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ABSTRACT 

Bayesian approaches have proven to be successful in 
prognostic health monitoring, especially for inverse problem 
solutions, such as the estimation of damage evolution model 
parameters from some damage dependent observations. In 
practice, they stem from the evaluation of the posterior 
distribution of a vector of parameters of interest conditioned 
on the observation of some signal features, which relies on 
the direct calculation of the observation likelihood, i.e. a 
measure of the probability that the observations are 
associated to some realizations of the system parameter 
vector. However, for realistic structures, a numerical 
simulation might be required for the evaluation of each 
sample likelihood, which can make the whole procedure for 
posterior pdf estimation computationally unfeasible.  
In this work, this problem is addressed by leveraging on 
surrogate modelling. Particle filter is used as a general 
framework for the combined health state estimation and 
prognosis of a skin panel subject to fatigue crack growth, 
while observing the strain field pattern acquired at some 
specific locations. A surrogate model consisting of an 
artificial neural network, trained on a set of analytical 
simulations, is used to predict the strain as a function of the 
crack position and length, thus allowing a fast calculation of 
the strain observation likelihood. The algorithm is tested with 
an analytic case study of a crack propagating in an infinite 
plate, allowing for a simultaneous diagnosis of the crack 
position and length, as well as a real-time updating of the 
evolution model parameters and system prognosis.  

1. INTRODUCTION 

In the last years, scientific and industrial communities have 
put a lot of efforts into the development of new frameworks 
for the autonomous assessment of structural integrity, 

generally known as Structural Health Monitoring (SHM), and 
for the real-time extrapolation of the SHM information into 
the future, often referred to as Prognostic Health 
Management (PHM). A combined usage of the two 
disciplines should allow real-time, automatic evaluations of 
the state of the structures based on a network of permanently 
installed sensors, then predicting the future state evolution 
potentially leading to large operative cost reductions and to 
the improvement of safety margins.  
Many SHM and PHM methods exist in the literature, either 
based on data (Yuen & Ortiz, 2017, Deraemaeker, Reynders, 
De Roeck & Kullaa, 2008) or on models (Warner, Bomarito,  
Hochhalter, W. Leser, P. Leser & Newman, 2017). Data-
driven methods often make use of pattern recognition or 
machine learning approaches for processing actual 
measurements, in an attempt to diagnose the structural 
condition and to perform prognosis, without needing to 
derive any detailed physics-based structural models (Farrar 
& Worden, 2012, Yan & Wang, 2008, Sbarufatti, Cadini & 
Giglio, 2017). Conversely, model-based approaches often 
consider the availability of simulated signal features for the 
healthy and damaged conditions (Sbarufatti, 2017), that are 
used to identify the most likely actual state, as well as state 
evolution models to predict the damage future behaviour 
(Cadini, Zio & Avram, 2009).  
Focussing on model-based SHM and PHM scenarios, they 
similarly require the solution of inverse problems (Warner et 
al., 2017) for model updating. For SHM, this implies the 
identification of damage parameters in a structural model 
(e.g. fatigue crack position and extension or delamination 
area for composite materials) based on some features 
extracted from indirect observations. For PHM, this typically 
consists in adjusting the evolution model parameters based 
on a sequence of state observations thus providing a more 
accurate and precise prognosis. However, this similarity is 
still overlooked in the literature. A common approach is that 
of performing damage identification first, and then providing 
the SHM results as an input to PHM algorithms for damage 
prognosis and risk assessment, either in a model-based 
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(Sbarufatti, Corbetta, Manes & Giglio, 2015) or data-driven 
(Mahadevan, Neal, Nath, Bao, Cai, Orme, Adams & 
Agarwal, 2017) framework, potentially inducing errors in the 
resulting statistics.    
In this context, Bayesian Model Updating (BMU) techniques 
offer the opportunity to define a unified statistical framework 
for damage identification and prognosis, in which the joint 
posterior probability density function (pdf) of damage and its 
evolution model parameters are calculated as a function of 
the observations from indirect measurements. However, it is 
widely recognised in the literature that a closed form solution 
of this problem is not available for realistic applications, thus 
one typically resorts to approximated solutions via Monte-
Carlo Sampling (MCS). Among the MCS approaches, 
Particle Filters (PF), a sequential version of the MCS, have 
attracted the attention of many researchers in the field of 
diagnosis and prognosis of structures, due to their 
demonstrated capability to sequentially update the pdfs of the 
system parameters in real-time during system observation, 
within a unique and coherent framework.  
However, as for the BMU in general, PF entails the 
calculation of each sample likelihood for the posterior pdf 
approximation, which is impractical for real-time diagnostic 
and prognostic model-based scenarios. In fact, for realistic 
structures, this would require running a structural model (e.g. 
based on Finite Element theory) for each sample of the 
parameter vector. Taking inspiration from the field of 
structural reliability analysis (Dubourg, 2011, Cadini, Santos 
& Zio), where similar issues have been successfully 
addressed in the last decade, surrogate modelling, e.g. based 
on Artificial Neural Networks (ANN) (Bishop, 2005), can be 
used to overcome this problem, mapping the inverse 
relationship between the damage parameters and the 
numerical signal feature prediction, thus enabling fast 
likelihood assessment. A noticeable example is reported by 
Warner et al. (2017), although limited to the diagnosis of 
damage on the basis of a Markov-Chain Monte Carlo 
Metropolis-Hastings algorithm. Surrogate models have also 
been applied to prognostics, specifically leveraging on 
machine learning for the fast calculation of the stress intensity 
factor at the crack tip, thus enabling fast damage evolution 
simulations (Leser, Hochhalter, Warner, Newman, Leser, 
Wawrzynek & Yuan, 2017, Corbetta, Sbarufatti, Manes & 
Giglio, 2015).   
This study presents a combined stochastic framework for the 
diagnosis and the prognosis of fatigue damage based on a 
distributed network of strain field measures. A PF algorithm 
estimates the joint posterior probability of crack length and 
crack centre position coordinates, as well as two parameters 
of a Fatigue Crack Growth (FCG) model, the Paris’s law, and 
the Residual Useful Life (RUL). A surrogate model, 
consisting of an ANN trained off-line with analytical strain 
field simulations in presence of different crack damages, is 
used to map the function between damage parameters and the 
strain field at sensor location, thus enabling fast sample 

likelihood calculation in the PF routine. The algorithm is 
tested in a simulated framework. 
The paper is structured as follow. Section 2 is a review of the 
PF framework including a discussion on the application of 
surrogate models for likelihood calculation. The application 
framework is described in Section 3 and results are shown in 
Section 4. A conclusive section is finally provided.  

2. REVIEW OF PARTICLE FILTER FRAMEWORK  

The objective of the filtering problem is to recursively 
estimate the augmented state of a system, including 𝑛௦ state 
variables 𝒙 and a vector of 𝑛 parameters 𝝑. This system is 
governed by a dynamic state-space (DSS) model (Haug, 
2005) which composes of the evolution equation, 𝑓(∙) , 
describing the system’s dynamics, and the observation 
equation, 𝑔(∙), which links the measurements  with  the  true  
(hidden)  system’s state. Equation (1) shows the discrete form 
of the DSS model, which satisfies the first order Markovian 
assumption (Arulampalam, Maskell, Gordon, & Clapp, 
2002). 

𝒚 = 𝑓(𝒚ିଵ, 𝒖ିଵ, 𝝎ିଵ), 𝒚 = [𝒙 , 𝝑] 

𝒛 = 𝑔(𝒚 , 𝜼) 
(1) 

The vector 𝒚 ∈ 𝐷 ⊆ ℝ×ଵ collects the system’s augmented 
state variables, with 𝑛 = 𝑛௦ + 𝑛 , 𝒛 = [𝑧ଵ, 𝑧ଶ, … , 𝑧௦]் ∈

𝐷௭ ⊆ ℝ௦×ଵ is the observation vector, with s the number of 
sensors, and the subscript k indicates the discrete k-th time 
step. The state-space domain D is the physical domain of the 
system’s augmented state variables, represented by a 
partition of the set ℝ×ଵ.  
The evolution function depends on the input u, the model 
parameters 𝝑  and the process noise, 𝝎 . A common 
assumption is that the input of the system u is observable, and 
its observability is not further discussed henceforth. The 
measurement is governed by 𝑔(∙)  and affected by the 
measurement noise, 𝜼 . The noises are random processes 
transforming the deterministic equations into stochastic 
equations.  
Particle filtering aims at estimating the posterior pdf of 𝒚 
given the sequence of noisy observations 𝒛:, 𝑝(𝒚|𝒛:), in 
case of nonlinear and non-Gaussian systems. The posterior 
pdf can be approximated by 𝑁௦ weighted samples (also called 
particles) of the system’s state, as expressed in the Eqs. (2)-
(3) (Haug, 2005, Arulampalam et al., 2002, Doucet, Godsill 
& Andrieu, 2000). 

�̂�(𝒚|𝒛:) =  𝑤
()

𝛿
௬ೖ

()
,௬ೖ

ேೞ

ୀଵ

 (2) 

𝑤ഥ
()

= 𝑤ିଵ
()

𝑝൫𝒛ห𝒚
()

൯ 

𝑤
()

=
𝑤ഥ

()

∑ 𝑤ഥ
()ேೞ

ୀଵ

 
(3) 
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where �̂�(𝒚|𝒛:) is the approximation of 𝑝(𝒚|𝒛:), 𝒚
()

=

ൣ𝒙
()

, 𝝑
()

൧ is the i-th sample of the system’s augmented state 

vector, 𝑤
()  is the normalized weight of 𝒚

() , 𝑝൫𝒛ห𝒚
()

൯ is 

the likelihood of the observation given 𝒚
()  and 𝛿∙,∙  is the 

Kronecker delta. The number of samples 𝑁௦ is supposed to 
be large enough to describe the (unknown) true shape of 
𝑝(𝒚|𝒛:). It should be noted that Eqs. (2)-(3) refer to the 
bootstrap particle filter (Arulampalam et al., 2002).  
The particle filtering-based prognosis is carried out by 

projecting the samples 𝒙
(), 𝑖 = 1, … , 𝑁௦ many steps ahead in 

the future, up to a limit state condition, with the p-step ahead 
prediction equation (Doucet et al., 2000), taking the input u, 
the evolution model parameters 𝝑 and the process noise 𝝎, 
into account. In a scenario for damage evolution prognosis 
under fatigue load cycles, similarly to (2), the posterior pdf 
of the number of remaining load cycles 𝑁,  to the critical 
condition can be estimated at discrete time k as reported in 
(4) (Cadini et al., 2009): 

�̂�൫𝑁,|𝒛:൯ =  𝑤
()

𝛿
ேೝ,ೖ

()
,ேೝ,ೖ

ேೞ

ୀଵ

 (4) 

where 𝑁,
() is the number of remaining load cycles to the limit 

condition, associated to the i-th particle trajectory. 
The practical implementation of the algorithm requires the 
definition of three fundamental functions:  

1. The transition density function of the state variables, 
𝑝(𝒙|𝒙ିଵ, 𝝑ିଵ), which drives the generation of 

samples 𝒙
()  and the p-step ahead prediction 

equation (Doucet et al., 2000). 
2. The transition density function of the parameters, 

𝑝(𝝑|𝝑ିଵ), which drives the generation of samples 

𝝑
(), hereafter based on Kernel smoothing approach 

(Liu & West, 2001). 

The likelihood function, 𝑝൫𝒛ห𝒚
()

൯ , strictly related to the 
observation equation (1) and calculated based on the 
availability of a surrogate model, as discussed in the next 
paragraph. 

2.1. Sample likelihood calculation based on surrogate 
modelling  

In general, likelihood calculation is performed based on the 
measurement equation (1), by inversely predicting a signal 

feature for a sample 𝒚
(), then calculating an error function 

between the predicted and the measured features, as in Eq. 
(5).  

𝑝 ቀ𝒛 ቚ𝒚
()

ቁ = 

1

൫2𝜋𝜎ఎ,
ଶ ൯

௦/ଶ
exp ቌ−

1

2𝜎ఎ,
ଶ  ൬𝑧


− 𝑔 ቀ𝒙

()
, 𝜼ቁ൰

ଶ
௦

ୀଵ

ቍ 
(5) 

where 𝜎ఎ,
ଶ  is the variance of 𝜼. Notice that, without any loss 

of generality, hereafter the parameter vector 𝝑  is not 
included as input for 𝑔(∙), assuming the signal feature is only 
influenced by the state variables in 𝒙 . This calculation is 
repeated 𝑁௦ times at each k-th discrete time. In a model-based 
framework this means running a model simulation each time 
a new likelihood assessment is required, which is often 
impractical if no analytical closed form solution exists for 
𝑔(∙), as this would lead to very high computational effort, 
preventing a real-time application of the method. 
It is thus possible to run off-line a number of simulations by 

a high fidelity model for 𝑆ℳ  state conditions 𝒙
()

, 𝑖 =

1, … , 𝑆ℳ, possibly covering most of the state space domain 
and extracting for each case the simulated versions of the s 
measured features. This results in a input-output database 
consisting of a 𝑛௦ × 𝑆ℳ  input matrix and a 𝑠 × 𝑆ℳ  output 
matrix. 
The high fidelity model can thus be replaced by a 
computationally efficient surrogate model for real-time 
operation, mapping the input-output relation intrinsic to the 
available database. The latter can be accomplished in a 
machine learning framework, for example, leveraging on 
regression ANNs, as in the present study. For brevity, it is not 
the authors intention to enter into the details of ANN 
formulation, as the literature is full of comprehensive 
descriptions of SHM application (Farrar & Worden, 2012). 
Here we limit to specify that, in order to limit the ANN 
complexity and to favour ANN generalization (Bishop, 
1995), s ANN surrogate models ℳ have been trained, each 

one predicting the feature measured by a single j-th sensor 𝑧
 

as a function of the input sample 𝒙
() , ℳ൫𝒙

()
൯ , thus 

calculating the observation likelihood as in (6):  

𝑝 ቀ𝒛 ቚ𝒚
()

ቁ

=
1

൫2𝜋𝜎ఎ
ଶ൯

௦/ଶ
exp ቌ−

1

2𝜎ఎ
ଶ  ൬𝑧


− ℳ ቀ𝒙

()
ቁ൰

ଶ
௦

ୀଵ

ቍ 
(6) 

Notice that this formulation considers a constant observation 
noise and does not take model biases into account, thus 𝜼 =

𝒩൫0, 𝜎ఎ
ଶ ൯. However, the latter can be easily included if a test 

program for model validation is carried out, which is outside 
the scope of the present activity. 

3. METHOD APPLICATION TO FCG DIAGNOSIS AND 

PROGNOSIS  

3.1. The simulated FCG and the simulated strain 
measurements  

The method is applied to the prediction of FCG in an infinite 
aluminium plate subject to stationary sinusoidal load. The 
plate is supposed to have infinite dimensions (no effect of the 
plate boundaries on the simulated strain field) and is equipped 
with a network of s = 20 virtual strain gauges (Figure 1), 
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measuring in y-direction and representative of a network of 
optical fibre Bragg grating sensors. Sensors layout has been 
defined based on previous experience by the authors.  
FCG has been numerically simulated according to Paris’s law 
and based on (7): 

𝑎 = 𝑎ିଵ + 𝐶 ൫𝛽 𝐷𝑆 ඥ𝜋𝑎ିଵ൯


 ∆𝑁 (7) 

𝑎 indicates the crack length at discrete step k, C and m are 
two material parameters typical for aluminum, 𝛽 is the shape 
function, 𝐷𝑆 is a known input variable indicating the stress 
range in one load cycle and ∆𝑁 is the load cycle increment 
for crack step calculation, here set to 100 cycles introducing 
negligible numerical errors. 
The strain measures during simulated FCG are analytically 
derived. An analytical solution exists for the calculation of 
the stress field in presence of a crack for very simplified 
applications (Sanford, 2003). Consider a reference system 
with origin in the crack centre position, as in Figure 2. The 
stress solution for the infinite plate in presence of a central 
crack with length 2a and subject to a uniaxial far field stress 
S (Figure 2.a) is (Sanford, 2003): 

𝜎௫ =
𝑆 𝑟

√𝑟ଵ𝑟ଶ

cos ൬𝜃 −
𝜃ଵ + 𝜃ଶ

2
൰ + 

          −
𝑆 𝑎ଶ

(𝑟ଵ𝑟ଶ)
ଷ
ଶ

 𝑟ଵ sin(𝜃ଵ) 𝑠𝑖𝑛
3

2
(𝜃ଵ + 𝜃ଶ) − 𝑆 

𝜎௬ =
𝑆 𝑟

√𝑟ଵ𝑟ଶ

cos ൬𝜃 −
𝜃ଵ + 𝜃ଶ

2
൰ + 

          +
𝑆 𝑎ଶ

(𝑟ଵ𝑟ଶ)
ଷ
ଶ

 𝑟ଵ sin(𝜃ଵ) 𝑠𝑖𝑛
3

2
(𝜃ଵ + 𝜃ଶ) 

(8) 

𝜏௫௬ =
𝑆 𝑎ଶ

(𝑟ଵ𝑟ଶ)
ଷ
ଶ

 𝑟ଵ sin(𝜃ଵ) 𝑠𝑖𝑛
3

2
(𝜃ଵ + 𝜃ଶ) 

It allows the calculation of 𝜎௫(𝑥, 𝑦)  and 𝜎௬(𝑥, 𝑦)  stress 
tensor components, with 𝑥 = 𝑟 cos(𝜃)  and 𝑦 =
𝑟 sin(𝜃) coordinates indicating the relative distance of a 
sensor from the crack centre. The strain measure in y-
direction is thus analytically simulated by applying the 
constitutive law and adding a Gaussian noise 𝜂 ~ 𝒩൫0, 𝜎ఎ

ଶ൯: 

𝜀௬ =
𝜎௬(𝑥, 𝑦)

𝐸
−

𝜈

𝐸
𝜎௫(𝑥, 𝑦) +  𝜂 (9) 

where E and 𝜈 are the elastic modulus and the Poisson’s ratio, 
respectively. A strain field example is reported in Figure 1, 
for a 100 mm long crack and with no noise perturbation. The 
data for the generation of virtual strain observations are 
summarized in Table 1. 

 
Figure 1. Schematic view of the plate and sensor network positions, with simulated strain field (𝜀௬) in presence of a crack 

with centre coordinates [145, 65]mm. The crack centres used for surrogate model training are also indicated. 

Table 1. Data for generation of target FCG and virtual 
strain observations. 

 
Parameter Value 
C 2.382 10-12  

[mm cycle ൫MPa√mm൯
ି୫

⁄ ] 
m 3.2 [-] 
β 1 [-] 
DS 100 [MPa] 
a0 5 [mm] 
𝜎ఎ

ଶ 25 [με2] 

E 71000 [MPa] 
𝜈 0.3 [-] 
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3.2. Particle Filter implementation  

In this study, the PF algorithm is a configured as a sequential 
importance resampling algorithm with systematic resampling 
(Arulampalam et al., 2002) and is used as a unified statistical 
framework for real-time diagnosis and prognosis of FCG.  
Diagnosis is performed by filtration of the 𝑛௦ = 3  state 
variables, which are collected in 𝒙, including crack length a 
and the x, y coordinates of the crack centre. For crack length, 
this requires definition of the transition density function of a, 
𝑝(𝑎|𝑎ିଵ, 𝝑ିଵ), which is obtained by adding a random 
perturbation, the process noise 𝝎 , to Equation (7). The 
process noise is a representation of non-modelled phenomena 
and variabilities of true dynamic processes that are not 
accounted for in typical engineering models. As detailed by 
some of the authors in (Corbetta, Sbarufatti, Giglio & Todd, 
2018), this random perturbation should not significantly 
modify the trend of the particle swarm, the latter being the 
goal of the model parameter updating procedure discussed 
below, while it should enlarge or shrink the particle 
dispersion. A log-Normal perturbation is selected 

𝝎 ~ 𝒩 ቀ−
ఙഘ

మ

ଶ
, 𝜎ఠ

ଶ ቁ (Corbetta et al., 2018) and, considering 

𝜔() is a realization of 𝝎, equation (7) is modified for the i-th 
particle as: 

𝑎
()

= 𝑎ିଵ
()

+ 𝐶 ቆ𝛽 𝐷𝑆 ට𝜋𝑎ିଵ
()

ቇ



 ∆𝑁 exp ൫𝜔()൯ (10) 

For the x, y coordinates, leveraging on the assumption of 
infinite plate dimensions, it is reasonable to consider a 
symmetric FCG at the two crack tips, thus a fixed crack 
centre during damage evolution. A kernel smoothing sub-
algorithm has thus been used to project samples of the x, y 
coordinates during run-time. For the i-th particle, samples are 
drawn according to equation (11), considering x and y 
coordinates uncorrelated, thus substituting either x or y to the 
general variable c: 

𝑐
()

= √1 − ℎଶ𝑐ିଵ
()

+ ൫1 − √1 − ℎଶ൯E[𝑐]ିଵ + 𝑟         
𝑐 = 𝑥, 𝑦 

(11) 

Where 𝑟  is a realization of 𝒩(0, ℎଶV[𝑐]ିଵ) , ℎ ∈ [0; 1]  is 
the smoothing parameter, a choice of the algorithm designer 
(Liu & West, 2001), and the two moments E[𝑐]ିଵ  and 
V[𝑐]ିଵ  are the Monte Carlo-mean and -variance of the 
centre coordinates at the previous time step, respectively. 
Specifically, during algorithm inizialization, a variance is 
selected in order to provide x, y samples covering the entire 
sensor area. 
Prognosis is performed by propagating particles many steps 
ahead in the future, up to a critical crack length, 𝑎, based 
on Eq. (10). The latter contains 𝑛 = 2 model parameters, 
collected in the model parameter vector 𝝑 = [𝐶, 𝑚], which 
are typically available in the literature for many materials, 
although affected by very large dispersion (Virkler, 1979, 
Annis, 2005). Real-time model parameter updating is used to 
shrink this uncertainty conditional on the observed data, thus 
aiming at improving the prediction of future trends. Inside the 

PF framework, this requires sampling of 𝝑
() , which is 

performed, again, based on the kernel smoothing sub-
algorithm, and taking the statistical correlation of C and m 
into account (Annis, 2004): 

𝝑
()

= ඥ1 − ℎଶ𝝑ିଵ
()

+ ቀ1 − ඥ1 − ℎଶቁ E[𝝑]ିଵ + 𝒓 (12) 

Where 𝒓  is a realization vector of 𝒩(0, ℎଶΣ[𝝑]ିଵ)  and 
Σ[𝝑]ିଵ  the Monte Carlo covariance matrix of 𝝑  at the 
previous time step, thus allowing to sample C and m from 
their joint posterior distribution. The initialization of the 
model parameters follows the historical data of the Al2024-
T3 aluminum alloy found by Virkler, Hillberry and Goel 
(1979). Table 2 collects the PF hyperparameters and the 
initialization moments herein adopted. 

3.3. The surrogate model for strain prediction  

As anticipated in section 3.1, an analytical expression exists 
for calculation of stresses and strains at j-th sensor position in 
an infinite plate subject to FCG. For more complex situations, 
one can make use of numerical simulations, e.g. by means of 
Finite Elements, for strain prediction at sensor locations, then 
using a surrogate model to predict the strain at some target 

 
Figure 2. (a) Schematic view of the infinite plate model 
and (b) reference system for the application of equation 

(8). 
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locations for each state particle 𝒙𝒌
(𝒊)  representing damage 

condition, thus allowing calculation of the observation 
likelihood in (6). For this reason, the complete model-based 
scenario including the surrogate model is tested hereafter, 
although the latter could be potentially substituted by the 
analytical expression in (9) for this rather simplified 
application.  
Twenty Multi-Layer Perceptron ANNs are trained with 
input-output examples generated with (9), each of them 
predicting the strain for one j-th sensor included in the 
network  (Figure 1). The j-th ANN is constituted by a 3-node 

input layer (for 𝒙 = [𝒂, 𝒙, 𝒚]), a 1-node output layer (for 𝜺𝒚
𝒋 ), 

and a 100-node hidden layer, selected with a trial and error 

                                                           
1 Training crack centre positions have been selected avoiding 
any crack crossing the vertical axis intersecting sensor 
locations, in order to facilitate ANN training.  

procedure to guarantee sufficient ANN generalization. The 
interested reader can refer to Sbarufatti (2017), where the 
description of a rigorous method for hidden node number 
selection is provided in the context of model-based damage 
identification on realistic structures. Quasi-Newton 
optimization algorithm, available in NETLAB (Nabney, 
2004), has been selected for ANN training, coupled with 
cross validation and early stopping to avoid data overfitting 
(Bishop, 1995), specifically dividing the training and 
validation subsets with a 70% - 30% proportion and stopping 
the training algorithm when the validation error increases for 
8 consecutive training epochs. The training database includes 
1112 crack centre positions (located as in Figure 11) and a 
variable number of crack lengths depending on the relative 
distance between the sensor and the crack centre, for a total 
𝑺𝓜 = 𝟗𝟏𝟑𝟕𝟔.  
The performance of the surrogate model for strain prediction 
at sensor ID 7 can be appreciated in Figure 3.a, where the 
regression plot between target and predicted strains is shown 
for a new dataset never seen during training and including 
cracks with different lengths and randomly dispersed over the 
plate area within the sensor grid. The corresponding root 
mean square error is 4.81με. The strain sensitivity of sensors 
ID 9, 13 and 14 to a crack propagating as in Figure 1 is also 
shown in Figure 3.b for comparison with the error found for 
strain field prediction by the ANN. Both the exact target 
strain (used for training) and the ANN output regression are 
shown in the same figure. 

 
Figure 3. (a) regression plot for ANN performance assessment under a test dataset, (b) strain sensitivity for sensors ID 9, 

13 and 14 to a crack propagating in the plate centre. 

Table 2. Hyperparameters and initialization variables of 
the PF framework. 

 
Parameter Value 

𝜎ఠ
ଶ  1 

h 0.2 
E[𝑐] [0,0] mm 
V[𝑐] [20000,20000] mm2 
E[𝝑] [2.382 10-12, 3.2] 

Σ[𝝑] ቂ
0.9966 −0.1764

−0.1764 0.0346
ቃ 

𝑎 50 mm 
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4. RESULTS 

The algorithm performance is now assessed on a simulated 
FCG, initiated as in Figure 1, based on sequential strain field 
observations calculated with (9). The target of the test is the 
estimation of the crack centre coordinates (145mm and 
65mm for x and y, respectively) and the crack length, then 
refining the prior pdf of the evolution model parameters (C 
and m), finally providing a refined prediction of the RUL. 
The PF output results have been illustrated in Figures 4-6. 
The posterior state estimation is shown in 4.a, 4.b and 4.c, for 
the x,y crack centre coordinates and the crack length, 
respectively. The RUL posterior pdf is reported in Figure 4.d, 
calculated with equation (4). In particular, results are shown 
in terms of mean value and 95% confidence boundaries of the 
posterior state estimate. Due to the statistical correlation of C 
and m parameters (Annis, 2004), their joint posterior estimate 
is represented in Figure 5, in terms of particle dispersions, at 
three instants of the FCG, specifically at the initiation of the 
filter, at mid-life and at the end-of-life. Finally, Figure 6 

shows the particle projection at future time steps, again for 
three discrete time instants during FCG.  
Up to approximately 5 x 103 cycles, the sequential filter is 
unable to refine the posterior estimation of the state and 
parameter variables due to the fact that the observation noise 
hides the insufficient strain sensitivity to damage. In 
particular, this is reflected in the large uncertainty affecting 
the crack centre coordinates, which is coupled with a 
relatively wrong estimate of the crack length. Then, 
considering also the large prior uncertainty on C and m 
parameters (visible in Figure 5 at algorithm initiation, N=1), 
a very low accuracy and precision is found for the RUL 
prediction. In fact, their prior dispersion, coupled with the 
uncertainty on the crack length estimation, is responsible for 
the very wide particle dispersion when projected at future 
time steps, as visible in Figure 6.a. However, when a 
significant trend is identified within the observations, after 5 
x 103 cycles, the PF algorithm is able to provide very efficient 
filtering of the state variables, which is reflected in the 

 
Figure 4. PF results (a) x-coordinate of crack centre, (b) y-coordinate of crack centre, (c) crack length and (d) RUL 

estimate. 
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convergence of the x,y crack centre coordinates and the crack 
length on the target value, with narrower confidence 
boundaries, thus resulting in a visible shrinkage of the RUL 
distribution. The increase of precision in the RUL estimate is 
also the result of the algorithm ability of filtering the 
multivariate joint distribution of C and m parameters while 
the observation trend becomes clearer, diminishing the 
particle dispersion (Figure 5). The latter is in fact reflected in 
less particle dispersion when projected at future time steps, 
as visible in Figure 6.b-c. 

5. CONCLUSION 

A Particle Filter algorithm is used in this study as a unique 
statistical framework for diagnosis and prognosis of 
structures subject to fatigue crack growth, providing real-
time estimation of the damage parameters, including crack 
centre coordinates and crack length, updating of two fatigue 
crack model parameters, and prediction of residual life 
distribution, conditioned on sequential strain observations. 
The algorithm is tested in a rather simplified scenario 
consisting of a crack propagation in an infinite plate subject 
to a far field stress, for which the exact analytical strain field 
solution exists and is used to generate strain observations 
during FCG, upon addition of random Gaussian noise to 
simulate a realistic measurement. 
One limit to the real-time implementation of the method is 
the requirement for very fast likelihood assessment, for each 
Monte-Carlo sample at each observation. Though this 
obstacle could be easily overcome in this simplified scenario 
due to the availability of an analytical function predicting the 
strain at sensor positions as a function of the damage 

characteristics, i.e. the crack length and the crack centre 
coordinates, a more general approach is used, which is valid 
also when no analytical strain field solutions exist. In 
practice, a surrogate model consisting of an artificial neural 
network is trained off-line with a database of analytical strain 
patterns for different damage examples. During the algorithm 
on-line operation, the ANN takes a state sample as input 
(including the sampled crack length and crack centre 
coordinates) and provides the strain at sensor locations as 
output, for instantaneous sample likelihood calculation.  
The results shown in this paper are very optimistic and the 
algorithm real-time effectiveness for contemporaneous 
tracking of the damage variable, for diagnosis, and updating 
of the damage evolution model parameters, for prognosis, has 
been proven. Thus, the method extension for more complex 
monitoring scenarios, based on a database of numerical strain 
patterns for various damage examples, is matter of the future 
extension by the authors.   
Nevertheless, as most of the Monte-Carlo sampling methods 
in the literature, the method suffers for sampling 
impoverishment in case of a wrong selection of its hyper-

      
Figure 5. Posterior joint distribution of C and m 

parameters at three instants during FCG. The true 
parameters used for target FCG are also displayed. 

      
Figure 6. Particle projection for RUL pdf estimation at 

three instants during FCG. 
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parameters, including the process noise and the parameter 
sampling variances. In this study, this selection is facilitated 
by using an optimal unbiased process noise and the kernel 
smoothing sub-algorithm for parameter sampling. However, 
future research should target the identification of quantitative 
probabilistic methods to select these fundamental particle 
filtering parameters. 

NOMENCLATURE 

a semi-crack length 
a0 initial semi-crack length for propagation initialization 
𝑎 critical semi-crack length for residual life 

calculation 
𝐶 material parameter in Paris’s law 
𝐷𝑆 stress range in one load cycle 
E Young’s modulus 
𝑓(∙) evolution equation 
𝑔(∙) observation equation 
h Kernel smoothing parameter 
k discrete time step 
m material parameter in Paris’s law 
ℳ   surrogate model for feature prediction at j-th sensor 
𝑛 number of elements in 𝒚 
𝑛 number of parameters in 𝝑 
𝑛௦ number of state variables in 𝒙 
𝑁௦ number of particles 
𝑁  number of remaining load cycles to critical 

condition 
r, r perturbation sample (or sample vector) for 

parameter updating 
𝑟ଵ, 𝑟ଶ, 𝜃ଵ, 𝜃ଶ geometrical parameters for stress 

calculation 
s number of sensors 
𝑆ℳ  number of example states for surrogate model 

training 
S far field stress 
𝒖 input parameters of the evolution model 

𝑤
() normalised weight of the i-th particle 

𝑤ഥ
() non-normalised weight of the i-th particle 

𝑥, 𝑦 crack centre coordinates 
𝒙 vector of state variables 
𝒚 augmented state vector 𝒚 = [𝒙, 𝝑] 

𝒚
() i-th sample of 𝒚 at k-th discrete time 

𝒙
() i-th sample of 𝒙 at k-th discrete time 

𝒛 observation vector 
𝛽 shape function 
𝛿∙,∙ Kronecker delta 

𝜀௬
 strain observation in y-direction by the j-th sensor 

∆𝑁 load cycle increment for numerical crack 
propagation 

𝜎ఎ
ଶ variance of 𝜼 

𝜎ఠ
ଶ  variance of process noise 𝝎 

𝜎௫ , 𝜎௬ stress tensor components in 𝑥, 𝑦-direction 

𝜈 Poisson’s ratio 
𝝑 vector of parameters for model updating 
𝝎 process noise 
𝜼 measurement noise 
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