz developed the theory about the usage of sparse
grids in the early 90s. A huge advantage of using sparse grids

is that every possible (non-linear, non-quadratic and so on) re-
lation can be approximated. The combination technique uses
different sparse grids with different density of points in each
coordinate direction, but same basic function. The follow-
ing theory depends on papers by Zenger, Bungartz, Garcke,
Griebel and Gerstner (see Bungartz and Griebel (2004), Gar-
cke (2004), Garcke at al. (2013), Griebel at al. (1992), Zenger
(1990)).
A good overview to the theory of regularization of ill-posed
problems and optimization is given by Alt, Rieder, Hanke-
Borgeois and Tikhonov (see Alt (1999), Hanke-Bourgeois (2009),
Kirsch (2011), Rieder (2003), Tikhinov and Arsenin (1977),
Tikhonov at al. (1998)), the theory about error estimation is
well described by Garcke, Knapek and others (see Griebel
and Knapek (2000) for example).
The goal is to find a function f which approximates the rela-
tion between X and Y well:

~yt ≈ ~y?t = f(~xt) =

N∑
i=1

αi · φi(~xt) (30)

where φi(·) are basic functions and αi are coefficients, which
have to be optimized. To find a good solution of the approx-
imation function f , we want to minimize the mean squared
error (MSE). Further, we add a regularization term:

min
!
=

1

T

T∑
t=1

(~yt − f(~xt))
2 + λS(f) (31)

S will be the quadratic L2-norm of function f

S(f) = ‖Cf‖2L2
= ‖∇

N∑
i=1

αiφi(·)‖2L2
(32)

and can be interpreted as a smoothness operator, where ∇ is
the gradient. If λ is increasing, the solution of f becomes
smoother. Using the last two equations, we obtain the for-
mula:

1

T

T∑
t=1

(
~yt −

N∑
i=1

αiφi(~xt)

)2

+λ

N∑
i=1

N∑
j=1

αiαj〈∇φi(·),∇φj(·)〉L2

(33)

By solving the minimization problem, we can reach the fol-
lowing analytic solution for fixed k = 1, ..., N :

N∑
i=1

αi

(
Tλ〈∇φi(·),∇φk(·)〉L2

+

T∑
t=1

φi(~xt)φk(~xt)

)
(34)
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=

T∑
t=1

~ytφk(~xt) (35)

And the same solution represented by matrices and vectors

(λ · T · C +B ·BT )~α = BY (36)

⇔ ~α = (λ · T · C +B ·BT )−1BY (37)

where ~α is the N-dimensional vector of all coefficients αi and
the two matrices B and C represented by

B =

φ1(~x1) ... φ1(~xT )
...

...
φN (~x1) ... φN (~xT )

 (38)

and

C =

 〈∇φ1,∇φ1〉L2 ... 〈∇φ1,∇φN 〉L2

...
...

〈∇φN ,∇φ1〉L2
.... 〈∇φN ,∇φN 〉L2

 . (39)

In the next sector, there will be a short introduction to sparse
grids and the basic functions φ(·). A sparse grid has the
following parameters, first the dimension D, which depends
on the size of the input vectors ~xt, and second, the maxi-
mal grid level L. We only attend to equidistant grids (for
other examples see Smolyak in Smolyak (1963)). So, for a
given dimension D, the grid level vector ~L = (l1, ..., lD)T de-
scribes the density of points. For a fixed coordinate direction
hd = 2−

~Ld is the mesh sizes for d = 1, ..., D and describes
the gap between two points. Further, we use a multi-index
~i = (i1, ..., iD)T with id ∈ {0, ..., 2

~Ld} for d = 1, ..., D to
represent all points of a certain sparse grid Ω~L.
In this paper, the basic functions φ(·) are linear, piecewise
functions:

φld,id(~xt,d) =

{
1− | ~xt,d

hld

− id |, ~xt,d ∈ I
0, otherwise

(40)

with

I = ~xt,d ∈ [(id − 1)hld , (id + 1)hld ] ∩ [0, 1] (41)

where ~xt,d is the d-th component of ~xt. We get the multi-
dimensional basics functions by building the product over all
coordinate directions

Φ~l,~i(~xt) =

D∏
d=1

φld,id(~xt,d) . (42)

Finally, the approximation function f is represented by

f cL(~xt) =

D−1∑
q=0

(−1)q
(
D − 1
q

) ∑
|~l|=L+(D−1)+q

f~l(~xt)

(43)

and

f~l(~xt) =

2
~l1∑

i1=0

...

2
~lD∑

iD=0

α~l,~i · Φ~l,~i(~xt) . (44)

+ +

--

=

Figure 11. Combination technique of sparse grids (L=3 and
D=2) and an example for a function approximation.

The dimension of function reconstruction depends on the max-
imum grid level G and the dimension of the input space D. By
increasing maximum grid level G, the error is decreasing the-
oretically. In practice the error term is not decreasing when-
ever the maximum grid level is increasing. An optimal value
for G must be found. Last, the evaluation of a new point also
depends on the dimension of the input space and the maxi-
mum grid level:

• dim(ΩDG) = O( 1
hG

log( 1
hG

)D−1) = O(2G log(2G)D−1)

with hG = 2G

• Error: ‖g − gcG‖Lp
= O(h2G log( 1

hG
)G−1)

= O(22G log(2G)D−1)

• Costs of an evaluation: O(GD−1)
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6.1.4. Radial Basis Function Neural Networks

Radial basis function neural networks (RBFNNs) are a spe-
cial representative of artificial neural networks (ANNs) with
only one hidden layer (and one input and one output layer).
ANNs have the huge advantage that ANNs are able to ap-
proximate nearly every kind of relation in data and that they
automatically add new neurons or edges between two neurons
and/ or delete existing neurons or edges between two neurons.
The number of neuron of the input layer I is number of the di-
mension of the input vector. O is the number of neurons of
the output layer which is the same as the dimension of the
output vector. The number of neurons in the hidden layer H
can vary. For the theory, we accept that H is a fixed number
of neurons of the hidden layer. Every neuron of the hidden
layer has an own activation function which is a representative
of a radial Gaussian function

ah(~xt) = exp

(
−r2h

2 · σ2
h

)
(45)

with centre ~ch for h = 1, ...,H and the Euclidean distance

rh = ‖~xt − ~ch‖ =

√√√√ I∑
i=1

(~xt,i − ~ch,i)2 (46)

where ~xt,i is the i-th value in time t. Additionally, a multi-
dimensional radial gaussian function with covariance matrix
Σ can produce better results. (Remark: All weights of edges
between the input neurons and hidden neurons are equal to
one.)
The j-th output is calculated as follows

ot,j =

H∑
h=1

wh,j · ah(~xt) (47)

where wh,j is the weight of the edge between the h-th hidden
neuron and the j-th output neuron (has to be optimized in the
training part) and

~y?t+H = (ot,1, ..., o1,O)T (48)

for h = 1, ...,H and t = 1, ..., T . The training phase in-
cludes certain teaching steps which try to optimize the fol-
lowing items:

• weights wh,j of the edges between the hidden neurons
and output neurons

• number of hidden neurons H

• centres ch of the activation function of the hidden neu-
rons

• standard deviation σh of the activation function of the
hidden neurons

Finally, for a new observation the expected output is calcu-
lated by summarizing all return values of all activation func-
tions of the hidden neurons multiplied by their weights.

~y?new+H =


∑H
h=1 wh,1 · ah(~xnew)

...∑H
h=1 wh,O · ah(~xnew)

 (49)

For more details of RBFNN’s see the work of Kriesel (2005)
or Kruse at al. (2011).
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