
Rule-based Diagnostics of a Production Line
Osarenren Kennedy Aimiyekagbon1, Lars Muth2, Meike Wohlleben3, Amelie Bender4, Walter Sextro5

1,2,3,4,5 Paderborn University, Faculty of Mechanical Engineering,
Dynamics and Mechatronics, Warburger Str. 100, 33098 Paderborn, Germany

{firstname.lastname}@uni-paderborn.de

ABSTRACT

In the industry 4.0 era, there is a growing need to transform
unstructured data acquired by a multitude of sources into in-
formation and subsequently into knowledge to improve the
quality of manufactured products, to boost production, for
predictive maintenance, etc. Data-driven approaches, such
as machine learning techniques, are typically employed to
model the underlying relationship from data. However, an
increase in model accuracy with state-of-the-art methods, such
as deep convolutional neural networks, results in less inter-
pretability and transparency. Due to the ease of implementa-
tion, interpretation and transparency to both domain experts
and non-experts, a rule-based method is proposed in this paper,
for prognostics and health management (PHM) and specifi-
cally for diagnostics. The proposed method utilizes the most
relevant sensor signals acquired via feature extraction and se-
lection techniques and expert knowledge. As a case study,
the presented method is evaluated on data from a real-world
quality control set-up provided by the European prognostics
and health management society (PHME) at the conference’s
2021 data challenge. With the proposed method, our team took
the third place, capable of successfully diagnosing different
fault modes, irrespective of varying conditions.

1. INTRODUCTION

Fostered by digitalization and distributed networking, the
fourth industrial revolution (industry 4.0) encompasses smart
factories, cyber-physical systems, the Internet of Things (IoT),
amongst others. In this era, development phases and sub-
sequently time to market have become shorter, production
flexibility to satisfy individual customer needs has become
highly necessary and high system availability and efficiency
have become more significant (Lasi, Fettke, Kemper, Feld, &
Hoffmann, 2014; Lee et al., 2018). These have emphasized
the need for advanced analytics and prognostics and health
management (PHM) not just at the system level but also at
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the component level. In addition to diagnostics and prog-
nostics of cyber-physical systems and IoT devices, PHM also
involves health management through their life cycle (Lee et al.,
2018). There exist a broad range of diagnostics and prognos-
tics approaches, from physics-of-failure (PoF)-based methods
to artificial intelligence techniques. On the one hand, PoF
models build on domain experts and first principles, which
foster model transparency and interpretability. Furthermore,
high-fidelity models result in high model accuracy (Elattar,
Elminir, & Riad, 2016). However, a major drawback of PoF
models is deriving such high-fidelity models. On the other
hand, with data available from various sources, artificial in-
telligence methods, such as machine learning techniques, are
often employed to model the underlying relationship from data
(Elattar et al., 2016). The recent development of deep learning
techniques such as convolutional neural networks allows the
modeling of complex relationships within data (Zhang et al.,
2019). However, this results in high model accuracy at the cost
of diminished model transparency and interpretability. Hybrid
methods are conceivable to bridge the gap between these two
techniques (Elattar et al., 2016).

Given that production, product quality, and maintenance are
intertwined (Gu, He, Han, & Chen, 2017), a brief literature re-
view on the application of PHM techniques in the industry and
industry-related use cases is considered in the following. In
their study, Jimenez-Cortadi et al. (Jimenez-Cortadi, Irigoien,
Boto, Sierra, & Rodriguez, 2020) employed four machine
learning techniques, including recurrent neural networks, to
estimate the remaining useful life (RUL) of machining tools
of a computer numerical control (CNC) lathe. Although their
application was successful in the offline development phase,
an online implementation within the production machine was
impeded due to the complexity of the techniques.

Panicucci et al. (Panicucci et al., 2020) proposed a cloud-
and edge-based solution. Their solution comprises three tree-
based methods, including a decision tree and a random forest.
According to the authors, their method choice is attributed to
model interpretability, which is directly gained in the decision
tree and indirectly via feature importance in the random forest.
The proposed methods are successfully employed to diagnose
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simulated component degradation of an experimental robotic
arm. However, only the motor current signal was investigated
in the course of their study.

For the RUL estimation of a CNC machine tool, Luo et
al. (Luo, Hu, Ye, Zhang, & Wei, 2020) employed a digital
twin-driven hybrid modeling approach. The approach consists
of a particle filter method, a multi-domain simulation model
and several data-driven methods, such as support vector regres-
sion. A high accuracy could be achieved with their proposed
approach, even under varying conditions. However, the simu-
lation model is not validated. Moreover, deriving high-fidelity
models is typically not feasible.

To assist in the transition from corrective to predictive mainte-
nance, Fernandes et al. (Fernandes et al., 2019) employed a
rule-based modeling approach to anticipated predictive main-
tenance tasks of a precision parts manufacturing company. Be-
cause of the absence of fault instances, the described approach
could not be validated. However, due to the transparency
and interpretability of such a knowledge-driven rule-based
approach, it is considered in this paper.

Per the general PHM steps (Elattar et al., 2016), the process in-
volved in generating the data of the case study at hand is briefly
described subsequently, alongside an overview of the data set
and the tackled task. An overview of the employed techniques,
ranging from feature extraction to modeling approaches, is
provided. The methodology towards fault classification and
operating condition clustering is put forward in the following
section. Afterwards, the achieved results are presented, and
finally, a concluding remark and some possible improvements
are proposed.

1.1. Case Study

A case study is considered for the diagnostics of an industrial
production line. The data set was provided by the European
prognostics and health management society (PHME) at the
conference’s 2021 data challenge (PHM Society, 2021). A
description of the monitored process, the data set, and the
challenge is given in the following paragraphs.

Process description
The process, as depicted in Figure 1, is an automated qual-
ity control pipeline for electrical fuses. This quality control
pipeline is a vivid example of part of a smart factory. It con-
sists of components, such as a 4-axis SCARA-robot picking
and placing the fuses with a vacuum gripper to and from a
testing area, a thermal camera to detect fuses with unusually
high temperatures and an industrial camera to monitor the
fuses. As visualized in Figure 1, the relevant steps of the qual-
ity control pipeline are as follows: The fuses are picked up by
the vacuum gripper of the robot from the part feeding system
(feeder) and placed onto the testing area (1). In the testing
area, the fuses undergo tests, including electrical conductivity,

amperage and temperature. After the tests, the fuses are placed
(2) on a conveyor belt, where they are sorted according to the
test results by an actuated bar (3) and then transported (4) to
a narrow conveyor belt (5). On this conveyor belt, the fuses
are transported back to the feeder (6). The described cycle
is repeated for up to about three hours. During this process,
several health and process monitoring signals were acquired.

Figure 1. Structure and steps of the quality control pipeline
for electrical fuses (PHM Society, 2021)

Data description
Data has been acquired under different health states and op-
erating conditions by an automated data acquisition system
during the described process. The health states comprise fault-
free instances and artificial fault modes. These fault modes
were introduced to simulate real-world scenarios for the chal-
lenge, and each mode influences one or more sensor signals.
Furthermore, data was acquired under two different operating
conditions for the fault-free state.

A total of 99 data sets (experiments) were provided for the
model training and validation phase, comprising fault-free
instances with class label 0 and faulty instances with class
labels 2, 3, 4, 5, 7, 9, 11, and 12 as indicated in Table 1.

Table 1. An overview of the provided data sets

Class description Label(s) Quantity
Fault-free instance 0 70

Artificial fault instance
2, 3, 5, 7, 9 4 each
4, 11, 12 3 each

Each data set comprises a set of 50 signals, which can be
broadly categorized into health monitoring signals, such as
Vacuum and SmartMotorSpeed, environmental monitor-
ing signals, such as Humidity and Temperature, and
general process monitoring signals, such as ProcessCpu-
LoadNormalized and ProcessMemoryConsumption.
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Per sensor signal, up to seven attributes, as depicted in Figure
2, are calculated over a time window of 10 s and stored. Only
these attributes are made available and not the raw sensor
signals.

Sensor signal

Mean value
(value)

Standard deviation
(vStd)

Minimum value
(vMin)

Maximum value
(vMax)

Time series trend
(vTrend)

Sampling frequency
(vFreq)

Number of samples
(vCnt)

Figure 2. Possible attributes stored per sensor

Task description
For the data challenge, four tasks were formulated. Firstly,
previously unseen data has to be correctly classified (fault
detection and identification). Secondly, the signals have to be
ranked according to their usefulness in diagnosing a fault, if
present (root cause analysis). Thirdly, the data segments used
to identify a fault, if present, should be as short as possible,
according to the temporal order. Lastly, the fault-free instances
acquired under two different operating conditions have to be
clustered. A requirement of the challenge was the submission
of the solution codes as Python 3 jupyter notebook files.

1.2. Theoretical framework

The tasks are located in the two fields classification/diagnosis
and clustering. The first three tasks are strongly connected
to the basic process of setting up a diagnosis system: First,
measurements have to be acquired. From these measurements,
features have to be extracted. A large number of possibly in-
significant features increases the model complexity and might
also diminish model accuracy. Hence, the most significant
features have to be selected, and finally, a model for the classi-
fication of faults has to be set up.

The fourth task stems from the field of clustering. In the case
at hand, it is known, that two groups (operating conditions)
are present in the data, but it is unknown, which experiment
belongs to which group. In this case, the feature extraction can

be carried out as for a classification task. However, the feature
selection cannot be based on variances within and between
classes, since no labels are available.

Following the general PHM steps (Elattar et al., 2016), the
employed feature extraction, feature selection and modeling
approach to tackle the presented tasks are given in this section.

Feature extraction
Typically, features are extracted in the time-, frequency- and
time-frequency domain of condition monitoring data, such as
vibration and acoustic data, acquired over time (Luo et al.,
2020). Given that the presented signals are not complex wave-
form signals, but already pre-processed, only a time domain
analysis of the presented signals is adequate. Thus, statistical
parameters, such as standard deviations and peak values, are
derived from the signals.

Feature selection
Feature selection techniques can be broadly classified into
filter, wrapper, and embedded methods (Guyon & Elisseeff,
2003). Filter methods are employed to select a subset of fea-
tures independent of the selected classifier. Wrapper methods
use classifiers or regressors to rank features and are usually
more accurate than filter methods. Nonetheless, they are com-
putationally more expensive. With embedded methods, the
feature ranking and the classifier/regressor training process
occur simultaneously (Guyon & Elisseeff, 2003).

Working with unlabelled data, i.e., unsupervised learning,
presents a new challenge. In supervised learning, labels help
to discern the importance of the given set of features and thus,
they help in feature selection. However, this is not the case
in unsupervised learning since no labels are available. Hence,
the questions arise, which features are significant, which are
redundant, which are irrelevant, and which are even mislead-
ing (Dy & Brodley, 2004). However, different approaches for
selecting features in unsupervised learning can be found in
scholarly literature (Roffo, 2016; Roffo, Melzi, & Cristani,
2015).

In this paper, filter methods are employed, independent of a
specific classifier or clustering algorithm, to preselect the most
significant features before modeling or algorithm training.

• Filter methods for classification
Chi-square test and Analysis of variance (ANOVA) F-
value were evaluated for the proposed tasks. However,
given the data challenge requirements and the similarity
of the results, only the ANOVA F-value was adopted in
this paper.
ANOVA F-value: Not every available signal and feature
is relevant and significant. Therefore, when creating effi-
cient models, only certain features have to be selected by
the feature selection process. The first step in this process
is to evaluate all available features with respect to the
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classification task. Typically, a feature score is calculated
based on how separable the feature values are between
the classes. Such a score is the ANOVA F-value. It is
defined as

F =
MSB

MSW
, (1)

where MSB is an estimator for the variance of the feature
means between all classes, and MSW is an estimator for
the variance of the feature within a class (Sahai & Ojeda,
2004). F becomes larger, if a feature has very distinct
values for a certain class as compared to all available
samples, and it becomes a value close to 1, if the feature
cannot explain the differences between the classes. Based
on the F-value, the highest scoring features can be selected
and used to build a classification model.

• Filter methods for clustering
Infinite feature selection (Roffo et al., 2015), feature rank-
ing based on correlation coefficients (Guyon, Weston,
Barnhill, & Vapnik, 2002) and Laplacian score (He, Cai,
& Niyogi, 2005) as implemented by Giorgio (Roffo, 2016;
Giorgio, 2021), are evaluated for the clustering of the op-
erating conditions. Due to the equally good results, the
Laplacian score is employed for selecting a subset of
features for the clustering task.
Laplacian score (He et al., 2005): The underlying prin-
ciple is to construct a graph with k nearest neighbours,
assign weights to connected nodes of the graph, and then
compute the Laplacian score from the derived Laplacian
graph. The weights are defined by distance metrics, such
as the Euclidean distance. Top-ranked features accord-
ing to the Laplacian scores are selected for the clustering
tasks.

Modeling approach
Several methods were employed to tackle the presented data
challenge tasks, of which the rule-based approach is principal.
A concise description of this method and two employed tree-
based methods are presented in the following.

• Rule-based diagnostics
Rule-based systems or expert systems utilize a set of
if-then rules derived from expert knowledge for di-
agnostics, i.e., for each known fault mode, an if-then
conditional statement is formulated while incorporating
some threshold (Hayes-Roth, 1985; Rossi & Braun, 1997;
Katipamula & Brambley, 2005). Rule-based systems have
found application in various fields, such as in the engineer-
ing field and medical field. Their numerous application is
accounted to their ease of implementation, transparency
and interpretability (Hayes-Roth, 1985; Rossi & Braun,
1997; Katipamula & Brambley, 2005). A limitation is that
the rule base builds on existing and known fault modes,
which has to be updated by the occurrence of a new fault
mode (Hayes-Roth, 1985; Rossi & Braun, 1997; Katipa-
mula & Brambley, 2005).

In an offline/static setting, as in the data challenge, all pos-
sible fault modes and operating conditions are available.
In such cases, rule-based approaches can be adopted. If no
decision rules can be defined through expert knowledge,
decision trees or random forests are a good alternative.

• Decision trees
Decision trees are a simple and explainable approach
for classification. Algorithms for building decision trees
recursively split the given training data into subsets using
comparisons of one variable against a fixed value at a time,
while minimising impurities in the subsets (Loh, 2011).
These comparisons are the nodes of the tree. The tree is
expanded and more nodes are created until the subsets are
pure or a stopping criterion is met.

• Random forests
Random forests are an extension of decision trees, promis-
ing better generalization capabilities for unseen data (Ho,
1995). A random forest consists of multiple decision trees,
of which every tree is built using only a random subset of
the available features and data. The final classification is
then the class, which the most individual trees returned.
This way, a random forest can prevent overfitting on the
training data.

2. METHODOLOGY

This section presents the methods used to generate the fault
classification model and to cluster the operating conditions of
the fault-free state. Most of the methods are available in the
Python package scikit-learn (Pedregosa et al., 2011).

2.1. Fault classification

According to the task, the classification should be done as
quickly as possible, i.e., using as few data points at the begin-
ning of an experiment as possible. Therefore, different features
are generated only from short snippets of the given data. The
extracted features are the rolling average, maximum, mini-
mum, peak-to-peak-distance, and standard deviation. Since
the given data points represent signal attributes generated from
10 s measurements, the new features result from two opera-
tions, e.g., the minimum of standard deviations. In the fol-
lowing, the signal attributes and the correspondingly extracted
features are appended to the signal name with a dot separa-
tor as in SmartMotorSpeed.value.min, which implies
the minimum of the mean values of the signal SmartMotor-
Speed. Variable window sizes s are applied to analyze the
features’ dependency on the number of data points.

To evaluate the generated features, the task is reduced to a bi-
nary classification for every class, i.e., it is checked whether a
feature contains enough information to decide if an experiment
belongs to a given class or not.

This is done based on the ANOVA F-values as previously
explained. To gain an insight into the significance of the
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Figure 3. F-value F of the 25 best features for every class with
window size s = 3

extracted features, Figure 3 shows the F-values of the 25
highest scoring features for every class. The features have
significantly higher scores for classes 2, 3, and 9 than for
the remaining classes, even when using small window sizes
s ≤ 3. A visual inspection of the features reveals that these
three classes are easily separable from the remaining classes
using only a few of the highest scoring features. As ex-
emplarily shown in Figure 4, class 3 is easily identifiable
using only FeederBackgroundIlluminationInten-
sity.vMin.min, that is, an experiment unambiguously be-
longs to class 3, when this feature value drops below 100.
With features based on VacuumValveClosed.value and
a window size of six data points, class 5 is also clearly separa-
ble from the others.

Although the F-values of the top-ranked features for classes
11 and 12 are lower compared to classes 2, 3, and 9 in Fig-
ure 3, further investigation of the features also leads to a
simple approach for separation of the classes: The lower F-
values result from the fact, that class 0 contains some exper-
iments, which lead to similar feature values as those, which
distinguish classes 11 and 12 from all other classes. The sig-
nals affected are DurationRobotFromFeederToTest-
Bench, DurationRobotFromTestBenchToFeeder,
SmartMotorSpeed, and SmartMotorPositionError.
The first two represent the robot’s operating speed, and the last
two correspond to the conveyor belt’s operating speed. This set
of signals has to be considered concurrently for classes 11 and
12. The rolling average of DurationRobotFromFeeder-
ToTestBench.value and the rolling minimum of Smart-
MotorSpeed.vMin are exemplarily depicted in Figures 5

Figure 4. FeederBackgroundIlluminationInten-
sity.vMin.min with window size s = 3

and 6, respectively. As can be inferred, the experiments in
class 0 have either high values for both DurationRobot-
FromFeederToTestBench and SmartMotorSpeed,
which implies a slowed down condition or low values for
both signals as in classes 2 to 9. The two levels of the fea-
ture values represent two fault-free operating conditions with
different operating speeds. As can also be deduced from Fig-
ures 5 and 6, for class 11, the signal SmartMotorSpeed is
elevated and not DurationRobotFromFeederToTest-
Bench and vice versa for class 12. This finding also holds
for the other signals corresponding to the robot’s operating
speed and the speed of the conveyor belt. Thus, a clear distinc-
tion between the classes 0, 11, and 12 can be made with the
previously mentioned signals.

The remaining classes 4 and 7 are only clearly identifiable
when further increasing the window size. As shown in Figure
7, the F-value of the best feature for class 7 increases signif-
icantly with the window size s. Therefore, class 7 is only
identifiable after the experiment has been running for a while.
The same holds for class 4. In both cases, the most accurate
solution would be to use all available data points per experi-
ment. However, this contradicts the goal of short prediction
times.

Since most of the faulty classes (2, 3, 5, 9, 11, and 12) have
clear boundaries separating them from the other classes, these
classes are classified using simple checks against a fixed thresh-
old for a maximum of four features per class (see appendix,
Table 2 for the chosen features and rules). Additionally, the
slowed-down condition of class 0 is identifiable this way. Only
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Figure 5. SmartMotorSpeed.vMin.min with window
size s = 6

classes 4, 7, and the default condition of class 0 cannot be eas-
ily separated. Therefore, for these classes, random forests
are set up using 25 features. With 25, a medium number of
features has been chosen for the random forests to prevent
overfitting on the training data but still be able to discover
complex dependencies of the classification on multiple fea-
tures.

In the test case, the features used for classification are gener-
ated and continuously updated using the available data, i.e. the
data points from the beginning of the experiment until the cur-
rent time. Since the random forest identifying class 0 yields a
high false positive rate, only the models identifying the faulty
classes are applied at first. If no fault is identified, the next
data point is added. As soon as a fault is identified, the loop is
stopped and the the detected fault is returned. This way, in a
real world use case with a fault-free system, the loop would be
continued over the whole run time of the system (as long as
no fault is returned, the system is considered to be fault-free).
However, with respect to the presented data challenge task,
the experiment is classified as fault-free, if no fault is detected
after a maximum number of data points tmax, to reduce the
time needed to identify fault-free experiments. Additionally,
the created random forest identifying class 0 is applied after
a certain number of data points t0,min with t0,min < tmax.
This lower limit on the number of points t0,min is chosen to
be 13 data points, since the longest FuseCycleDuration
contained in all experiments is 129 s. During this time, all pos-
sible actions of the quality control line should have occurred at
least once. However, the random forest identifying fault-free
experiments yields a high false positive rate for experiments

Figure 6. DurationRobotFromFeederToTest-
Bench.value.mean with window size s = 6

of the classes 4 and 7. Therefore, the faster identification of
fault-free experiments comes at the cost of reduced accuracy
when classes 4 or 7 are present.

The most important signals corresponding to each class are
identified using the highest scoring features. The signals also
allow for a physical interpretation of the faults (see appendix,
Table 3).

2.2. Clustering of operating conditions

To cluster the fault-free experiments according to their op-
erating condition, multiple feature extraction techniques are
applied to the data of the fault-free experiments. From the gen-
erated features, all zero and not a number (NaN) features are
removed. The remaining features are ranked using Laplacian
scores. Finally, a kMeans algorithm is applied using the high-
est scoring features. For instance, Figure 8 shows the mean
values of Vacuum.vMax of all data points per fault-free ex-
periment. From this feature alone, already two clusters can be
identified, which represent two different operating conditions
affecting the vacuum system. The clusters either have average
values of Vacuum.vMax above or below −0.2.

However, different clusters can be identified, when using
SmartMotorSpeed, and DurationFromFeederTo-
TestBench or DurationFromTestBenchToFeeder,
as shown above for the fault classification. These signals rep-
resent the overall operating speed of the system. Since it is
given that only two operating conditions were used and from
the data available it cannot be decided for certain, if either
the vacuum system or the operating speed were altered, the
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Figure 7. F-value F of the best feature for class 7 over window
size s

decision is left to the kMeans algorithm.

3. RESULTS

Figure 9 shows the resulting confusion matrix when applying
the classification model to all available experiments. The
values in every row are normalized by the total number of
experiments per row (target). The model yields high accuracy
when classes 0, 3, 5, 9, 11, and 12 are present. Only three
experiments of class 0 are not classified into class 0, since
they look very similar to class 5, 7, and 9, respectively, and are
classified accordingly. Due to the distinctive characteristics of
classes 5 and 9 these two experiments are probably correctly
classified by the model and were mistakenly labelled as class
0 in the given data.

One of four available experiments of class 2 is misclassified
as class 0. However, an increase of the number of data points
until the random forest for class 0 is evaluated to t0,min = 30
(corresponding to 300 s run time), leads to the correct classifi-
cation of this experiment. This can be explained by the fault
which is associated with class 2: The number of fuses in the
cycle is probably reduced and it takes a while after the start of
an experiment until the feeder is empty.

As already expected during the feature selection, the model
also yields low accuracy for experiments from classes 4 and
7. Only one of three experiments from class 4 is identified
correctly. The other two are classified as fault-free (class 0).
Three of four experiments from class 7 are identified correctly,
and one is classified as fault-free. Again, the accuracy could be
increased, when increasing the number of data points until the

Figure 8. Vacuum.vMax.mean per fault-free experiment

random forest for class 0 is evaluated as well as the maximum
number of data points until a prediction is made. However, this
comes at the cost of a much longer average prediction time for
class 0. As discussed before, in a real use case this would not
be a drawback, since the system can be regarded as fault-free
as long as no fault is identified. In the data challenge though,
also the fault-free state shall be identified in the shortest time

Figure 9. Confusion matrix for time until evaluation of random
forest for class 0 t0,min = 13 and maximum time to prediction
tmax = 30
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possible. Therefore, a reduced accuracy is accepted in favor
of faster prediction times. The average time to prediction for
every class can be found in the appendix, Table 2.

4. CONCLUSION

Although the number of use cases where machine learning
is applied is continually rising, rule-based diagnostics are of-
ten a good alternative for machine health monitoring. In the
presented use case, most faults are identifiable through their
specific influence on a small number of features. The resulting
rule-based fault classification model is easy to understand,
explain and extend. The model is static, i.e. it does not auto-
matically adapt itself over time when new fault-free operating
conditions are introduced, for instance. However, this is not
unusual, even for state-of-the-art machine learning techniques.
For a possible adaptation, incremental learning methods, such
as described by Yang et al. (Yang, Gu, & Wu, 2019), can be
adopted. To maintain transparency and interpretability, we
would propose an incremental random forest with a few trees.
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APPENDIX

Table 2. Rules defined and average time to prediction (number of data points used) for every class; class ”0 slow” denotes the
slowed down operating condition of the fault-free state

Class Rules Average time to pre-
diction (number of
data points used)

0 Random forest 14.6

0 0.75 < DurationRobotFromFeederToTestBench.value.mean 2.95

slow 0.78 < DurationRobotFromTestBenchToFeeder.value.mean

−550 < SmartMotorSpeed.vMin.min < −500
−400 < SmartMotorPositionError.vMin.min < −300

2 5.5 < NumberFuseEstimated.vCnt.max 6.33

3 FeederBackgroundIlluminationIntensity.vMin.min < 100 3.75

4 Random forest 6.0

5 −0.4 < VacuumValveClosed.value.max 4.0

0.3 < VacuumValveClosed.value.p2p

0.1 < VacuumValveClosed.value.std

7 Random forest 6.0

9 SmartMotorSpeed.vMin.min < −710 6.2

11 DurationRobotFromFeederToTestBench.value.mean < 0.72 2.67

DurationRobotFromTestBenchToFeeder.value.mean < 0.74

−550 < SmartMotorSpeed.vMin.min < −500
−400 < SmartMotorPositionError.vMin.min < −300

12 0.75 < DurationRobotFromFeederToTestBench.value.mean 4.33

0.78 < DurationRobotFromTestBenchToFeeder.value.mean

−710 < SmartMotorSpeed.vMin.min < −690
−600 < SmartMotorPositionError.vMin.min < −400
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Table 3. Most important signals and physical interpretation for every fault

Class Most important signals Physical interpretation
0 None Fault-free, normal operating speed

or or
DurationRobotFromFeederToTestBench Fault-free, robot and conveyor belt slowed down
DurationRobotFromTestBenchToFeeder

SmartMotorSpeed

SmartMotorPositionError

2 NumberFuseEstimated Less fuses estimated and estimation is done more
frequently, significantly less fuses may be
circulatingNumberFuseDetected

NumberEmptyFeeder

3 FeederBackgroundIlluminationIntensity Feeder background illumination defective
SharpnessImage

IntensityTotalImage

4 TotalCpuLoadNormalized Total CPU load is fluctuating while process CPU
load seems normal, additional processes may be
running on the computer

5 VacuumValveClosed Vacuum frequently reaches values close to 0,
vacuum system defectiveVacuum

7 FusePicked Less fuses picked over time, but everything else
seems normal, can only be detected after a long
time, gripper may be defective

9 SmartMotorSpeed Conveyor belt’s motor speed fluctuating, motor
defectiveSmartMotorPositionError

11 SmartMotorSpeed Only conveyor belt slowed down
SmartMotorPositionError

12 DurationRobotFromFeederToTestBench Only robot slowed down
DurationRobotFromTestBenchToFeeder
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