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ABSTRACT 

Wind turbines are in some countries contributing 

significantly the production of electricity. For offshore wind 

turbines reliability is a key issue since costs to operation and 

maintenance may be significant contributors to the Levelized 

Cost Of Energy and OM costs are highly dependent on the 

reliability of the components implying that it is important to 

focus on increasing the reliability as much as is economically 

reasonable. This paper describes aspects for reliability 

analysis of wind turbines with special focus on structural 

components, especially the wind turbine blades. In many 

wind turbine components deterioration processes such as 

fatigue, wear and corrosion may result in failures, for 

example in welded details, blades, bearings and gearboxes. In 

many cases it may be possible to detect the damages before 

actual failure, and thereby perform preventive maintenance 

instead of corrective, expensive repair/ maintenance. This 

requires some type of condition monitoring to give 

information on the condition of the components. It can either 

be online monitoring or manual inspections. The use of 

preventive maintenance can possibly reduce the costs, as 

repairs can be cheaper to perform before actual failure, and 

because the downtime will be shorter compared to corrective 

maintenance. On the other hand, preventive maintenance 

leads to more repairs in total, and optimally the maintenance 

effort should be adjusted to minimize the total expected costs. 

In this paper it is described how risk-based methods can be 

used to optimally plan operation & maintenance using 

Bayesian decision theory adapted to offshore wind. An 

illustrative example is presented considering wind turbine 

blades and using the reference wind farm in the NORCOWE 

research project. 

1. INTRODUCTION 

With the rapid growth of the offshore wind industry over the 

past two decades, and the implicit growth in the size of wind 

turbines, Operation & Maintenance (OM) has become a 

major focus point in the attempt to lower cost of wind energy 

to market competitive prices. It is in general estimated that 

OM operations account for around 25-30 [%] of the levelised 

cost of energy (Engels, Obdam & Savenje, 2009). 

Current practices in the industry rely heavily on a 

combination of reactive/corrective maintenance and time-

based inspections. This leads to many breakdowns in the 

turbines, which require expensive replacement/repair 

operations, significantly impacting the price of energy. In a 

number of situations, degradation of a component can be 

detected either with online condition monitoring or offline 

inspections and failure prevented by using an early, much 

cheaper repair. The result is a reduction in both cost and 

downtime. 

However, the amount of effort put into preventing failures 

also needs to be limited, since a high number of preventive 

repairs and inspections leads to unnecessarily large expenses 

and downtime. Time-based inspections are commonly used, 

where inspections are carried out at regular time intervals, 

and repair decisions are made only depending on the size of 

the observed damage. This paper proposes an alternative 

strategy for preventive maintenance, namely by risk based 

inspections. This approach implies making decisions based 

on the reliability of a given component and is commonly used 

in e.g. the offshore oil and gas, aerospace, railway and many 

other industries. 

In the first part of the paper, a risk based model is set up for 

maintenance of wind turbine blades, where a degradation 

model is used with a dynamic Bayesian network for optimal 

planning of inspections. In the second part, the model is used 

to perform a case study on the NORCOWE wind farm [2] and 

the results are compared to results from a more traditional 

time-based strategy, underlining the difference in levelized 

cost of energy. 

2. DEGRADATION AND RELIABILITY MODEL 

Preventive maintenance can be applied in cases in which 

condition monitoring is able to detect damage within a 

reasonable time interval before failure occurs, i.e. the 

estimated remaining useful life (RUL) is sufficiently long. In 
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other words, degradation needs to be gradual and needs to 

have a clear indicator (crack length, delamination, erosion 

etc.). 

In this paper, cracking on the trailing edge of blades is 

considered for the model, due to the fact that this type of 

degradation can be successfully detected and quantified at 

inspections, and it is responsible for a large number of 

failures in offshore wind turbine blades, as illustrated in 

figure 1 (Nissim, 2013). 

 

Figure 1. Causes for blade failures 

From the point of view of the failure rate, it has been observed 

that a component goes through three distinct stages during its 

lifetime represented by the three typical stages in the bathtub 

failure rate model, see figure 2. (Sørensen, 2013). 

 

Figure 2. Failure rate ‘bathtub’ curve 

 The blade starts in the infant mortality stage, where the risk 

of failure is high, and is dependent on the quality and control 

of the manufacturing and installation process and possible 

series errors, having no correlation to weather conditions and 

other load inducing phenomena. It is not possible to predict 

using physical models. This is decreasing rapidly, meaning 

that if the blade is operating well after a starting period, the 

risk of infant mortality is over. 

After this, the blade continues into its useful life with a lower, 

more constant failure rate. In this stage, the failure risk is only 

slightly degradation related, and is mostly dependent on 

randomly occurring phenomena, such as lightning strikes, 

icing, control mechanism failures etc. 

Finally, degradation is becoming important, and the failure 

rates begin to increase when the blade enters the wear-

out/ageing stage. At this point, fatigue, corrosion, erosion and 

other deterioration related damages increasingly add to the 

failure risk if maintenance activities are not conducted.  

Since the focus of this study is on failures that can be 

prevented using inspection methods, only the wear out stage 

is considered for modelling. 

Age related degradation can be described using a fracture 

mechanics based damage model, see e.g. (Florian & 

Sørensen, 2015). The model assumes that a failure results 

from crack development on the trailing edge of the blade and 

uses hub height wind measurements to compute the growth 

of a set of initial randomly generated cracks in the bond 

material. The model contains three stages, which are 

described in the following: 

 defect initiation at the start of the blades life 

 damage propagation during the blades lifetime 

 failure and time-to-failure distribution 

2.1. Crack initiation 

The size and positions of the cracks at the beginning of the 

blades life-time is unknown. This being the case, a random 

damage state is generated using a lognormal distribution, 

defined by an initial crack size ain. 

2.2. Crack growth 

The crack growth is determined by the load cycles applied on 

the blade and the crack length at a given time. The crack 

growth da will be assessed for a time period dt following 

Paris law, as shown in Eq. (1), (Sørensen, Frandsen & Tarp-

Johansen, 2008). 

𝑑𝑎

𝑑𝑡
=  

𝐴(𝛥𝐾)𝑚

(1 − 𝑅)𝑚(1−𝜆𝑤)
 (1) 

The material parameters A, m and λw are dependent on the 

type of bond in the blade, while R represents the mean cycle 

range for the loading cycles. The stress intensity factor ΔK is 

determined as a function of the wind speed u, the crack size 

a, the turbulence intensity I and the distribution of load cycles 

Δs corresponding to Δt. This is shown in Eq. (2), (Sørensen 

et al., 2008), with the numerical values of all the input 

parameters used in the model given in section 2.3 in Table 1. 

𝛥𝐾(𝑢, 𝐼) = ∫ 𝛥𝑠 𝑓(𝛥𝑠|𝑢, 𝐼)
∞

0

 √𝜋 𝑎 𝑑𝛥𝑠 (2) 

The statistical distribution function of the cycle ranges Δs is 

dependent on the turbulence intensity I for a given site and 

the mean wind speed u. To determine the distribution of the 

load cycles as function of the environment, a series of 10 

minute simulations is made using the aero-elastic simulator 

FAST (Jonkman & Buhl, 2005). Data is collected for the flap-

wise blade bending moment for 1 m/s wind bins from cut-in 
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to cut-out wind speed. To avoid large statistical uncertainties, 

15 are used for each wind bin. 

The following step is to determine the load range distribution 

for each wind bin as a function of the wind speed. This is 

done by using rainflow counting after which the results are 

fitted to a 2-parameter Weibull distribution. The cycle count 

for a 10 m/s wind bin, along with the fit, is illustrated in figure 

3.  

By integrating according to Eq.  (2), the stress intensity factor 

for a 10 minute interval, given the wind speed, the turbulence 

intensity and the crack size at the beginning of the time 

interval is determined and shown in figure 4, for a crack size 

of 10 mm. 

 

 

Figure 3. Cycle stress ranges for 10 m/s wind bin [5] 

The figure illustrates the influence of the blades pitching 

mechanism, reducing the loads after rated wind speed of 11.4 

m/s. Because the stress intensity factor is highly dependent 

on the crack size, its value is updated after every 10 minute 

interval, according to Eq. (2), considering the new crack size, 

determined by integration of Eq. (1). 

 

Figure 4. Stress intensity factor 10 m/s wind bin [5] 

2.3. Failure and reliability estimate 

Finally, it is assumed that when a crack reaches a threshold 

value afail, the blade collapses. This time-to-failure is 

dependent on the input parameters, out of which the initial 

crack size ain and the material parameter A are considered 

stochastic. The time-to-failure (TTF) distribution is obtained 

by using Monte Carlo simulations, and integrating over time, 

as shown in figure 5. This distribution notes the initial 

reliability estimate of the component. 

 

Figure 5. TTF distribution for blade  

The TTF distribution shown above was determined using the 

numerical input in Table 1, with the stochastic parameters ain 

and A, and their uncertain mean values q and v following 

lognormal distributions. The crack size a and its unknown 

mean q are determined by integrating the damage model up 

to a point of interest in time.  

Table 1. Damage model parameter input 

 

Par. Description Unit Mean COV 

ain Intitial crack 

size 

[m] qin 0.9 

qin Mean of 

initial crack 

size 

[m] 0.005 0.5 

a Crack size [m] q logical 

q Mean crack 

size 

[m] logical logical 

A Material 

parameter 
[

1

kN s m1/2 
] 

v 0.6 

v Mean value 

of material 

parameter A 

[
1

kN s m1/2 
] 

11−10 0.3 

m Material 

parameter 

[-] 1.45 - 

λw Material 

parameter 

[-] 0.5 - 

I Turbulence 

intensity 

[%] 10 - 
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3. MODEL UPDATING 

During the life of a blade, condition monitoring is performed 

in the form of inspections. The results are used in a Bayesian 

network (Jensen & Nielsen, 2007) to update the reliability 

estimate, which is then used to plan for the next inspection or 

repair. The network is shown in figure 6. The nodes in the 

network represent the input parameters where, for simplicity, 

only the stochastic nodes are shown. The arrows indicate the 

conditional relations between each parameter i.e. the failure 

distribution F is conditional on the distribution of crack size 

a, which is in turn conditioned by the initial crack size ain and 

the material parameter A. 

 

Figure 6. Dynamic Bayesian network model 

The parameters a and A are uncertain with unknown mean 

values q and v, defined by a prior distribution. When an 

inspection is performed at time tn, the result is used to 

calculate a posterior distribution by using Bayes update rule 

(Jensen & Nielsen, 2007). Since inference is being made on 

two parameters, Bayes update formula is used in the form 

shown in Eq. (3). 

 

𝑓(𝑞,𝑣|𝑎𝑚)′′ =  
𝑓(𝑎𝑚|𝑞, 𝑣)𝑓𝑞′(𝑞|𝑣)𝑓𝑣′(𝑣)

∫ ∫ 𝑓(𝑎𝑚|𝑞, 𝑣)𝑓𝑞′(𝑞|𝑣)𝑓𝑣′(𝑣) 𝑑𝑞𝑑𝑣
 (3) 

 

The notations f’ and f” represent the prior and the posterior 

distributions respectively, and am notes the measured crack 

length determined at inspection. The prior joint distribution 

f’at time tn is determined by integrating the damage model up 

to that moment in time, while the posterior joint distribution 

f” is determined using Eq. (3). 

An example is shown in the following, where an inspection 

was made after 1 year, and the inspection result was am = 

0.007 m. The prior and posterior distributions are illustrated 

in figures 7 and 8 (with crack lengths in [m]). 

 

Figure 7. Prior and posterior distribution of crack size a 

 

Figure 8. Prior and posterior distribution of material 

parameter A 

It is seen that both posterior distributions are narrowed, which 

in turn leads to a more precise failure estimate. An example, 

showing how the failure distribution is updated on an annual 

basis is shown in figure 9. 

 

Figure 9. Failure distribution updated with regular 

inspections 

It is seen that the distribution narrows down after every 

inspection. After the inspection in year five, it becomes clear 

that failure will occur somewhere in year 13. The information 
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from this reliability estimate is used for optimal planning of 

maintenance operations. 

4. DECISION MODEL 

As mention in section 1, optimal planning of inspections and 

repairs can be made based on the reliability estimate for the 

blade. A practical way to do so, is shown in the following. 

 a first inspection is performed after a certain time 

interval after the wind turbine operation starts, and the 

failure distribution is computed 

 a fixed limit threshold is considered and the following 

inspection is performed in the year that threshold is 

reached. The failure distribution is then updated with the 

new results from the inspection 

 if it is estimated that the failure threshold is reached 

within the same year as the last inspection, a repair 

activity is carried out right after the inspection 

An example showing how the inspections are scheduled is 

shown in Table 2, where the first inspection was performed 

after the first year, and a failure threshold of 5 % was 

considered. 

Table 2. Example inspection schedule 

 

Inspection No. Time 

1 1 

2 6 

3 10 

4 12 

5 14 

It is seen that inspections become more frequent when 

approaching the end of the blades lifetime, and a repair is 

performed after the inspection at year 14.  

5. EXAMPLE CASE STUDY 

The maintenance model is used on the NORCOWE reference 

wind farm (https://rwf.computing.uni.no/), to illustrate the 

potential in optimising preventive maintenance effort. The 

model covers only blade maintenance, hence all turbines in 

the farm are for simplicity modelled by a single (critical) 

blade. 

5.1. Maintenance model 

Table 3 shows the activities used in the model, along with the 

required resources in terms of cost and time. 

Table 3. Cost and duration for maintenance  

 

Activity Cost [€] Duration [h] 

Inspection 1000 6 

Repair 10000 24 

Replacement 400000 80 

In terms of work force, inspection and repair activities require 

a number of 3 technicians and a crew transfer vessel (CTV), 

while replacement operations require 6 technicians and a 

heavy lift vessel (HLV). Specifications on the vessels are 

shown in table 4. 

Table 4. Vessel characteristics 

 

 CTV HLV 

Number 4 1 

Wave limit [m] 1.5 2 

Wind limit [m/s] - 20 

Mobilisation time 

[days] 
- 

30 

Mobilisation cost [€] - 250000 

Speed [knots] 20 11 

Day rate [€] 1000 100000 

In case there are not sufficient vessels to carry out all 

necessary actions at the same time, a priority system is used, 

so that downtime is minimized. Hence, replacement activities 

are carried out first, followed by repairs and finally 

inspections. 

All activities are carried out from an onshore base 50 km from 

the farm, and spare parts are always available in stock. A 

number of 24 technicians is hired, working one 12 hour shift 

a day. An exception is made for replacement activities, where 

2 twelve hour shifts are used in order to finish repairs as fast 

as possible. 

5.2. Decision model 

Two different strategies for preventive maintenance are 

considered. A traditional time/condition based model, where 

inspections are performed at regular intervals and repairs are 

made depending on the size of the cracks is used as a 

reference case.  

The second model is the reliability based model described in 

section 4.  

Both models are optimized with respect to their individual 

decision criteria, namely inspection interval and maximum 

damage size for time/condition based maintenance and 

failure threshold for reliability based maintenance. The 

results from the optimized strategies are then compared and 

discussed in section 6. Note that optimization is made strictly 

with respect to the total lifetime cost of maintenance, while 

the downtime of the models is not included in the decision. 

The reason for this is that downtime is very low, due to the 

fact that only maintenance of blades is modeled. 

5.3. Lifetime simulation 

A simulation based approach is used where lifetime (25 

years) simulations are performed for the NORCOWE 
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reference wind farm with the layout shown in figure 10; using 

the maintenance models presented in the previous sub 

section. This is done using a discrete event simulator model. 

 

Figure 10. NORCOWE farm layout 

Each turbine is modelled by a single turbine, using the 

damage model described in section 2 and a time step of one 

month. The input used for the damage model is shown in 

table 4. 

When an activity is called for, considering that sufficient 

vessels are available, the time required for a repair activity is 

calculated with respect to the position of the turbine with 

respect to base, and the weather conditions. Weather 

conditions are given as 11 year wind and wave time series at 

the wind farm location. Based on this, 25 year time series are 

obtained by bootstrapping on a yearly basis, thus introducing 

a degree of weather variation between different simulations. 

After the work force and weather conditions have been 

assessed, the repair activities are carried out. In this situation, 

a time step of 3 hours is used for increased accuracy. 

Depending on the progress of repairs and the cost model, all 

the expenses are computed. The time-based availability is 

also calculated, including both effective time for repairs, and 

time in which turbines are non-operational due to failure of a 

blade. 

6. RESULTS 

6.1. Time/condition based maintenance 

For this strategy, a fixed interval of inspections is set at the 

start of a simulation. The inspections are considered perfect, 

meaning that the probability for successfully detecting a 

crack is 100 % and there is no measurement error. If a 

detected crack is higher than a predefined threshold, a 

preventive repair is scheduled and carried out as soon as the 

weather conditions permit, and sufficient work force is 

available. For every turbine, the first inspection is fixed after 

4 years of operation. This interval has been chosen as it is a 

common time period for warranty offered by turbine 

manufacturers. 

For optimising the maintenance plan, a number of 

simulations is carried out for a range of inspection intervals 

and damage (crack size [m]) thresholds. The average 

outcome for these is shown in figure 11. 

 

Figure 11. Mean cost output 

It is seen that for all combinations of inspection interval and 

damage threshold used, the cost is increased at the extremities 

of the graph. If the inspection interval is too large, inspections 

are too far apart to succesfully prevent failure, which result 

in a large increase of the maintenance cost due to the 

expensive replacements and heavy lift vessels. On the other 

side, if the interval is to small, there is an unnecesarry large 

number of inspections and repairs. Although similar output 

can be obtained by various combinations of the two 

parameters, the optimal decision for the given cost model is 

estimated at a 2 year inspection interval and a damage 

threshold of 0.5 m.  

The main output for the optimal plan is shown in table 5. 

Table 5. Cost and downtime output  

 

Total cost [€] Downtime [%] 

5.25 106 0.37 

6.2. Risk and reliability based maintenance 

In this case, the decision model described in section 4 is used. 

As in the condition based maintenance model, the first 

inspection is fixed in year 4, when it is expected that warranty 

expires. The remaining decision parameter is the failure 

threshold, and the optimal value is determined by running 

simulations covering a range of values. The results are shown 

in figure 11. 
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Figure 11. Mean cost output 

It is seen that when the threshold is too high, the cost is 

greatly increased, due to the increased frequency of failures, 

as was is the case for condition based planning. However, 

when the threshold is kept below 10 % there is little variation 

in the results. This is due to the fact the number of inspections 

is not increased significantly, as was in the previous case. The 

optimal threshold is estimated at 1 %, and the corresponding 

results are shown in table 6. 

Table 6. Cost and downtime output  

 

Total cost [€] Downtime [%] 

4.55 106 0.27 

A reduction of 14 % can be seen in the total average cost 

compared to the results from the condition based strategy. 

This is a result of the fact that the number of inspections and 

repairs is reduced, while keeping failure ratios low. The 

optimal risk based strategy has resulted in an average number 

of 1.9 repairs and 7.2 inspections per turbine, while the 

condition based strategy has resulted in 2.3 repairs and 11 

inspections per turbine. 

7. CONCLUSION 

In this paper, two strategies for planning of preventive 

operation and maintenance were set up and optimised, with 

the goal of underlining the potential positive impact of 

implementing risk based inspections for offshore wind farm 

maintenance. 

A fracture mechanics based degradation model was used in 

combination with a dynamic Bayesian network, and offline 

inspections to estimate the reliability of blade turbines. Using 

this model, inspection and repair planning has been optimised 

in a case study on the NORCOWE wind farm. The results 

have been compared to results from a more traditional 

condition based strategy, which has also been optimised. 

It was shown that for the risk based maintenance, the number 

of inspections and repairs are reduced, while at the same time 

avoiding failures in the blades. This led to a reduction of 14 

% of the total cost of blade maintenance has been obtained 

for the given cost model, showing that preventive 

maintenance effort is more efficiently dosed using risk based 

inspection planning. 
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NOMENCLATURE 

a crack size 

A material parameter 

ain initial crack size 

am measured crack size 

∆K stress intensity factor 

∆s stress cycle 

f’ prior density function 

f’’ posterior density function 

F failure distribution 

I turbulence intensity 

λw material parameter 

m material parameter 

q mean of initial crack size distribution ain 

R mean cycle range 

t time 

u mean wind speed 

v mean of material parameter A 
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