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1,6 Structures and Mechanisms Department, SENER Engineering & Systems, Getxo, Spain
aitor.isturiz@sener.es

javier.vinals@sener.es
2 Institute for Energy and Environment, University of Strathclyde, Glasgow, United Kingdom

jose.aizpurua@strath.ac.uk
3 Department of Telecommunications & Telematics, Higher Polytechnic Institute Jose Antonio Echeverria, La Havana, Cuba

fhernandez@electrica.cujae.edu.cu
4,5 Electronics and Computing Department, Mondragon University, Arrasate, Spain

aiturrospe@mondragon.edu
emuxika@mondragon.edu

ABSTRACT

The design of health assessment applications for the elec-
tromechanical actuation system of the aircraft is a challenging
task. Physics-of-failure models involve non-linear complex
equations which are further complicated at the system-level.
Data-driven techniques require run-to-failure tests to predict
the remaining useful life. However, components are not al-
lowed to run until failure in the aerospace engineering arena.
Besides, when adding new monitoring elements for an im-
proved health assessment, the airliner sets constraints due to
the increased cost and weight. In this context, the health as-
sessment of the electromechanical actuation system is a chal-
lenging task. In this paper we propose a data-driven approach
which estimates the health state of the system without run-
to-failure data and limited health information. The approach
combines basic reliability theory with Bayesian concepts and
obtained results show the feasibility of the technique for asset
health assessment.

1. INTRODUCTION

Initially, many aircraft health monitoring applications were
focused on the fault detection and reconfiguration of failure
modes before they cause a system-level unrecoverable failure
(Bieber, Noulard, Pagetti, Planche, & Vialard, 2009). The ad-
vance of prognostics and health management approaches con-
tribute to expand the scope of health monitoring systems in
aircrafts (Vachtsevanos, Lewis, Roemer, Hess, & Wu, 2007).
These applications provide potential benefits such as extended
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useful life and condition-based maintenance strategies (e.g.,
see (TATEM, 2008; ACTUATION2015, 2015)).

Airframers demand more sophisticated health monitoring ap-
proaches in the scope of the More Electrical Aircraft (Rosero,
Ortega, Aldabas, & Romeral, 2007). The purpose of these
techniques is to stimulate the introduction of Electromechan-
ical Actuator (EMA) technology in the next generation air-
crafts, providing fault detection and health monitoring capa-
bilities. However, the aggregation of health monitoring mech-
anisms on the electromechanical actuator affects the cost and
weight of the aircraft. Accordingly, these constraints hinder
the aggregation of additional assets such as sensors or electri-
cal/mechanical components for an improved health monitor-
ing system (Todeschi & Baxerres, 2014).

Due to the rapidly growing interest in prognostics and health
management, researchers have developed a number of dif-
ferent applications for health assessment and prediction of
remaining useful life (Aizpurua & Catterson, 2015). Defin-
ing a system-level health assessment model for electrome-
chanical actuators in aeronautics is a challenging task. On
the one hand, model-based approaches require the physics-
of-failure degradation equation of the asset under study (e.g.,
see (Daigle, Saha, & Goebel, 2012)). However, the complex-
ity of physics-of-failure laws increases at the system-level in-
volving interactions between different assets. On the other
hand, traditional data-driven techniques require run-to-failure
tests to determine the remaining useful life of assets (e.g.,
see (Goebel, Saha, & Saxena, 2008)). Run-to-failure data
is hardly available in the aeronautic engineering arena and
this situation prevents the application of existing data-driven
health assessment approaches.
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Electromechanical actuators can be used in a wide range of
applications such as flight control, high lift, landing gearor
engine control. They can be rotary or linear and they include
different types of sensors, motors or speed reducers. Elec-
tromechanical actuators can be designed as single channel,
dual channel or they can incorporate disconnection devicesin
order to improve the fault tolerance of the system. Figure 1
shows a typical linear actuator configuration. It consists of a
Power and Drive Electronics module which drives an electri-
cal motor as torque generator. This torque is multiplied in a
speed reducer and transmitted to a ball/roller screw mecha-
nism where it is converted into linear force. The linear bear-
ings support the axial loads and a position sensor provides a
position signal.
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Power & Drive 

Electronics

Control 

module

Power 

module
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Figure 1. Linear actuator configuration.

The main functions of the health monitoring mechanism of
electromechanical actuator systems are (Todeschi & Baxer-
res, 2014):

• Fault detection and isolation.

• Health assessment of electrical and mechanical compo-
nents which require preventive maintenance.

• Update health estimations.

• Store operational data in the system database (e.g., load
reversal or number of cycles).

In this paper we present a data-driven health monitoring ap-
proach for electromechanical actuator systems. The main
contribution of the proposed work is the evaluation of the
health state of electromechanical actuator systems without
run-to-failure data and limited health state information.The
proposed health monitoring approach evaluates the reliability
of the electromechanical actuator system using degradation
information and enables the implementation of condition-ba-
sed maintenance actions.

The potential benefits of the proposed approach are: (i) accu-
rate health estimation of the system; (ii) improvement of the
aircraft availability by the reduction of the corrective main-
tenance actions; and (iii) reduction of the operational cost
through the implementation of condition-based maintenance
strategies, instead of periodic preventive maintenance strate-
gies.

The remainder of this paper is organized as follows: Section2
presents the proposed health monitoring architecture, Section
3 defines the health assessment approach, Section 4 applies
the approach to a ball screw case study, and finally Section 5
draws conclusions and identifies future prospects.

2. HEALTH M ONITORING ARCHITECTURE FOR

ELECTROMECHANICAL ACTUATOR SYSTEMS

Certification of health monitoring systems is a challenging
task. In the case of electrical actuation systems there is no
certification process for health monitoring systems due to the
recent introduction into service of electrical actuationssys-
tems in commercial aircrafts.

When designing a health monitoring application for the elec-
tromechanical actuation system the use of additional assets
is limited (e.g., sensors, electrical or mechanical devices).
One feasible alternative is to allocate the health monitoring
application in the electromechanical actuator control board
and reuse already existing signals (e.g., phase current, ro-
tary/linear position, winding temperature, force, commanded
voltage) for fault detection and diagnostics (Iturrospe, Abete,
Isturiz, & Viñals, 2014; Arellano-Padilla, Gerada, & Sum-
mer, 2015).

Figure 2 shows the proposed health monitoring architecture.
The architecture is built into the EMA Power and Drive Elec-
tronics and it shares the signals and the communication bus
with the Flight Control Computer.

EMA signals are captured by the health monitoring hardware
module. These signals are used to compute theUsage and to
execute theHealth Monitoring algorithms. Usage data can
be expressed as operational hours, number of turns/cycles,or
average load. Each health monitoring algorithm is responsi-
ble for monitoring one or more failure modes of one or more
components. The output of the algorithm for each monitored
failure mode is defined asHealth Index (HI), which can be
expressed as simple physical variables, percentages, or the
overcoming of predefined thresholds. TheHealth Assessment
module takes as input all Health Index values, together with
the Usage information and it performs the system diagnostic
estimating thehealth state of the EMA system. This informa-
tion is sent to theFlight Control Computer.

The health monitoring architecture estimates the up-to-date
health state of the system. This information helps to improve
periodic maintenance strategies through condition-basedmain-
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Figure 2. Simplified health monitoring architecture for the
electromechanical actuator system.

tenance mechanisms.

3. HEALTH ASSESSMENTAPPROACH

The proposed data-driven health assessment approach takes
as input in-service usage data and health index values of the
monitored failure modes and estimates the health state of the
system under study (cf. Figure 2).

This data capture approach presents two main advantages com-
pared to the classical estimation of health assessment based
on the number flight hours:

• Data reliability. The data reflects the real usage of the
EMA during its whole operational life; taking into ac-
count the actual influence of the external factors such en-
vironmental conditions during flight and the work carried
out by the actuator.

• Health assessment adaptability. EMA usage data up-
dates the parameters of the health monitoring algorithm.
As this data has been acquired during real flight con-
ditions, it is the most representative and accurate data
source. Moreover, data from both scheduled and correc-
tive maintenance operations also increase the accuracy
by updating the health assessment algorithm.

The operationalization of this approach not only requires the
development of the theoretical framework (cf. Subsection
3.1), but also the implementation of data-gathering tests to
extract the required data according to the theoretical frame-
work (cf. Subsection 3.2).

3.1. Theoretical Framework

Reliability is defined as the ability of an item to perform a
required function under stated conditions for a stated period
of time (Hamada, 2008; Rausand & Høyland, 2003). Given
a continuous random variableT representing time to failure
of the system, reliabilityR(t) is defined as the probability
that the system is still working at timet. Alternatively, it is
possible to use a probability density functionf(t) to define
the reliability of the item at timet as follows (Hamada, 2008;
Rausand & Høyland, 2003):

R(t) = Pr(T > t) =

∫
∞

t

f(s)ds (1)

In Eq. (1) we can see that the use of the classical reliability
definition for health assessment requires run-to-failure data so
as to evaluate the probability of being operative at any time
instant. However, in this paper we propose the reliability cal-
culation with respect to a particular damage or degradation
level of different failure modes of the components. This ap-
proach provides a suitable information for a timely health as-
sessment and does not require end-of-life tests.

In order to calculate the reliability related to a particular dam-
age at a particular operation time, we discretize the damage
magnitude intoN bands denotedLi wherei = {1, 2, . . . , N}.
For example, a first damage band,L1, can comprise measured
damage values between 0 and an arbitrary value; a second
damage band,L2, can range from the higher limit ofL1 to a
higher arbitrary damage value; until the entire range of mea-
sured damage values is covered withN damage bands. The
idea of dividing the damage into discrete bands is similar to
the idea of Lebesgue sampling (Zhang & Wang, 2014; Yan,
Zhang, Wang, Dou, & Wang, 2016). In Lebesgue sampling
prognostics predictions are based on the Lebesgue sampling
model whose states are predefined according to the quantiza-
tion level.

Based on Bayesian concepts, we can use a predictive distri-
bution to define the relationship between operation times, dis-
crete set of damages, and the damage magnitude estimation
(Hamada, 2008; Rausand & Høyland, 2003):

p(T |D̂) =
∑

Ln

p(T |Ln)p(Ln|D̂) (2)

whereT is the operation time,Ln denotesN discrete damage
bands and̂D represents the damage magnitude assessment.

The solution of Eq. (2) consists of two dependent steps:

1. Distribute all measured damage values intoN damage
bands (Ln), and determine the distribution of operation
times (T ) related to each damage level:p(T |Ln).

2. Calculate the damage band distribution (Ln) given a par-
ticular damage indicator value (D̂): p(Ln|D̂).

The solution of the second step requires two intermediate cal-
culations. Firstly, we calculate the distributionp(D|D̂) using
the measured damage data (D) and the corresponding damage
estimations (̂D). This distribution approximates the distribu-
tions of the measured damage values given each particular
damage indicator value and it specifies the error incurred by
the damage estimation. Namely, if there is no error in the
damage estimation, the expected value of the distribution of
the measured damage values coincides with the damage indi-
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cator value.

Subsequently we determine the damage band distribution (Ln)
given a particular damage indicator value, i.e.,p(Ln|D̂). Let

D
(min)
Ln

andD(max)
Ln

denote the minimum and maximum dam-
age values from bandLn, respectively. Eq. (3) defines the
distribution of the damage bands (Ln), given a damage indi-
cator value (̂D):

p(Ln|D̂) =

∫
D

(max)
Ln

D
(min)
Ln

p(D|D̂)dD

=

∫
∞

D
(min)
Ln

p(D|D̂)dD −
∫

∞

D
(max)
Ln

p(D|D̂)dD

(3)

Once both distributionsp(T |Ln) andp(Ln|D̂) are determined,
the distribution of operation times given a damage indicator
value can be achieved by using Eq. (2). This distribution of
operation times is used to estimate the component reliabil-
ity function with respect to an estimated damage magnitude,
instead of component failure.

The reliability at some particular operation time,T0, given
a damage indicator value,̂D, can be determined applying
Eq. (1) as follows:

R(T0)D̂ =

∫
∞

T0

p(T |D̂)dT (4)

The expected value of the distribution resulting from Eq. (4)
represents the most probable operation time at which the com-
ponent reaches that specific damage magnitude. This estima-
tion can help to program maintenance tasks. For instance,
achieving such an estimation of damage magnitude at a time
higher or lower than the expected value of the distribution
will provide useful information about the current component
deterioration process, i.e., current component deterioration
process could be running slower or faster, in relation with
the expected one. Then, the designer can adopt condition-
based maintenance decisions to improve availability and re-
duce maintenance costs.

3.2. Practical Framework: Data Gathering Tests

The proposed approach requires a preliminary double charac-
terization test campaign to obtain data for health assessment.
Accordingly we correlate different variables and extract cor-
responding probability distributions:

• Degradation-usage distribution: tests for determining the
correspondence between the degradation level of each
failure mode and the usage data.

• HI-degradation distribution: tests for determining the
correspondence between the output of the health moni-

toring algorithms (i.e., health index) and the degradation
level.

During the characterization tests the degradation level ofthe
monitored failure mode is measured and stored. Figure 3 de-
scribes the characterization process.

Health Assessment

System Reliability Estimation

Health 

Index (HI)

In-service 

Usage Data

D

Usage

HI

Damage

DAMAGE-USAGE-HI CHARACTERIZATION 

Alarms/reconfiguration

FLIGHT CONTROL COMPUTER

Ground Station/Maintenance Data upgrade

Figure 3. Health assessment data flow.

The data relating real damage measurements with damage in-
dicator estimations and operation times are gathered from a
experimental test bench. The test operation follows a pro-
grammed schedule which measures the real magnitude of the
component deterioration (D) using the damage magnitude as-
sessment (̂D) and the operation time (T ).

One benefit of the described approach is that the tests are not
required to be extended until a complete failure occurs. The
usage and health index data are useful for the health assess-
ment even corresponding to low levels of degradation. The
second benefit is that all the data coming from any mainte-
nance action can be fed into the system characterization data
base once the failed components are inspected and analyzed.

4. NUMERICAL SIMULATIONS

The validation of the proposed methodology is presented by
means of numerical simulations implemented in Matlab. In
particular, we use data extracted from tests of ball screws of
the same type and same manufacturer. With numerical simu-
lations we assess the reliability of the ball screw at a specific
operation time given a damage indicator value.

The damage indicator defines the gradual component dam-
age. The values for backlash threshold and distribution pa-
rameters depend on the type of ball-screw and the initially de-
signed backlash. Typically, the backlash threshold value cor-
responds to the beginning of the wear out degradation phase.
This phase is characterized by an exponential increase of the
component failure probability. In this article, the threshold
and distribution parameters are determined based on life tests
carried out in a specific ball-screw. Accordingly, an indicator
higher than 45.0µm is defined as the condition from which a
ball screw starts to fail.
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The range of possible damage values is arbitrarily divided
into nine uniform bands,Li, i={1, 2, . . . ,9}. Table 1 dis-
plays the specification of the damage bands. For each band
Li its corresponding value ranges and mean and variance val-
ues of the operation timesT are specified assuming that they
are drawn from a Normal distribution.

Table 1. Damage bands specification.

Damage
Bands

Range
(µm)

Mean
(hours)

Variance
(hours)

L1 5-10 1000 150
L2 10-15 1500 200
L3 15-20 2000 300
L4 20-25 2500 400
L5 25-30 3000 500
L6 30-35 3500 400
L7 35-40 4000 300
L8 40-45 4500 200
L9 45-50 5000 100

Figure 4 shows time to damage data samples for some dam-
age bands (L1, L3, L5, L7, L9).

Sample Number
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Figure 4. Time to damage band (Li) data samples.

The distributionsp(T |Ln) are obtained from damage mea-
surements shown in Figure 4 and parametrized in Table 1.
Figure 5 shows the nine corresponding distribution estima-
tions.

Without loss of generality in this work we assume that the
distribution of the real damage values given a damage indi-
cator value (i.e.,p(D|D̂)) follows a Normal distribution with
an expected value equal tôD and a typical deviation equal
to 8.0µm. Gaussian distributions are used for simplicity be-
cause they facilitate the analytical treatment as in (Benton,
2009). However, it should be noted that this assumption does
not limit the practicality of the proposed approach because
the model developed in this paper is applicable to any type of
distribution.

The distribution of damage bands given a damage indicator
value is determined applying Eq. (3) as follows:

Operation Times (hours)
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Figure 5. Distributionsp(T |Ln) obtained from draws of Nor-
mal distributions.

p(Ln|D̂) =

∫
∞

D
(min)
Ln

1

σ
√
2π

e
−

1
2
(D−D̂

σ
)2
dD−

∫
∞

D
(max)
Ln

1

σ
√
2π

e
−

1
2
(D−D̂

σ
)2
dD

= Q(
D

(min)
Ln

− D̂

σ
)−Q(

D
(max)
Ln

− D̂

σ
)

(5)

whereQ(.) is the Q-function, defined as (Rausand & Høyland,
2003):

Q(z) =

∫
∞

z

1√
2π

e
−

y2

2 dy (6)

The distribution of operation times given a damage indicator
value,p(T |D̂), is determined through Eq. (2), and this re-
sult enables the calculation of the reliability related to some
particular estimated damage magnitude at specific operation
times. For a damage indicator value of 26.0µm, the proba-
bilities of the damage bands (a discrete distribution) are given
in Table 2.

Table 2. Probabilities of the damage bands given a damage
indicator value of 26µm.

Bands p(Ln|26)
L1 0.02
L2 0.06
L3 0.14
L4 0.22
L5 0.24
L6 0.18
L7 0.09
L8 0.03
L9 0.01
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The sum of the resulting distributions for each damage band
from the productp(T |Ln)p(Ln|26) yields the distribution of
operation times given a damage indicator valuep(T |D̂) (cf.
Eq. (2)). Subsequently, we use this expression for the re-
liability calculation according to Eq. (4). For the case of an
operation time of 2100 hours, the component reliability, given
damage indicator value of 26.0µm, is equal to 0.79.

Figure 6 shows the distribution ofp(T |26) with an expected
value of 2850 hours.

Operation Times (hours)

0

P
ro

b
a

b
ili

ty

×10-4

0

0.5

1

1.5

2

2.5

3

3.5

4

2100 4000 6000 8000 10000 12000

Figure 6. Distribution ofp(T |26).

Since an estimation of damage magnitude of 26.0µm was
attained at an operation time of 2100 hours, we can deduce
that the deterioration process is running faster than expected.
Therefore, a special attention must be paid to the component
operation.

The proposed work can also be extended to the analysis of the
reliability behavior as the component usage or operation time
varies (Eq. (4)). For example, Figure 7 shows the reliability
for three different damage indicator values: 9.0µm, 26.0µm
and 43.0µm.

Based on the results, the main added-value of the proposed
approach is twofold. On the one hand, this approach is use-
ful to detect the premature degradation of both mechanical
and electrical components of the EMA, thus increasing the
system reliability and reducing unscheduled maintenance ac-
tions. On the other hand, the operational life of the EMA
could be gradually extended based on the reliability analysis
of the obtained data.

5. CONCLUSION

In this work a data-driven health monitoring architecture was
proposed taking into account the limitations of the application
of condition-monitoring strategies on aircrafts.
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Figure 7. Reliability of the damage indicator values.

We have proposed a method for calculating the reliability re-
lated to a particular damage magnitude of a component at
certain operation time. The proposed approach does not re-
quire run-to-failure data and enables the evaluation of the
condition-based health state of the system. The proposed ap-
proach has been validated through numerical simulations.

According to proposed approach it is possible to define condi-
tion-based maintenance strategies. Namely, we can use the
distribution of operation times given an estimation of the com-
ponent damage magnitude for component maintenance pro-
gramming. The comparison between the expected value of
this distribution and the time instant in which the component
reaches the same level of damage magnitude provides infor-
mation about the speed of the deterioration process.

As for the future research goals, it would be interesting to
analyse the improvement on system availability and cost as a
result of condition-based maintenance strategies. To thisend,
we can use the results obtained from the proposed approach
and compare them with respect to periodic preventive main-
tenance strategies.

NOMENCLATURE

R(t) Reliability at time instant t
f(t) Probability density function
Li Discretized i-th damage band
D Real damage magnitude
D̂ Estimated Damage Magnitude
T Operational Time
R(t)

D̂
Reliability at time instant t given̂D

Q(· ) Q function
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