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ABSTRACT useful life and condition-based maintenance strategies, (e

The design of health assessment applications for the eled"® (TATEM, 2008; ACTUATION2015, 2015)).

tromechanical actuation system of the aircraftis achglemn  Airframers demand more sophisticated health monitoring ap
task. Physics-of-failure models involve non-linear coexpl proaches in the scope of the More Electrical Aircraft (Roser
equations which are further complicated at the systemkleveOrtega, Aldabas, & Romeral, 2007). The purpose of these
Data-driven techniques require run-to-failure tests ®dmt  techniques is to stimulate the introduction of Electronzach
the remaining useful life. However, components are not alical Actuator (EMA) technology in the next generation air-
lowed to run until failure in the aerospace engineeringaren crafts, providing fault detection and health monitoringaa
Besides, when adding new monitoring elements for an imbilities. However, the aggregation of health monitoringcime
proved health assessment, the airliner sets constraiettodu anisms on the electromechanical actuator affects the odst a
the increased cost and weight. In this context, the heailth asveight of the aircraft. Accordingly, these constraintsdan
sessment of the electromechanical actuation system id-a chahe aggregation of additional assets such as sensors tii-elec
lenging task. In this paper we propose a data-driven approaccal/mechanical components for an improved health monitor-
which estimates the health state of the system without runing system (Todeschi & Baxerres, 2014).

to-failure data and limited health information. The apmtoa
combines basic reliability theory with Bayesian concepis a
obtained results show the feasibility of the technique fzed
health assessment.

Due to the rapidly growing interest in prognostics and Healt
management, researchers have developed a number of dif-
ferent applications for health assessment and prediction o
remaining useful life (Aizpurua & Catterson, 2015). Defin-
ing a system-level health assessment model for electrome-
chanical actuators in aeronautics is a challenging task. On
Initially, many aircraft health monitoring applicationseve  the one hand, model-based approaches require the physics-
focused on the fault detection and reconfiguration of failur of-failure degradation equation of the asset under study, (e
modes before they cause a system-level unrecoverablegfailusee (Daigle, Saha, & Goebel, 2012)). However, the complex-
(Bieber, Noulard, Pagetti, Planche, & Vialard, 2009). Te a ity of physics-of-failure laws increases at the systenel@wv-
vance of prognostics and health management approaches camlving interactions between different assets. On therothe
tribute to expand the scope of health monitoring systems imand, traditional data-driven techniques require rufatire
aircrafts (Vachtsevanos, Lewis, Roemer, Hess, & Wu, 2007)tests to determine the remaining useful life of assets,(e.g.
These applications provide potential benefits such asdgten see (Goebel, Saha, & Saxena, 2008)). Run-to-failure data
Aitor Isturiz et al. This is an open-access article distiésunder the terms of |s_hardly avallable in the aeropaultlc engln_egrlng arena and
the Creative Commons Attribution 3.0 United States Licemgsch permits  this situation prevents the application of existing datizeth

unrestricted use, distribution, and reproduction in anglioma, provided the  health assessment approaches.
original author and source are credited.

1. INTRODUCTION
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Electromechanical actuators can be used in a wide range dhe potential benefits of the proposed approach are: (iyaccu
applications such as flight control, high lift, landing gear rate health estimation of the system; (ii) improvement ef th
engine control. They can be rotary or linear and they includaircraft availability by the reduction of the corrective ima
different types of sensors, motors or speed reducers. Eletenance actions; and (iii) reduction of the operationak cos
tromechanical actuators can be designed as single chann#iyough the implementation of condition-based mainteeanc
dual channel or they can incorporate disconnection deviices strategies, instead of periodic preventive maintenamagest
order to improve the fault tolerance of the system. Figure Igies.

shows a typical linear actuator configuration. It consi$ta o . . . . ) .
. . : . . The remainder of this paper is organized as follows: Se&ion
Power and Drive Electronics module which drives an electri- o : )
) . L resents the proposed health monitoring architectureiddec
cal motor as torque generator. This torque is multiplied in : . .
defines the health assessment approach, Section 4 applies

speed reducer and transmitted to a ball/roller screw mecha: : )
' . . . . e approach to a ball screw case study, and finally Section 5
nism where it is converted into linear force. The linear bear . . i
%raws conclusions and identifies future prospects.

ings support the axial loads and a position sensor provides

osition signal.
P 9 2. HEALTH MONITORING ARCHITECTURE FOR

. ELECTROMECHANICAL ACTUATOR SYSTEMS
Power & Drive

Electronics Certification of health monitoring systems is a challenging
+ Control | *— Power Supply task. In the case of electrical actuation systems there is no
;D_ module I certification process for health monitoring systems duééo t
<+— Communications bus . L . - .
@ Power recent introduction into service of electrical actuatieys-

module tems in commercial aircrafts.

When designing a health monitoring application for the €elec
Structure Position tromechanical actuation system the use of additional asset
RSN sensor is limited (e.g., sensors, electrical or mechanical desjice
C——f One feasible alternative is to allocate the health momitpri
[ ]|:> Tl I b:{) application in the electromechanical actuator controlrdoa
—d- and reuse already existing signals (e.g., phase current, ro

tary/linear position, winding temperature, force, comuheah

Motor Speed  Axial  Ball/roller A - -
reducer bearing screw voltage) for fault detection and diagnostics (lturrospbete,
Isturiz, & Vinals, 2014; Arellano-Padilla, Gerada, & Sum-
Figure 1. Linear actuator configuration. mer, 2015).

h int ) f the health L hani fFigure 2 shows the proposed health monitoring architecture
TI € main Lrj]nc§|0|1|s of the healt monltorlngdmech.amsm Orhe architecture is built into the EMA Power and Drive Elec-
electromechanical actuator systems are (Todeschi & Baxefonics and it shares the signals and the communication bus

res, 2014): with the Flight Control Computer.

EMA signals are captured by the health monitoring hardware
module. These signals are used to computdJsage and to
e Health assessment of electrical and mechanical compaxecute theHealth Monitoring algorithms. Usage data can
nents which require preventive maintenance. be expressed as operational hours, number of turns/cycles,
e Update health estimations. average load. Each health monitoring algorithm is responsi
] . ble for monitoring one or more failure modes of one or more
e Store operational data in the system database (e.g., |0%mponents. The output of the algorithm for each monitored
reversal or number of cycles). failure mode is defined adealth Index (H1), which can be
expressed as simple physical variables, percentagesgor th
In this paper we present a data-driven health monitoring apevercoming of predefined thresholds. Thiealth Assessment
proach for electromechanical actuator systems. The maimodule takes as input all Health Index values, together with
contribution of the proposed work is the evaluation of thethe Usage information and it performs the system diagnostic
health state of electromechanical actuator systems wiithowestimating thénealth state of the EMA system. This informa-
run-to-failure data and limited health state informatidime  tion is sent to thélight Control Computer.
proposed health monitoring approach evaluates the réfiabi

of the electromechanical actuator system using degradatio! "¢ N€alth monitoring architecture estimates the up-te-da
information and enables the implementation of conditiaa-b health state of the system. This information helps to improv
periodic maintenance strategies through condition-based-

e Fault detection and isolation.

sed maintenance actions.
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Hardware ] Electronics . Computer R(t) B PT(T - t) B /OO f(s)ds (1)
t
Tonae — In Eq (1) we can see that the use qf the classic:_all reliability
EMA Monitoring J“ Usage Data Health definition for health assessment requires run-to-failata do
Signals State as to evaluate the probability of being operative at any time
ﬁ;ﬂﬁ?ﬂﬁf J_. Ing:l::” instant. However, in this paper we propose the reliabilétl ¢
culation with respect to a particular damage or degradation

level of different failure modes of the components. This ap-
proach provides a suitable information for a timely heatth a
sessment and does not require end-of-life tests.

Figure 2. Simplified health monitoring architecture for the
electromechanical actuator system.

In order to calculate the reliability related to a particwdam-

age at a particular operation time, we discretize the damage
magnitude intaV bands denotedl; wherei = {1,2,..., N}.

For example, afirst damage baiid, can comprise measured
The proposed data-driven health assessment approach takggmage values between 0 and an arbitrary value; a second
as input in-service usage data and health index values of thgamage band;,,, can range from the higher limit df; to a
monitored failure modes and estimates the health stateeof thhigher arbitrary damage value; until the entire range of-mea
system under study (cf. Figure 2). sured damage values is covered withdamage bands. The

This data capture approach presents two main advantages c&fff@ Of dividing the damage into discrete bands is similar to

pared to the classical estimation of health assessmend basi€ idea of Lebesgue sampling (Zhang & Wang, 2014; an,
on the number flight hours: Zhang, Wang, Dou, & Wang, 2016). In Lebesgue sampling

prognostics predictions are based on the Lebesgue sampling

« Data reliability. The data reflects the real usage of themodel whose states are predefined according to the quantiza-

EMA during its whole operational life; taking into ac- tion level.

count the actual influence of the external factors such enBased on Bayesian concepts, we can use a predictive distri-
vironmental conditions during flight and the work carried bution to define the relationship between operation timiss, d

out by the actuator. crete set of damages, and the damage magnitude estimation

e Health assessment adaptability. EMA usage data uptHamada, 2008; Rausand & Heyland, 2003):
dates the parameters of the health monitoring algorithm.
As this tha has been acquired QUring real flight con- p(T|D) = Zp(Tan)p(Lnlﬁ) @)
ditions, it is the most representative and accurate data .
source. Moreover, data from both scheduled and correc-
tive maintenance operations also increase the accurasyhereT’ is the operation timel,,, denotesV discrete damage
by updating the health assessment algorithm. bands and represents the damage magnitude assessment.

tenance mechanisms.

3. HEALTH ASSESSMENTAPPROACH

. — _ . Th luti fEqQ. (2 ists of two d dent steps:
The operationalization of this approach not only requihes t e solution of Eq. (2) consists of two dependent steps

development of the theoretical framework (cf. Subsection;  pistribute all measured damage values iftcdamage

3.1), but also the implementation of data-gathering tests t bands (,.), and determine the distribution of operation
extract the required data according to the theoretical éram times (7" related to each damage leve(T'|L.,).

k (cf. Subsection 3.2). . .
work (cf. Subsection 3.2) 2. Calculate the damage band distributidn  given a par-

3.1. Theoretical Eramework ticular damage indicator valué): p(L.,|D).

Reliability is defined as the ability of an item to perform a The solution of the second step requires two intermedidie ca
required function under stated conditions for a statedogleri culations. Firstly, we calculate the distributipD|D) using

of time (Hamada, 2008; Rausand & Hgyland, 2003). Giverthe measured damage daf2)@nd the corresponding damage

a continuous random variablé representing time to failure estimations D). This distribution approximates the distribu-

of the system, reliabilityR(¢) is defined as the probability tions of the measured damage values given each particular
that the system is still working at time Alternatively, itis  damage indicator value and it specifies the error incurred by
possible to use a probability density functig() to define  the damage estimation. Namely, if there is no error in the
the reliability of the item at time as follows (Hamada, 2008; damage estimation, the expected value of the distribution o
Rausand & Hgyland, 2003): the measured damage values coincides with the damage indi-
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cator value. toring algorithms (i.e., health index) and the degradation

Subsequently we determine the damage band distribution ( level.

given a particular damage indicator value, ii¢L,,| D). Let
D(LZ”") andD(gZ‘”) denote the minimum and maximum dam-
age values from band,,, respectively. Eq. (3) defines the
distribution of the damage bands,{), given a damage indi-
cator value D):

During the characterization tests the degradation levéi®f
monitored failure mode is measured and stored. Figure 3 de-
scribes the characterization process.

In-service Health
Usage Data Index (HI)
(maw) l l DAMAGE-USAGE-HI CHARACTERIZATION
~ DLn ~
p(Ln|D) = / p(D|D)dD Health Assessment D HI
D(me) 3) System Reliability Estimation / J i; 4/
_ / p(D|D)dD — p(D|D)dD l Uoge  amege
D(me) D(Lma'r) FLIGHT CONTROL COMPUTER !
" " Alarms/reconfiguration i
Once both distributions(T'|L,,) andp(L,,| D) are determined, : i
the distribution of operation times given a damage indicato|  Cround Station/Maintenance r---{ Data vpgrade |--!
value can be achieved by using Eq. (2). This distribution of
operation times is used to estimate the component reliabil- Figure 3. Health assessment data flow.
ity function with respect to an estimated damage magnitude,
instead of component failure. The data relating real damage measurements with damage in-

The reliability at some particular operation tini&, given dicator estimations and operation times are gathered from a

a damage indicator valud), can be determined applying experimental test bench. The test operation follows a pro-
Eq. (1) as follows: grammed schedule which measures the real magnitude of the

component deterioratior)) using the damage magnitude as-
sessmentlp) and the operation tim&7).

o0
R(Io)p = /T p(T|D)dT (4) One benefit of the described approach is that the tests are not

’ required to be extended until a complete failure occurs. The
The expected value of the distribution resulting from EQ. (4 usage and health index data are useful for the health assess-
represents the most probable operation time at which the conment even corresponding to low levels of degradation. The
ponent reaches that specific damage magnitude. This estimgecond benefit is that all the data coming from any mainte-
tion can help to program maintenance tasks. For instanc@éance action can be fed into the system characterizati@n dat
achieving such an estimation of damage magnitude at a timease once the failed components are inspected and analyzed.
higher or lower than the expected value of the distribution
will provide useful information about the current componen 4. NUMERICAL SIMULATIONS
deterioration process, .e., current component detgtmma_ The validation of the proposed methodology is presented by
process could be running slower or faster, in relation with . . : . .
the expected one. Then, the designer can adopt conditioP€ans of numerical simulations implemented in Matlab. In

. L . S articular, we use data extracted from tests of ball scrdws o
based maintenance decisions to improve availability and re,f)he same tvbe and same manufacturer. With numerical simu
duce maintenance costs. yp ’

lations we assess the reliability of the ball screw at a $jgeci

3.2. Practical Framework: Data Gathering Tests operation time given a damage indicator value.

g‘he damage indicator defines the gradual component dam-
age. The values for backlash threshold and distribution pa-
rameters depend on the type of ball-screw and the initialy d
signed backlash. Typically, the backlash threshold vatwe ¢
responds to the beginning of the wear out degradation phase.
This phase is characterized by an exponential increasesof th
omponent failure probability. In this article, the threkh

d distribution parameters are determined based on $ife te
carried out in a specific ball-screw. Accordingly, an indiza
e Hli-degradation distribution: tests for determining the higher than 45.Qum is defined as the condition from which a

correspondence between the output of the health monball screw starts to fail.

The proposed approach requires a preliminary double chara
terization test campaign to obtain data for health assas#sme
Accordingly we correlate different variables and extramtc
responding probability distributions:

e Degradation-usagedistribution: tests for determining the
correspondence between the degradation level of eac
failure mode and the usage data.
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The range of possible damage values is arbitrarily divided 5 x10°
into nine uniform bandsL;, i={1, 2, ...,9. Table 1 dis-

plays the specification of the damage bands. For each band, 5
L; its corresponding value ranges and mean and variance val-
ues of the operation timés are specified assuming that they 2k

P(TILs)

T

p(TIL,)

p(TIL)
are drawn from a Normal distribution. >
3
Table 1. Damage bands specification. g1er PCTIL)
o
Damage Range Mean Variance 1+
Bands (sm) (hours) (hours)
L 5-10 1000 150 05k
Lo 10-15 1500 200 ’
L3 15-20 2000 300
0 ‘ ; ‘ ‘
La 20-25 2500 400 0 1000 2000 3000 4000 5000 6000
Ls 25-30 3000 500 Operation Times (hours)
Lg 30-35 3500 400
L~ 35-40 4000 300 Figure 5. Distribution®(T'| L,,) obtained from draws of Nor-
Ls 40-45 4500 200 mal distributions.
Lo 45-50 5000 100

Figure 4 shows time to damage data samples for some dam-
age bandsly, Ls, Ls, L7, Lo).

e
= e - _
p{Ln D(LT:m) o2

/oo 1 7%( D75)2dD 5
e o

p{me®) o/ 2w ®)
Dy D, _ Q(ng;w) -D

g g

5500

5000 |13 8

4500

hours)

R
4000 /A
0 &

nd

=Q(

)

a

@ 3500

Time to Damage
N N w
S a ©
S 8 o
S & o

2003):

1500

il

Q) = /oo \/%e* = dy ®)

1000

500
0 10 20 30 40 50 60 70 80 90 100

Sample Number

whereQ(.) is the Q-function, defined as (Rausand & Hgyland,

Figure 4. Time to damage band,]) data samples.

The distribution of operation times given a damage indicato
value, p(T'|D), is determined through Eq. (2), and this re-
sult enables the calculation of the reliability related eone

The distributionsp(T'|L,,) are obtained from damage mea- particular estimated damage magnitude at specific operatio

surements shown in Figure 4 and parametrized in Table Ximes. For a damage indicator value of 2@, the proba-
Figure 5 shows the nine corresponding distribution estimabilities of the damage bands (a discrete distribution) arerg
tions. in Table 2.

Without loss of generality in this work we assume that the
distribution of the real damage values given a damage indi

: = SR . indicator value of 26:m.
cator value (i.e.p(D|D)) follows a Normal distribution with Gum

an expected value equal @ and a typical deviation equal Bands p(L.]26)
to 8.0um. Gaussian distributions are used for simplicity be- Ly 0.02
cause they facilitate the analytical treatment as in (Bento Lo 0.06
2009). However, it should be noted that this assumption does Ls 0.14
not limit the practicality of the proposed approach because ﬁ“ 8'33
the model developed in this paper is applicable to any type of LZ 0.18
distribution. I 0.09
The distribution of damage bands given a damage indicator Ls 0.03
value is determined applying Eq. (3) as follows: Lo 0.01

Table 2. Probabilities of the damage bands given a damage
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The sum of the resulting distributions for each damage band

from the producp(T'|L,,)p(L,|26) yields the distribution of 09+
operation times given a damage indicator vaWi€|D) (cf.

08 — _—_D=
Eqg. (2)). Subsequently, we use this expression for the re- §=§6”an
liability calculation according to Eq. (4). For the case ofa  °7] D=43um
operationtime of 2100 hours, the componentreliabilityegi  _ o6t
damage indicator value of 26,0n, is equal to 0.79. = o5
K
Figure 6 shows the distribution @{7|26) with an expected ¢& 04
value of 2850 hours. '
0.3
107
4r . 0.2
35 E 0.1
; 0 : : S, : : : ‘
3r ' 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
' Operation Time (hours)
251 : . I -
2 ! Figure 7. Reliability of the damage indicator values.
8 2f |
° |
® st | We have proposed a method for calculating the reliability re
lated to a particular damage magnitude of a component at
A : certain operation time. The proposed approach does not re-
quire run-to-failure data and enables the evaluation of the
05y : condition-based health state of the system. The proposed ap
0 S ‘ ‘ ‘ ‘ proach has been validated through numerical simulations.
0 2100 4000 6000 8000 10000 12000

According to proposed approach it is possible to define condi
tion-based maintenance strategies. Namely, we can use the
Figure 6. Distribution op(7|26). distribution of operation times given an estimation of thene
ponent damage magnitude for component maintenance pro-
Since an estimation of damage magnitude of 26:0 was gramming. The comparison between the expected value of
attained at an operation time of 2100 hours, we can dedud@is distribution and the time instant in which the compdnen
that the deterioration process is running faster than eedec reaches the same level of damage magnitude provides infor-
Therefore, a special attention must be paid to the componefitation about the speed of the deterioration process.

operation. As for the future research goals, it would be interesting to

The proposed work can also be extended to the analysis of trghalyse the improvement on system availability and cost as a
reliability behavior as the component usage or operatioe ti - result of condition-based maintenance strategies. Tetius
varies (Eq. (4)). For example, Figure 7 shows the religbilit We can use the results obtained from the proposed approach

for three different damage indicator values: 910, 26.0pm  and compare them with respect to periodic preventive main-
and 43.0um. tenance strategies.

Operation Times (hours)

Based on the results, the main added-value of the proposggyyencLATURE
approach is twofold. On the one hand, this approach is use-

ful to detect the premature degradation of both mechanicaIR(t)
and electrical components of the EMA, thus increasing the
system reliability and reducing unscheduled maintenance a **
tions. On the other hand, the operational life of the EMA Q

Reliability at time instant t
Probability density function
Discretized i-th damage band
Real damage magnitude

could be gradually extended based on the reliability amelys Estimated Damage Magnitude
of the obtained data. T Operational Time R

R(t)5 Reliability at time instant t give
5. CONCLUSION Q) Q function

In this work a data-driven health monitoring architectudsW RererencEs
proposed taking into account the limitations of the appiica
of condition-monitoring strategies on aircrafts. ACTUATION2015.  (2015). ACTUATION2015: To-
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