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ABSTRACT 

Fuzzy similarity has been widely used for prognostics. 

Normally, a library of failure scenarios is available and a 

number of them most similar to the observed scenario are 

selected to generate the Remaining Useful Life (RUL) of the 

observed scenario, using a distance weighted-sum approach. 

By clustering the library of failure scenarios, those most 

similar to the observed scenario can be selected considering 

the strength of membership to the different clusters. To this 

aim, in this paper, hierarchical classification is integrated 

into the fuzzy similarity approach. First, hierarchical 

classification is built by Support Vector Machine (SVM), 

considering different failure modes. Then, for the observed 

scenario, fuzzy similarity is applied to select the most 

similar failure scenarios from different classes, considering 

the membership of the observed scenario to the different 

clusters. The selected scenarios are aggregated to generate 

the RUL along the observed scenario. A real case study of a 

system composed of a pneumatic valve and a centrifugal 

pump in a nuclear power plant is considered to verify the 

RUL prediction power of the proposed framework. 

1. INTRODUCTION 

Fuzzy similarity for failure prognostics relies on a library of 

reference failure scenarios (recorded run-to-failure data) 

from similar equipment. When predicting the Remaining 

Useful Life (RUL) of an observed scenario which is 

degrading, the similarities between the observed scenario 

and the reference scenarios are calculated. A number of 

reference scenarios most similar to the observed scenario 

are selected and the distance-weighted sum of their RULs 

gives the RUL of the observed scenario. Fuzzy similarity 

has been widely used, solely or in combination with other 

methods, for prognostics in different practical problems, e.g. 

epileptic seizures (Li and Yao, 2005), text classification 

(Widyantoro and Yen, 2000), financial activity (Li and Ho, 

2009), Virkler crack growth (Guepie and Lecoeuche, 2015), 

weather (Riordan and Hansen, 2002), nuclear systems (Zio 

and Di Maio, 2010), power systems (Senjyu et al., 1998). 

Satisfactory results are reported in these works. 

In practical problems, there are cases when the reference 

scenarios may belong to different failure modes and can be 

clustered into different classes considering the operation 

conditions, the functioning environment and other factors. 

In such cases, simply selecting a number of reference 

scenarios most similar to the observed scenario from the 

library may not be effective. Using the classical fuzzy 

similarity-based prognostic method, the selected reference 

scenarios may be all from the most probable class, thus 

neglecting other less, but still, probable classes: the diversity 

of the selected reference scenarios is reduced, and if the 

continuation of the observed scenario in the future drifts to 

one of the less probable classes, the prediction accuracy of 

the prognostics is endangered. 

The prediction accuracy using fuzzy similarity is highly 

dependent on the richness of the library, which is more 

critical for a stochastic degradation process. The diversity 

and representativeness of the selected reference scenarios 

are very important for the prediction accuracy. Another 
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challenge in using fuzzy similarity for prognostics is, then, 

the optimal number of the selected reference scenarios. 

Fuzzy similarity with a small number of reference scenarios 

considered is not stable, when many reference scenarios 

have similar high values of similarity. For example, the 

beginning of the degradation of similar equipment may not 

significantly differ from one to another, and many of them 

may have close similarity to the observed scenario. If only a 

small number of them are selected to generate the RUL of 

the observed scenario, the results can be non-stable, 

depending on the representativeness of the selected 

reference scenarios. On the contrary, fuzzy similarity with a 

large number may give non-accurate results, when only few 

reference scenarios are highly similar to the observed 

scenario and the others somewhat introduce “noise”. For 

example, when the degradation of the observed scenario 

approaches the end of its life, the similarities between the 

reference scenarios and the observed scenario may be very 

different from one to another, and only few are highly 

similar to the observed scenario. If a relatively large number 

of the reference scenarios are selected, the results may not 

be precise. If the membership of the observed scenario to 

different clusters can be calculated, the selected reference 

scenarios from different clusters should be proportional to 

the memberships. 

In this paper, a framework, combining hierarchical 

classification by Support Vector Classification (SVC) 

(Gunn, 1998) and fuzzy similarity (Zio and Di Maio, 2010) 

is proposed for prognostics of stochastic degradation 

processes. By analyzing statistically and/or physically the 

reference scenarios, (hierarchical) multiple classes can be 

identified, and the different classes can be modeled by SVC 

models. As one SVC model can only differentiate two 

classes, multiple SVC models are trained for different 

classes of the reference scenarios. The trained SVC models 

can judge the class that one failure scenario belongs to. For 

a given observed scenario, SVC, in combination with Monte 

Carlo simulation can estimate the likelihood that the 

observed scenario falls into each class. Then, reference 

scenarios are selected from a class proportional to the 

likelihood to belong to that class. And the RUL of the 

observed scenario is calculated as the distance-weighted 

sum of the RULs of all the so-selected reference scenarios.  

By integrating hierarchical classification into the fuzzy 

similarity-based prognostic method, the diversity and the 

representativeness of the selected reference scenarios are 

strengthened.  

In the case that the number of the reference scenarios to be 

selected in one class exceeds the number of the class 

samples, the total number of the selected scenarios is 

modified to guarantee the proportion of selected reference 

scenarios from each class.  

The case study in this paper concerns the prognostics of the 

failure time of a sub-system of a nuclear power plant. The 

system is composed of a pneumatic valve and a centrifugal 

pump. The pump follows a stochastic multi-state 

degradation process and the valve degrades continuously 

(Lin et al., 2015). The results are compared with the 

classical fuzzy similarity, which selects directly from the 

library a number of reference scenarios to calculate the RUL 

for the observed scenario. A specific accuracy measure is 

used considering the stochastic degradation process.  

The remainder of the paper is structured as follows. Section 

2 presents SVC and fuzzy similarity. The proposed 

framework is also detailed in this Section. Section 3 reports 

the results of the case study. Some conclusions are drawn in 

Section 4. 

2. SUPPORT VECTOR CLASSIFICATION AND FUZZY 

SIMILARITY  

In this section, SVC and fuzzy similarity are briefly 

reviewed at the beginning. The proposed method is then 

detailed. 

2.1. Support Vector Classification 

Support Vector Machine (SVM) (Cortes and Vapnik, 1995) 

for classification is named SVC. The traditional SVC model 

can solve a two-class problem. 

Given a training dataset of instance-label pairs (𝒙𝑖 , 𝑦𝑖), 𝑖 =
1, … , 𝑁, with 𝒙𝑖 ∈ 𝑅𝑛 and 𝑦𝑖 ∈ {−1,1}, SVC formulates the 

estimation function as 𝑓(𝒙) = 𝒘 ∙ 𝒙 + 𝑏, and the unknowns, 

𝒘 and 𝑏 are estimated by solving the following optimization 

problem: 

𝑚𝑖𝑛𝒘,𝑏,𝜺
1

2
𝒘𝑡𝒘 + 𝐶 ∑ 𝜀𝑖

𝑁
𝑖=1

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜
𝑦𝑖(𝒘 ∙ 𝒙𝑖 + 𝑏) ≥ 1 − 𝜀𝑖

𝜀𝑖 ≥ 0

                                (1) 

with  𝐶 is a penalty factor that balances the flatness and the 

accuracy of the estimation function.  

The solution of the optimization function in Eq. (1) is built 

as 𝒘 = ∑ 𝑘(𝒙, 𝒙𝑖)
𝑁
𝑖=1 , with 𝑘(𝒙, 𝒙𝑖) being a kernel function 

that calculates the similarity between the two vectors 𝒙 and 

𝒙𝑖  in a high dimensional space (the so-called Reproduced 

Kernel Hilbert Space (RKHS)).  Linear kernel function, 

polynomial kernel function, Radial Basis Function (RBF), 

sigmoid kernel function are some of the most popular kernel 

functions used in SVM and SVC. 

Details about SVC can be found in the related references. 

In case of a multi-class problem, a number of SVC models 

can be trained to estimate corporately the class which the 

new instance belongs to as shown in Table 1 (Rocco and 

Moreno, 2002; Rocco and Zio, 2007). The SVCs are trained 

with the one-vs-others idea, i.e. each SVC is trained to 

distinguish one class and all other classes; and then, the 
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joint outputs of all the SVC models can give the class of a 

new instance.  

2.2. Fuzzy Similarity  

Consider the monitored data 𝒗 of the observed scenario and 

a time-dependent one 𝒘(𝑡) in a reference scenario; for each 

discrete time t, 𝒘(𝑡) has the same data structure as 𝒗. For 

the calculation of the fuzzy similarity between the observed 

scenario 𝒗 and the reference scenario 𝒘(𝑡) , one needs to 

find 𝑡0  such that the distance score 𝑑(𝑡0)  between 𝒘(𝑡0) 

and 𝒗 is minimized. In the present paper, three steps are 

proposed for this (Zio and Di Maio, 2010). 

The first step consists in calculating the Euclidean distance 

between 𝒘(𝑡) and 𝒗 for all times t: 

𝛿(𝑡) = |𝒗 − 𝒘(𝑡)|2                                                            (2) 

The second step is the computation of the pointwise 

trajectory similarity and the corresponding distance score. 

The pointwise difference between the trajectories 𝒘(𝑡) and 

𝒗 expressed by Eq. (2) is evaluated with reference to an 

“approximately zero” Fuzzy Set (FS) specified by a function 

which maps the elements of the Euclidean distance (t) into 

the corresponding similarity value (t). Common functions 

can be used for the definition of the FS, e.g. triangular, 

trapezoidal, and bell-shaped. In the application illustrated in 

this work, the following bell-shaped function is used: 

𝜇(𝑡) = exp (−(−ln (𝛼)/𝛽2)𝛿(𝑡)2)                                   (3) 

The arbitrary parameters  and  can be set by the analyst to 

shape the desired interpretation of similarity into the fuzzy 

set: the larger the value of the ratio -ln() / 2, the narrower 

the fuzzy set and the stronger the definition of similarity 

(Zio & Di Maio, 2010). Then, the distance score 𝑑(𝑡)  =
 1 −  (𝑡) between 𝒘(𝑡) and 𝒗 is computed. 

The third step is to find 𝑡0  which minimizes 𝑑(𝑡)  and to 

compute the corresponding distance score 𝑑(𝑡0). 

The fuzzy similarity between the observed scenario and all 

the reference scenarios are calculated following the previous 

steps. Traditionally, a number of most similar reference 

scenarios are selected to generate the estimated RUL of the 

observed scenario as weighted sum of their RULs. In the 

case that multiple classes exist among the reference 

scenarios, this traditional way may neglect some classes in 

the library. To avoid this, a new framework is proposed in 

this paper. 

2.3. The Proposed Framework for Prognostics 

In this paper, a new framework for prognostics is proposed, 

which combines (hierarchical) multiple clustering and fuzzy 

similarity. The proposed framework is shown in Figure 1. 

The reference scenarios are firstly clustered into 𝑘 classes 

by unsupervised classification approaches. The features that 

can help easily identify the different clusters are extracted 

and different SVC models are trained (with the extracted 

features as inputs) to distinguish among the different 

classes. The change of the extracted features with time is 

also modeled. For the observed scenario, Monte Carlo 

simulation estimates the possible future values of the 

extracted features of the observed scenario. The likelihood 

𝑝𝑖  that the future degradation of the observed scenario 

belongs to the class 𝑖 is estimated, with 𝑖 = 1, … , 𝑘. Then, 

the fuzzy similarity between the observed scenario and each 

reference scenario is calculated. Supposing that a total of 𝑀 

reference scenarios most similar to the observed scenario 

are selected to generate the estimated RUL for the observed 

scenario, 𝑀𝑖 = 𝑀 ∗ 𝑝𝑖  of them are taken from the most 

similar reference scenarios in class 𝑖.  

In the case that the size of class 𝑖 is less than 𝑀𝑖, the total 

number of selected reference scenarios is modified as 𝑀 =
𝐶𝑖/𝑝𝑖, with 𝐶𝑖 the size of cluster 𝑖. 

 

Figure 1. The procedure of the proposed framework. 

3. CASE STUDY 

In this section, results on a real case study are presented. 

The case study concerns a sub-system composed of a 

pneumatic valve and a centrifugal pump of a nuclear power 

plant. The characteristics of the system are (Yanhui et al., 

2015): 
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 The centrifugal pump follows a stochastic multi-

state degradation process, i.e. degradation states are 

{3 2 1 0} with state 0 the failure state. The 

transition rate between each pair of consequent 

states are known, i.e. 𝜆 = 5 ∗ 10−3/(𝑢𝑛𝑖𝑡 𝑡𝑖𝑚𝑒) . 

The degradation process is modeled by a 

continuous time homogeneous Markov chain. The 

degradation process of a centrifugal pump can be 

characterized by the holding time on each 

functioning state, i.e. {3 2 1}. 

 The pneumatic valve is a normally-closed and gas-

actuated valve with a linear cylinder actuator. It 

follows a continuous degradation process, whose 

degradation rate is dependent on the degradation 

states of the centrifugal pump and the pneumatic 

valve. The physics-based model for the pneumatic 

valve is given and is very complicated and time-

consuming for calculation. The threshold of failure 

is 3.2*10-6. 

 The failure of one component (pump or valve) 

causes the failure of the system. 

Physical details on the system can be found in Lin et al. 

(2015). In Lin et al. (2015), Piecewise Deterministic 

Markov Process (PDMP) simulation is proposed to estimate 

the reliability and RUL of the system with the physical 

model. But it takes two much time for the computation. 

Given a number (1000) of failure scenarios for this system, 

the framework proposed in Section 2.3 can be applied for 

RUL estimation.  

3.1. Hierarchical Classification 

The system failure can be generally divided into pump 

failure (noted as failure type 1) and valve failure. Figure 2 

shows the holding time of the pump in different states, with 

respect to the previous two types of system failures. From 

the Figure, it appears that the two different system failures 

can be distinguished by the holding time of the pump in 

states 3, 2 and 1.  

 

Figure 2. The holding time of the pump in states 3, 2 and 1, 

with respect to pump failure and valve failure. 

Furthermore, Figure 3 shows the time to failures of the 

reference scenarios with valve failure. Statistically, the 

system RULs can be clustered into four categories, around 

the values 470, 500, 530 and 560 (in arbitrary units of time), 

which are noted separately as failure type 2, failure type 3, 

failure type 4 and failure type 5.  

Among all the reference scenarios, 592, 23, 111, 185 and 89 

reference scenarios are separately clustered into the classes 

of failure type 1, 2, 3, 4 and 5.  

 

Figure 3. Time to failures of the reference scenarios with 

valve failure. 

 

Figure 4. The holding time of the pump in states 3, 2 and 1 

of reference scenarios with failure types 2, 3, 4 and 5. 

Figure 4 shows the holding time of the pump in states 3, 2 

and 1 of the reference scenarios with the four types of valve 

failures. One can observe that these four types of system 

failures can also be well classified with respect to the 

holding time of the pump in states 3, 2 and 1. 

Thus, the holding time of the pump is selected as input for 

classification. Three SVC models are trained, noted 

separately SVC 1, SVC 2 and SVC 3. SVC 1 distinguishes 

the valve failure (classified as -1) and pump failure 

(classified as +1), as shown in Figure 2. SVC 2 is trained to 

classify the failure type 2 (classified as +1), failure type 3 
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(classified as +1) and failure type 4 (classified as -1), failure 

type 5 (classified as -1). SVC 3 distinguishes the failure 

type 2 (classified as +1), failure type 4 (classified as +1) and 

failure type 3 (classified as -1), failure type 5 (classified as -

1). The classification of one failure scenario based on the 

results of the three SVC models is shown in Table 1. 

 

Because of the stochastic degradation process of the pump, 

Monte Carlo simulation is combined with the SVC models 

to estimate the probabilities that the observed scenario falls 

into each failure type. Precisely, with the given historical 

state of the pump, one Monte Carlo simulation estimates 

one possible holding time of the pump in states 3, 2 and 1 

during the observed scenario. Then, the trained SVC models 

can estimate the failure type of the pump degradation 

generated by each Monte Carlo simulation. A number 

(1000, in this paper) of Monte Carlo simulations are carried 

out and the number of times that the generated degradation 

falls into each failure type is recorded, and the membership 

likelihood of the observed scenario in each class is then 

calculated as the percentage of the simulations that falls into 

the corresponding class. 

3.2. Prognostic Results 

The proposed method is tested on several ongoing failure 

scenarios. Given the degradation time series data of the 

observed system until time 𝑡, the proposed method (noted as 

fuzzy-cluster in Tables 2 and 3) and traditional fuzzy 

similarity-based prognostics (noted as fuzzy similarity in 

Tables 2 and 3) are used to estimate the system RUL. 

Totally, the first 40 reference scenarios most similar to the 

observed scenario are selected. The system RUL estimated 

by the two methods are compared with the average RUL 

generated by the physical model, i.e. PDMP. Because of the 

stochastic nature of the degradation process, such a 

comparison can be more informative than the comparison 

between the predicted RUL and the RUL of a specific 

observed scenario. 

Eleven observed scenarios, which belong to different failure 

types (as shown in column 1 of Tables 2 and 3), are 

considered in the experiments. 

Figure 5 shows the change in the likelihoods of the fourth 

observed scenario belonging to the different classes of 

failure types, as estimated by the proposed method. The true 

failure type of the fourth observed scenario is type 3 and the 

transition time of the pump from state 3 to state 2 and from 

state 2 to state 1 occur at 45 and 250, respectively. The 

failure time is 500. 

From the Figure, one can observe that the likelihoods 

change abruptly at the transition time from one pump state 

to another. Once the holding time of the pump in one state is 

known, the variability of the observed scenario decreases, 

and, thus, the probabilities estimated by the SVC models 

and Monte-Carlo simulations change. As more and more 

data on the degradation of the fourth observed scenario are 

available, the likelihood that this scenario falls into the 3rd 

scenario increases, providing more confidence.  

 

Figure 5. Likelihoods that the fourth observed scenario falls 

into the different classes with degradation data becoming 

available at different times 𝑡, as estimated by the proposed 

method. 

Figure 6 shows the Probability Density Function (PDF) of 

the RUL for the fourth observed scenario, predicted using 

the proposed method. In comparison with that given by 

PDMP, the proposed method gives good results and the 

uncertainty bounds of the PDF decreases approaching the 

failure of the observed scenario, coherently with the 

increase of available data. 

Table 1. Classifications of different failure types with 

three SVC models. 

 

Failure type SVC 1 SVC 2 SVC 3 

1   +1 - - 

2   -1 +1 +1 

3   -1 +1 -1 

4   -1 -1 +1 

5   -1 -1 -1 
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Figure 6. PDF of the system RUL estimated by the proposed 

method. 

Figure 7 shows the likelihoods that the selected reference 

scenarios fall into different classes using the traditional 

fuzzy similarity-based prognostic method. The likelihood of 

the failure type 4 is nearly zero at all times. But the strength 

of the membership for failure type 4 of the observed 

scenario is very high at the beginning before time 300, as 

shown in Figure 5, which is given by the component 

degradation model. Thus, the selected reference scenarios 

loose the representativeness.  

After the time 450, nearly all scenarios are selected from the 

class of failure type 3. On the contrary, because of the 

stochastic degradation process, the possibility of the other 

failure types is not zero. The diversity of the reference 

scenarios selected by the traditional method is low. 

 

Figure 7. Likelihoods that the fourth observed scenario falls 

into the different classes with degradation data becoming 

available at different times 𝑡, as estimated by traditional 

fuzzy similarity. 

Given the stochasticity of the degradation process, the error 

of the prognostic method on one specific failure scenario is 

not representative of the accuracy of the method. We, then, 

refer to the physical model (PDMP) that generates the 

average RUL of the observed degradation. The error of the 

proposed method compared to the RUL generated by the 

physical model is more reliable and informative. 

Table 2 shows the Mean Squared Error (MSE) between the 

predicted RUL given by the fuzzy similarity and fuzzy-

cluster, and that generated by the physical model. 

Differences between the MSE given by the fuzzy similarity 

and fuzzy-cluster are also given in Table 2.  For the ten 

observed scenarios, the proposed fuzzy-cluster method 

always give better result than the traditional fuzzy 

similarity.  

The price to pay for this improvement is the computation 

time which is longer for the proposed method than for the 

traditional fuzzy similarity, as the Monte Carlo simulation 

takes time for calculating the membership likelihoods. Yet 

the time is still much less than the computation time for 

PDMP. For example, the computation time of PDMP for 

scenario 11 is 5996.6s. 

 

Table 2. MSE of the predicted RUL with different 

methods. 

 

Observed 

scenario 

Fuzzy 

similarity 

Fuzzy-

cluster 

Difference  

1  (type 4) 184.32 145.85 38.47 

2  (type 1) 479.93 313.70 166.23 

3  (type 1) 634.58 325.74 308.84 

4  (type 3) 460.96 322.60 138.36 

5  (type 3) 279.80 265.78 14.02 

6  (type 1) 503.05 292.73 210.32 

7  (type 1) 829.22 799.09 30.13 

8  (type 1) 4155.2 3038.3 1115.9 

9  (type 5) 225.89 177.26 48.63 

10  (type 5) 242.75 199.50 43.25 

11 (type 2) 1512.5 1212.4 300.1 
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4. CONCLUSION 

Fuzzy similarity-based prognostic methods are widely used. 

The RUL prediction stands on the RULs of reference 

scenarios selected from a library. The diversity of the 

reference scenarios is not guaranteed, when the reference 

scenarios are clustered depending on external characteristics 

of operation, environment, failure type. In this paper, the 

fuzzy similarity is combined with hierarchical clustering to 

inject diversity in the selected reference scenarios while 

keeping the accuracy of the predicted RUL. Monte Carlo 

simulation and SVC are integrated to calculate the class 

membership likelihood of the observed scenario. The 

reference scenarios are proportionally selected from 

different classes. A real case study concerning a stochastic 

degradation process of a sub-system in a nuclear power 

plant is considered. The predicted RUL of the fuzzy 

similarity is compared with that generated by the physical 

model. The proposed method gives better results than the 

traditional fuzzy similarity-based prognostics in the case 

study. 
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