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ABSTRACT 

This paper is focused on the problem of preventive 

maintenance optimization in a manufacturing environment, 

to determine the optimal preventive maintenance 

frequencies for equipment under cost and profit criteria, 

considering production, quality and maintenance aspects. 

The paper is based on a previously developed maintenance 

model, to execute a benefit and cost optimization process 

using a Hybrid Multi-Objective Evolutionary Algorithm 

(Hybrid MOEA) that combines a global search method with 

a local one. The hybrid algorithm combines the capabilities 

of both worlds, using a global search technique to 

effectively explore wide parameter spaces, deal properly 

with function non-linearities and avoid falling into local 

optimal solutions, and combining it with the capacities of 

local search methods to efficiently converge into local 

optimal solutions. The hybridization is done according to 

two different schemes. Firstly, ‘a posteriori’ scheme has 

been implemented, where the MOEA runs for a number of 

generations obtaining an approximation of the Pareto front 

to apply then a local search from each non-dominated 

solution of the front. Secondly, an ‘on-line’ scheme has 

been developed, where in each generation (or after a 

reduced number of generations) of the evolutionary 

algorithm a local search is applied on each non-dominated 

solution to return then the improved solutions to the MOEA 

as the current population. Both hybrid schemes have been 

applied to an industrial manufacturing case where the 

benefit of implementing the hybrid optimization approach is 

shown, by comparing the hybrid schemes with the MOEA.  

1. INTRODUCTION 

Optimization of maintenance activities developed in the 

different systems of an industrial plant is of great 

importance in plant management and operation. In the past 

decades the maintenance optimization problem of 

production systems has been extensively studied in the 

literature and different methods and tools focused on the 

maintenance optimization have been proposed). In this 

context Sharma, Yadaba and Deshmukh (2011) present a 

review of the existing literature on maintenance 

optimization models. The authors classify the optimization 

models and they identify the possible gaps in the topic. 

Later de Almeida et al. (2015) elaborate a complete review 

of maintenance optimization problems from a multicriteria 

perspective. 

For the optimization approach presented herein the cost and 

profit models developed by Sanchez and Goti (2006) are 

considered and applied to a production system of a Spanish 

company. The cost model includes corrective and 

preventive maintenance costs, along with quality costs and 

cost related to poor performance (reduction of the speed of 

equipment due to deterioration problems) and the profit 

model includes the benefits obtained to the sale of products.  

Thus, the objective of this paper is the preventive 

maintenance optimization based on costs and benefit criteria 

using a hybrid MOEA approach. This paper is organized as 

follows. Section 2 introduces a imperfect maintenance 

model. Section 3 presents the cost and benefit quantification 

models used in the optimization process, followed by 

Section 4, summarizing the multiobjective optimization 

problem. Section 5 presents the developed hybrid 

algorithms, whereas an application case focusing on 

maintenance intervals optimization for a simplified 

production system is shown in Section 6. Finally, Section 7 

presents the conclusions. 
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distributed under the terms of the Creative Commons Attribution 3.0 
United States License, which permits unrestricted use, distribution, and 

reproduction in any medium, provided the original author and source are 

credited. 
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2. IMPERFECT MAINTENANCE MODEL 

Traditionally, the effect of the maintenance activities on the 

state of equipment is based on three situations: a) perfect 

maintenance activity which assumes that the state of the 

component after the maintenance is “As Good as New” 

(GAN), b) minimal maintenance which supposes that 

activity leaves the equipment in “As Bad as Old” (BAO) 

situation, and c) imperfect maintenance which assumes that 

the activity improves the state of the equipment by some 

degree depending on its effectiveness. Last situation is 

closer to many real situations.  

Several approaches have been developed to simulate 

imperfect maintenance. In this paper, an age reduction 

preventive maintenance model, named Proportional Age-Set 

Back (PAS), proposed by Martorell et al. (1998) is used to 

model the effect of the maintenance activities on the 

equipment.   

In the PAS approach, each maintenance activity is assumed 

to shift the origin of time from which the age of the 

component is evaluated. PAS considers that the 

maintenance activity reduces proportionally, in a factor of , 

the age that the component has immediately before it enters 

maintenance.  ranges in the interval [0,1]. If 0ε  , the 

PAS model simply reduces to a BAO situation, while if 

1ε   it is reduced to a GAN situation. Thus, this model is a 

natural generalization of both GAN and BAO models in 

order to account for imperfect maintenance.  

As stated in Sanchez and Goti (2006), in addition to the 

conditions established by the PAS model, 

if it is assumed that a) preventive maintenance is 

periodically realized on the component with constant 

effectiveness  and periodicity M, and b) operation 

conditions remain steady, it is established that the relation 

between the age of the component wm(t) immediately before 


1-mw  and after 

1-mw the m-1
th

 maintenance activity is defined 

by Eqn. (1): 

 ε)(1ww 1-m1-m  
 (1) 

As maintenance activity reduces the deterioration level of 

the component applying the effectiveness parameter  since 

the origin of time from which it was installed, the 

progression of the age of the component will follow an 

asymptotic behavior:  

 

Figure 1. Evolution of the age of a component over the 

chronological time. 

As stated in Sanchez and Goti (2006), this asymptotic 

behavior is limited by the age values just before and after a 

maintenance activity is performed, shown in Eqns. (2) and 

(3): 

 


  M

ww a1-m
 (2) 

 












  1

1
Mww a1-m  (3) 

Due to this behavior it is possible to obtain an age-

dependent reliability model in which the induced or 

conditional failure rate, in the period m, after the 

maintenance number m-1, is given by:  

 +
1-m0m w     w                    h)) (w(t,h(w)h 
 (4) 

where h0 represents the initial failure rate of the component, 

that is, when the equipment is installed and h(w(t,ε)) is the 

failure rate of the component.  Adopting a Weibull model 

for the failure rate, the expression for the induced failure 

rate after the maintenance number m-1 can be written as: 

    +
1-m0

1γ

m

γ

m w    wh)ε t,(wγλ(w)h 


 (5) 

where  is the scale parameter,  the shape parameter, and 

)ε  t,(wm
represents the age of the component:  

 +
1-m1mm w      w          t         w)ε  t,(w  


 (6) 

Influenced by the age, function hm(w) is also asymptotic, 

determined by Eqns. (7) and (8):  

                            hwγλh 0

1γ-

a

γ-

a 


 (7) 

                            hwγλh 0

1γ

a

γ

a 


 
(8) 

Finally, in order to introduce the effect of maintenance 

activities into the cost and profit models, to be presented in 

the following section, it is derived an averaged standby 

failure rate over the component’s life based on a double 

averaging process. First, it is formulated the average failure 

rate, 
*

mh , over the period between two consecutive 

maintenance activities, m-1 and m. Next, it is formulated the 

average failure rate, 
*h , over the analysis period, L. Thus, 

the value of 
*h  is given by:  

 

     0

1
h11Mh 




















 

(9) 

Thus, as the influence of periodicities of preventive 

maintenance activities on the deterioration level of 

equipment are modelled based on the Eqns. (1) to (9), the 
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following Section details how this deterioration effects on 

productive costs and benefits.  

3. COST AND BENEFIT MODELS 

This Section presents the models used in the optimization 

process. Cost related to preventive and corrective 

maintenance activities, cost related to the production speed 

lost, quality cost and profit model are presented. All these 

parameters are affected by the decision vector x, composed 

by m maintenance activities executed each of them on a 

single component with an M periodicity value.   

3.1. Maintenance costs 

The relevant maintenance costs of the equipment include the 

contributions due to preventive maintenance (PM) activities, 

along with the corrective maintenance (CM) events, 

consequence of idling, minor stoppage and 

failure/breakdowns. Thus, the cost associated with 

preventive maintenance can be evaluated in the analysis 

period, L, as: 

 
  hpmpmpm cd

M

L
C x  (10) 

where dpm and chpm represent, respectively, the mean time 

and the average hourly cost of performing PM, and x 

represents the vector of decision variables. 

The cost contribution due to corrective maintenance is given 

by: 

 
  cmhcmrcm d.c

M

L
).M(uC  x,x  (11) 

being dcm and chcm, respectively, the mean time and  the 

average hourly cost of performing corrective maintenance 

and ur(x,M) is  time-dependent unreliability for 

discontinuous evaluated as: 

     Mh

r e11Mxu .*

.,    (12) 

where  is the probability of failure on demand, and h* is 

evaluated using Eqn. (9). 

3.2. Cost related to the production speed lost due to 

aging 

Traditionally, in the literature the production rate (speed) of 

the equipment is assumed to be predetermined and constant 

along the component life. Nevertheless, it is logical to think 

that the production speed as consequence of the aging of 

equipment decreases.  Thus, Nakajima (1988) justifies the 

gap between the real equipment speed and the designed 

speed causes significant economic losses which are often 

neglected or underestimated.  

In this paper it is assumed that the production rate depends 

on the equipment age. According to this assumption, the 

equipment can be working at different production rates 

depending on its age. Herein, for sake of simplicity of the 

formulation it is assumed a linear relationship between 

equipment age and production speed. Based on it the 

production speed after the m-maintenance activity can be 

evaluated as:  

    εt,τ.wSwS mom   (13) 

where S0 is the initial (e.g. as per design) production speed, 

 represents the speed reduction coefficient and wm(t,) is 

the age of the component after the maintenance m-1, which 

adopting a PAS model is given by Eqn. (6).  

The behavior of the function Sm(w) is also asymptotic, as it 

was observed for the age of the component when the PAS 

model is adopted which are given by: 

 

ε

M
τ.SS 0a 

 (14) 

 









 1

ε

1
MτSS 0a  

(15) 

The production speed loss effect on the equipment can be 

introduced in the cost model, considering an averaged 

production speed over the analysis period L. So, using a 

similar process as the one described for the induced failure 

rate in Section 2, it is possible to derive the following 

expression for the production speed under the PAS 

approach:  

 



















2ε

ε-2
MτSS 0

*
 (16) 

Adopting, the value of the speed production average S* 

given by Eqn. (23) is possible to determine the “production 

time lost” related to a reduced speed (tsl) and considering 

only the fraction of the production system is available as 

follows: 

 

  L
S

S
xA1)(t

0

*

ssl .








x  (17) 

where As(x) is the availability system which is obtained as  

    xx ss U1A   (18) 

being Us(x) the unavailability system is to be evaluated 

using the system fault tree and the single component 

unavailability contributions. These contributions are ur(x) 

which is evaluated using Eq. (12), ucm(x) which is the 

unavailability due to corrective maintenance given by: 
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    cmrcm dM,u

M

1
u  xx  (19) 

and upm(x) that represents the unavailability associated with 

preventive maintenance in the L period given by:  

 
  pmpm d

M

1
u x  (20) 

Finally, the cost related to the production speed loss of the 

equipment (Csl) in the period L can be evaluated 

proportionally to the production time lost as:   

 
      L

S

S
A1LC tcc

0

*

shslslhslsl 









 xxx  (21) 

where chsl is the average hourly cost due to non-produce 

items. 

3.3. Quality costs 

Aging of equipment is one of the factors that cause 

defective product outputs. However, although a strong 

relationship between aging and quality exist, traditionally 

both factors are modeled as separate problems (Ben-Daya & 

Rahim, 2000). Aging of equipment depend on maintenance 

activities developed on it, so equipment can be maintained 

in optimal operational conditions through adequate 

maintenance preventive. Therefore, to optimize the 

maintenance schedule it is necessary to develop a model that 

links the quality and maintenance. PAS model, presented in 

Section 2, assumes that each preventive maintenance 

activity reduces the age of the equipment depending on an 

effectiveness parameter. The change in the age of the 

equipment introduced by the PAS model affects the time 

distribution to the system swaps to the out-of-control and 

consequently the expected amount of nonconforming items.  

In this Section it is derived a quality cost model which 

considers the preventive maintenance effect on the 

component age based on the PAS model. The model is 

developed under the following assumptions: 1) The 

equipment only produces non-conforming items with 

constant rate, , while the process is out-of-control 2) The 

time to the system swaps out-of-control follows a Weibull 

distribution which depends on the age of the equipment, 3) 

The preventive maintenance and the process inspection are 

performed simultaneously, 4) Inspections are error free, and 

5) the process is restored to the in-control state when the 

preventive maintenance activity is realized. To model the 

quality costs it is necessary to determine the fraction of time 

during which the process is in-control state named )w(m .  

 

  dw)),t(w(ftw

w

w

mm

1m

 



 (22) 

where ε)) (t,f(wm  is the density function, which can be 

obtained using the conditional hazard function as:   

 

  Mh*

dw*h

*

m

*

mw

1m

w

eheh)w(t,f 











  

(23) 

as a consequence of the asymptotic behavior of the hazard 

function when a PAS model and a low failure rate are 

considered.   

 
Mh*

M

0

m

* *

eh
2

1
dwε))(w(t,ft

M

1
κ    (24) 

Thus, quality costs are:  

   LαC)κ(x)(1ASc α

*

s

*

q   (25) 

3.4. Profit 

In order to quantify the consequences of a given preventive 

maintenance schedule in economic terms it is necessary to 

consider the benefits obtained to its implementation. So, a 

net profit function, T, that denotes the benefits obtained to 

the sale of products, is introduced as:  

 ψnT   (26) 

where n is the number of non-defective items produced in 

the period analysis, L, and  is the estimated margin of a 

single product. 

The number of non-defective items produced in the period L 

can be evaluated considering the time that the process has 

been in-control and out-of-control state.  Thus, if the process 

is in an out-of-control state is produced (1-)% of non-

defective product while if the process is in an in-control 

state elaborates a 100% non-defective product. Therefore, 

the profit can be evaluated as:    

        ψLα1κ1κAST **

s

*  x

 
(27) 

4.  COST  AND PROFIT OPTIMIZATION PROBLEM  

Maintenance intervals optimization based on cost and profit 

criteria can be formulated as a multi-objective optimization 

problem (MOP). A general MOP includes a set of 

parameters (decision variables), a set of objective functions, 

and a set of constraints. Objective functions and constraints 

are defined in terms of the decision variables using the 

models presented in the previous section. The optimization 

goal can be formulated to optimize a vector of functions of 

the form (Martorell, Sanchez, Carlos, & Serradell, 2004): 
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 ))(f),...,(f),((f)f()y( n21 xxxxx   (28) 

subject to the vector of constraints:   

 ))(g),...,(g),((g)g( n21 xxxx   (29) 

where:  

 X}x,...,x,{x n21 x  (30) 

 Y}y,...,y,y{ n21 y
 

(31) 

and x is the decision vector (vector of decision variables), y 

the objective vector, X the decision space and Y is called 

the objective space, that is to say Y=f(X). 

In the optimization proposed in this paper the cost and profit 

criteria are formulated using the expressions obtained in 

Section 3. Both models depend on maintenance intervals 

which act as decision variable and are encoded in the 

decision vector, x. So, the vector of bi-objective function, 

f(x), is defined as:  

 )}T(),{C()f( xxx   (32) 

and the objective is to minimize the function C(x) and 

maximize a profit function T(x). C(x) is the cost system 

which is evaluated as sum of the maintenance, production 

speed lost and quality costs for each component of the 

system which are evaluated using Eqns. (10), (11), (21) and 

(25), respectively. T(x) is the profit function which is 

evaluated using Eqn. (27). 

In addition, the vector of restriction, g(x) is formulated as: 

 }U)U(,C){C()g( ii  xxx  (33) 

where Ci and Ui represent the cost, profit and unavailability 

associated with the initial values for the decision vector, 

respectively. 

5. HYBRID MULTI-OBJECTIVE EVOLUTIONARY 

ALGORITHMS 

The optimization of maintenance models under multiple 

criteria can be solved by using MOEAs. The Multi-

Objective maintenance optimization problem of production 

systems using MOEAs has been extensively studied in the 

literature. Although MOEAs are extremely efficient 

optimization techniques they may not be the most efficient 

ones in all the phases of the search process. Their 

performances may therefore be improved by performing a 

hybridization of the algorithms with other techniques (such 

as Simulated Annealing, Tabu Search, etc.) which perform 

better in a given search phase. The hybridization of a 

MOEA with a Local Search (LS) method may be an 

interesting approach as it combines the main advantages of 

each technique: thus, MOEAs confer hybrid algorithms a 

high exploratory capability, and decreases at the same time 

the number of generations needed to reach convergence, 

whereas the low precision of classical MOEAs is 

compensated by the local method which can locate 

accurately the closest solution associated to each 

chromosome. 

In this case, the Nondominated Sorting Genetic Algorithm 

(NSGA-II) (Deb, Pratap, Agarwal, & Meyarivan, 2002) is 

combined with the Nelder and Mead Simplex Search 

method or NMS (Nelder & Mead, 1965), a local search 

method, to develop a hybrid MOEA.  

5.1. Nondominated Sorting Genetic Algorithm II 

Although the NSGA-II has been improved for more than 

two objective optimizations, it is still a very efficient 

MOEA for bi-objective optimizations, it incorporates: a) a 

faster non-dominated sorting approach, b) an elitist strategy 

i.e. the best non-dominated individuals are preserved from 

one generation to another, and c) no niching parameter.  

Diversity is preserved using a crowding comparison 

criterion in the tournament selection and in the phase of 

population reduction. The crowding comparison operator 

assumes that each individual, x, in the population has two 

attributes: nondomination rank (xrank) and crowding distance 

(xdistance), which is a measure of density of solutions in the 

neighbourhood. The crowding distance value of a solution x 

is obtained by the perimeter of the cuboid formed by using 

the nearest neighbours as vertices. Solutions of the last 

accepted front are ranked according to the crowding 

comparison distance. Considering both attributes a partial 

order relation is used as follows:  

 xy if (xrank<yrank)  

or ((xrank=yrank) and (xdistance > ydistance)) 
(34) 

Thus, the solutions with the lower rank are preferred and, if 

two solutions have the same rank the solution with larger 

crowding distance is preferred. 

An important feature to be considered is how the algorithm 

guides searches towards feasible region in presence of 

constraints considering domination concepts. According to 

the procedures of NSGA-II, the definition of domination 

between two solutions is the stated below: a solution is i 

said to constrained-dominate a solution j, if any of the 

following conditions is true. 

1) Solution i is feasible and solution j is not. 

2) Solutions i and j are both infeasible, but solution i has a 

smaller overall constraint violation. 

3) Solutions i and j are feasible and solution i dominates 

solution j. 

The effect of using this constrained-domination principle is 

that any feasible solution has a better non-domination rank 

than any infeasible solution. All feasible solutions are 
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ranked according to their non-domination level based on the 

objective function values. However, among two infeasible 

solutions, the solution with a smaller constraint violation 

has a better rank.  

The NSGA-II follows the working procedure defined next: 

Step 1. Fix N (population size), i=1 (number of 

generation), t = N (number of f(x) evaluations) and 

tmaxGA.(maximum number of f(x) evaluations using the 

genetic algorithm) 

Step 2. Create a random parent population Pi of size 

N.  

Step 3. If t>tmaxGA return Pi else: 

Step 4. Form a combined population of size 2N as Ti= 

Pi  Qi.  

 Qi (i>1)= offspring population 

 Ti size N and equal to Pi in the first interaction 

Step 5. Penalization (according to restriction 

violations). 

Step 6. Identify non dominated fronts F1, F2, …., Fk. 

Thus each solution is assigned a fitness equal to its 

non-domination level.  

Step 7. For each non-dominated front calculate crowding 

distance of the solutions Fj. 

Step 8. Create Pi+1 as the N best individuals from Pi. 

Step 9. Select randomly N couples from Pi+1 using a 

binary tournament selection. 

Step 10. Create offspring population Qi+1 applying 

crossover and mutation. 

Step 11. Calculate the M genes which have not been 

evaluated in previous generations, and evaluate the N-

M unevaluated genes 

Step 12. Do i=i+1 and t=t+N-M.  

Step 13. Go to step 4. 

5.2. Nelder–Mead Simplex method 

The NMS is a popular direct search minimization method. 

Using the NMS, if the objective function has n decision 

variables, the algorithm begins from the n+1 initial function 

values of these decision variables which define a simplex. A 

simplex is a geometrical figure consistent in n dimensions 

of n+1 points, V0, V1, V2, … , Vn. For the initial generation, if 

a point of a simplex is taken as the origin, the n other points 

define vector directions that span the n-dimension vector 

space. The method finds a minimum for the objective 

function by performing concurrent searches following 

multiple directions, determined by the points that constitute 

the limits of a simplex, until a termination criterion is 

verified. So, the objective function is evaluated at every 

point that constitutes the simplex. In a minimization 

problem, the point with the highest numerical value is 

replaced by a better point which is obtained through 

reflection, expansion and contraction operations.  

The reflection consists on the worst point is reflected 

through the simplex centroid. The reflection can be followed 

with an expansion if the reflected point is the best out of all 

points. The expansion step extends the reflection point along 

with the reflection point. The contraction step is performed 

when the worst point is at least as good as reflected point.  

The NMS method requires a single objective function. A 

weighted sum of multiple objectives is often used for local 

searches in hybrid MOEAs. This weighted sum (defined as 

r(x)) can be implemented using the following scalar fitness 

function:  

 
)(rq)r( ii

n

1i

xx 


 (35) 

where qi is a weight for the i-objective function satisfying 

the following conditions:   

 





n

1i

i 1q  0qi   (36) 

Additionally, if the minimization of objectives functions is 

assumed, ri(x) represents the i
th

 normalized function, which 

can be obtained as:   

 

min

i

max

i

i

max

i
i

ff

(x)ff
(x)r




  (37) 

where 
max

if  and 
min

if  are the minimum and the maximum 

values of the objective function if  from the obtained set 

solutions from the MOEA. The steps followed by the NMS 

are described next: 

Step 1. Fix simplex parameters (, , , , ), maximum 

number evaluations (tmax) and current number 

evaluations (t = 0). Generate n vertex from the starting 

point and evaluate the objective function at the n+1 

vertex of the simplex and. Do t=n+1. 

Step 2. If f(Vn)-f(V0))< or t>tmax return the i element 

which has the minimum f(Vi) else: 
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Step 3. Order the n+1 vertex of the simplex according to 

the objectives function values, thus is, f(V0)  f(V1) 

..f(Vn). 

Step 4. Reflection. Calculate Vr= )( nVVV  , and 

compute f(Vr). Do t=t+1. (Note: nVV
1-n

0i

i /


 ) 

Step 5. If f(V0)f(Vr)<f(Vn) replace Vn with Vr go to step 2. 

Step 6. Expansion. If f(Vr) < f(V0) calculate 

)( VVVV re   and compute f(Ve). Do t=t+1. 

If f(Ve)<f(Vr) replace Vn with Ve and go to step 2. 

Else replace Vn with Vr and go to step 2. 

Step 7. Outside Contraction. If f(Vn-1) f(Vr) < f(Vn) 

Calculate )( VVVV rCO  . Do t=t+1. 

  If f(VCO)   f(Vr) replace Vn+1 by VCO  and go to 

step 2. 

  else go to step 8. 

Step 8. Inside Contraction. If f(Vn) f(Vr) calculate 

)( 1nCI VVVV  and compute f(VCI). Do 

t=t+1. 

If f(VCI)   f(Vn) replace Vn with VCI and go to step 2. 

Else go to step 8. 

Step 9. Calculate   .1ii VVV  for i= 2,3, .., n and 

evaluate to replace all Vi by 


iV . Do t=t+(n-1). Go to 

step 2. 

It is worth adding that the standard NMS has certain 

standard parameter values for , ,  and , which are 

shown in Table 1. This table also includes the conditions 

that these values must acquire.  

 

5.3. Hybrid MOEAs 

In the literature it is possible to analyze mainly two hybrid 

schemes: the ‘a posteriori’ approach where the MOEA runs 

for a fixed number of generations obtaining an 

approximation of the Pareto front to apply then a local 

search from each non-dominated solution of the front, and 

the ‘on-line’ approach, where in each generation (or after a 

reduced number of generations) of the evolutionary 

algorithm it is applied a local search on each non-dominated 

solution to return then the improved solutions to the MOEA 

as the current population.  

These approaches are shown in the next subsections, but 

previously it is shown how the hybridization of both 

methods is performed. 

5.4. Hybridization 

The two hybrid algorithms developed employ the 

hybridization scheme shown in Figure 2: 

 

Figure 2. Hybridization scheme of the implemented 

algorithm. 

In this scheme the MOEA runs for a fixed number of 

generations obtaining a set of solutions. After evolving the 

population using the algorithm a local search is applied from 

each non-dominated solution of the front. Local search 

boundaries related to each input gene are established 

determining a symmetric upper and lower limit of the input 

over each genome. Local search applied to each gene 

generates another solution so it is created another 

population. In a third step the populations obtained using 

both MOEA and LS are combined to re-generate the 

solution front. In case the front size exceeds the established 

maximum Pareto size worst genes are removed according to 

the criteria defined in Eq (34).  

5.5. ‘A posteriori’ approach 

As it was defined previously, in the ‘a posteriori’ approach 

the MOEA runs for a fixed number of generations obtaining 

an approximation of the Pareto front. After evolving the 

population using the algorithm a local search is applied from 

each non-dominated solution of the front. Then the 

populations obtained using both the MOEA and the LS are 

combined to re-generate the solution front, reducing it in 

case the front size exceeds the established maximum Pareto 

MOEA

LS applied over 
each gene of the 

MOEA

MOEA results

LS results

Initial population

Hybridization results

MOEA results

Combine 

MOEA 
and LS 

results

Obtain 
combined 

Pareto front

Hybrid algorithm

Table 1. Standard NMS values. 

Parameter Standard value Conditions  

 1 

 2  and  

 0.5 0<<1 

 0.5 0<<1 
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size. The working scheme of this approach is shown in 

Figure 3: 

 

 

 

Figure 3. Scheme of the ‘a posteriori’ approach. 

5.6. ‘On-line’ approach 

In the ‘on-line’ initiative, after a reduced number of 

generations of the MOEA its results are taken as in-puts in 

the LS method. Then a local search is applied from each 

solution the same way it is performed in the ‘a posteriori’ 

approach. The results of both methods are combined to 

obtain the solution front, reducing it in case the maximum 

population size is exceeded. Then this solution front is 

returned to the MOEA as the current population. These 

operations are executed until a finalization criterion is 

achieved. The scheme of the ‘on-line’ approach is shown in 

Figure 4: 

 

Figure 4. Scheme of the ‘on-line’ approach. 

5.7.  Termination criterion 

The convergence in results in the MOEA during an amount 

of generations of global search method is considered as 

finalization criterion for the three cases; in other words, it is 

necessary to have a convergence in results in a predefined 

amount of generations in the NSGA-II for all of the 

approaches, thus is, a) NSGA-II in ‘stand-alone’ mode, b) ‘a 

posteriori’ and c) ‘on-line’ to end up the simulation. In the 

specific case of the ‘a posteriori’ scheme, a local search on 

each of the optimal solutions found is be executed before 

retrieving the set of optimal solutions.  

For the NSGA-II in stand-alone mode, this convergence is 

established in 10 generations, whereas for the hybrid 

algorithms the limit is set on 5 generations. The reason for 

being more demanding in the convergence of the NSGA-II 

running in ‘stand-alone’ mode is that, if the same amount of 

generations are set up as convergence criterion, the NSGA-

II will always be faster than the ‘a posteriori’.  

6. APPLICATION CASE 

The cost and profit models described in Section 3 and the 

hybrid algorithms are applied herein to the problem of 

optimization the preventive maintenance activities of a 

simplified injection system. The developed hybrid 

algorithms were also compared with the NSGA-II 

considering simulation time and number of evaluations of 

the objective function as performance ratios. The simplified 

system is installed in a installed in a Spanish manufacturing 

company of the ‘Mondragon Cooperative Corporation’ and 

it consists of three groups of components (C1-Electric-

Electronic components, C2-Hydraulic components and C3-

Others) in serial configuration. Firstly, C1’s deterioration 

influences only unavailability. Secondly, C2’s deterioration 

affects unavailability and productive speed loss. Thirdly, 

C3’s deterioration has an effect on unavailability and 

quality. Three maintenance activities (M1, M2 and M3) are 

applied on the components in order to reduce the 

deterioration level of the studied equipment: M1 is applied 

on C1, M2 on C2 and M3 on C3.  

6.1. Simulation values 

6.1.1. Simulation values for the studied equipment 

Tables 2, 3, 4, 5 and 6 show the relevant component re-

liability, preventive maintenance, corrective maintenance, 

quality, availability, speed loss and cost data for this case of 

application: 

 

 

 

Stopping

criterion

achieved?
INITIALIZATIONSTART

HYBRID

MOEA

RESULTS

HYBRID

MOEA

END
HYBRID

MOEA

RESULTS

Yes

No

Table 2. Reliability data. 

Component  

C1 5 2 

C2 2 2.9 

C3 4 2 

 

Table 3. Parameters related to preventive maintenance. 

Activity  Duration dpm (h) 

M1 0,9 0,5 

M2 0,9 0,5 

M3 0,9 1 

 

Table 4. Parameters related to corrective maintenance. 

Component  dcm (h) 

C1 0,5 

C2 0,5 

C3 1 

 

INITIALIZATIONSTART
HYBRID

MOEA

RESULTS

HYBRID

MOEA
END
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Optimization criteria considered herein correspond to the 

ones formulated for the cost and profit problem in Eqn. (32) 

for a L = 10 years working period. The models for C(x) and 

T(x) depend on preventive maintenance activity frequency 

(M1, M2, and M3) which act as decision variables.  

The constraints imposed apply over: 1) the objective 

functions and 2) the values the decision variables can take. 

In the first case, we apply constraints over the total 

maintenance costs and the unavailability:  

U(x)  1.2E-3          C(x)  2024916 € 

values that correspond to the preventive maintenance 

scheduling implemented at present. In the second case, 

constraints are directly imposed over the decision variable 

values (M1, M2 and M3), which must take typified values, 

representing each one a day, two days, etc. 

6.1.2. Simulation values of the algorithms 

The simulation values shown in this Section were chosen by 

performing designs of experiments choosing the ones that 

performed best in terms of computational effort. 

Values used in the NSGA-II are shown in Table 7. For the 

determination of selection, crossover and mutation rates a 

design of experiments with values of 0.25, 0.5 and 0.75 for 

the three parameters was conducted. 

 

Values for the hybrid approaches are shown in Table 8: 

 

6.2. Results 

The Pareto fronts obtained by the compared algorithms are 

shown in Figure 5: 

 

Figure 5. Pareto fronts of the developed algorithms  

As it can be seen in Figure 5, the front obtained using the 

tested algorithms are practically equal. In order for 

performance comparisons to be meaningful across the four 

implementations, normalization is done. In this paper 

number of function evaluations and time values are used so 

as to express computation efforts referred to each algorithm. 

These results are shown in Table 9: 

 

As it can be seen in Table 9, results obtained using the 

NSGA-II algorithm in this optimization problem are 

improved by hybrid algorithms considering both function 

evaluations and time terms.  
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Table 5. Parameters related to quality, speed loss and 

unavailability. 

h0  S0  

  (u*/h2) (u/h) (10-3)   

0 0.0017 180 1 0.03 

*
u: product unit 

Table 6. Parameters related to quality, speed loss and 

unavailability. 

C Chsl chcm chpm 

(€/u) (€/h) (€/h) (€/h) 

6 25 45 30 

 

Table 7. Values used in the NSGA-II. 

Parameter Value 

Population Size 100 

Selection rate 0.25 

Crossover rate 0.5 

Mutation rate 0.75 

 

Table 8. Values used in the hybrid algorithms. 

Parameter a posteriori on-line 

local search tolerance (± days) 6 6 

tmax 10 10 

NSGA-II generations per turn 

in the loop - 5 

 

Table 9. Performance results of the developed 

algorithms. 

 

NSGA-

II 

A 

posteriori 

 On-

line 

Total simulation time (s) 36.03 30.84 33.88 

NSGA-II execution time 

during simulation (s) 36.03 22.35 10.56 

NMS execution time during 

simulation (s) - 8.49 23.33 

f(x) evaluations performed 

by simulation 4733 4339 4249 

f(x) evaluations performed 

by the NSGA-II 4733 3244 1491 

f(x) evaluations performed 

by the NMS - 1095 2758 
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As analysis of the results, it can be stated that the final 

convergence phase is influencing the results of the NSGA-II 

negatively, due to two reasons: on the one side (as it is 

stated in Section 6.1.2) it is worth noting that the mutation 

value obtaining best results after the design of experiments 

is 0.75, a high value that may transforms the search process 

into a partially-random one. Additionally, the convergence 

in results in the MOEA during 5 more generations 

(compared to the hybrid approaches) forces the NSGA-II to 

perform almost 500 function evaluations more.  

7. CONCLUSIONS 

This paper presents a useful model to calculate the 

profitability of a preventive maintenance strategy applied in 

equipment. The model considers jointly maintenance, 

equipment’s productive speed loss and quality costs along 

with the profit related to a maintenance strategy.  

Genetic Algorithms are very likely the most widely known 

type of Evolutionary Algorithms. In this paper, two variants 

of a hybrid MOEA have been implemented and successfully 

applied, to perform the constrained optimization of PM 

activities. In the studied case, the capabilities of efficiency 

and fast convergence of the hybrid approaches have been 

compared with the performance of the NSGA-II algorithm, 

obtaining positive results. 

Further research regarding the hybrid algorithm would be 

oriented to the comparison of these hybrid algorithms 

against others evaluating optimizations performed using 

standardized functions for the comparative. Concerning the 

maintenance optimization problem the inclusion of other 

concepts in the model (e.g. short-term maintenance 

planning, discounted cost, age at the end of planning 

horizon), the modeling of other aging models, he 

comparison among different maintenance policies and the 

study of which class of system can be actually applied to 

each aging model constitute basis for the future work lines. 

Regarding this last comment, it is worth commenting that 

the results of this modeling and optimization process were 

discussed with the production and maintenance managers of 

the production line studied herein. The feedback received 

from them indicates that the results of the model align with 

the information and impressions they manage when talking 

about group C1-Electric-Electronic components, whereas 

they distance when talking about C2-Hydraulic components 

and C3-Others.  
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