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ABSTRACT 

Within railway infrastructure, railway point systems are 

among the most critical equipment, not only due to 

accidents and delays caused by their failures but also due to 

maintenance costs. The detection of early signs of 

degradation and the ability to identify the maintenance 

actions required to prevent a failure are key aspects of a 

successful and advantageous health assessment strategy. 

While studies focusing on the detection and prognostics of 

railway point systems exist, few or none address the 

correlation between environment, field layout and the point 

system behavior. This paper aims to consider the interaction 

between these factors and the point system behavior, and 

compare a fleet-based approach to an asset-based approach 

for the point systems health assessment, highlighting the 

influence of the field configuration on the effectiveness of 

the two methods. The proposed methods exploit Self-

Organizing Maps (SOMs) to construct a health indicator for 

both the detection and the diagnosis of railway point 

systems. The approaches are applied to a case study for the 

on-line health assessment of 20 electro-mechanical point 

systems operating on a main line over the course of 6 

months. The results show how an asset-based monitoring 

system is necessary in order to maintain a level of 

information which enables to achieve an efficient detection 

of anomalies and a correct identification of degradation 

mechanisms. In addition, fleet-based health assessment 

leads to a higher percentage of missed alarms, due to the 

intrinsic hypothesis of considering all point systems as 

operating in the same context and mission profile.  

1. INTRODUCTION 

Railway point systems are devices which enable trains to be 

directed from one track to another, by mechanically moving 

a section of railroad track. They are composed of a motor 

which generates power, which is used in turn to move 

sections of track to the desired position.  

Railway point systems are a crucial component of the 

railway infrastructure as their operation directly affects the 

service, safety and the maintenance cost. The failure of a 

point system strongly impacts the quality of the service, as it 

causes delays and can limit train circulation. For instance, 

the Network Rail annual report for 2014 indicates that the 

total delay of passenger trains amounts to 433,400 minutes a 

year due to point systems failures (Network Rail, 2014). 

However, the failure of a point system does not only impact 

the quality of the service, but it may sometimes also affect 

safety as it can cause the derailment of a train, such as in the 

2002 Potters Barn accident in the UK, where 7 persons lost 

their lives (Tobias, Marquez and Roberts, 2010). In order to 

ensure a high quality of service and to minimize the risks 

involved, operators resort to stringent maintenance policies, 

which result in excessive costs: for example in the UK, 

point system maintenance resulted in 3.4 million GBP every 

year for 1000 km of rails (Marquez, Lewis, Tobias and 

Roberts, 2008). To reduce the frequency of inspections and 

the unnecessary maintenance tasks whilst ensuring a high 

dependability, the railway point systems would benefit from 

the development of a condition-based maintenance [CBM] 

system. CBM would allow to improve the availability of the 

point system, by preventing failures and therefore reducing 

the corrective maintenance actions which lead to down time, 

and to trigger specific maintenance action only when 

required, reducing the maintenance costs (Gupta & 

Lawsirirat, 2006). 

The topic of proposing a health monitoring system for point 

systems has been often addressed in literature. Eker, Camci, 

Guclu, Yilboga, Sevkli, and Baskan (2010), propose a 

Simple State Based model and compare the results to a 

Hidden Markov Model approach to identify the health state 

of 10 turnouts, with very promising results. However, they 

note the difficulty in obtaining real-life data, and proceed to 

simulate a lack of lubrication over the course of 13 

maneuvers for each of the turnouts. Marquez, Weston and 

Roberts (2007) apply a moving average filter on data from 

simulated faults in a laboratory setting on a single point 
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system, and are able to detect faults. Asada, Roberts and 

Koseki (2013) propose a Support Vector Machine model to 

detect and diagnose misalignments on railway point 

systems, and the method is applied to a series of data 

collected from a single point system in a laboratory set up. 

Letot, Dersin, Pugnaloni, Dehombreux, Fleurquin, Douziech 

and La-Cascia (2015) propose a data-driven approach for 

the development of a degradation law for point systems, and 

tested the method on simulated degradations in a laboratory 

set-up of a single point system. While the study relied solely 

on experimental data, the method was able to obtain a 

satisfactory evaluation of the Remaining Useful Life of the 

component. Vileiniskis, Remenyte-Prescott and Rama, 

(2015) develop a support vector machine for classifying the 

behavior of several machines from on field application. 

Finally, McHutchon, Staszewski and Schmid (2005) define 

a signal processing method using wavelet transforms, 

statistical parameters and principal component analysis on a 

single point-system in a laboratory set-up, where faults were 

simulated. 

While all methods proposed seem to produce results which 

are very promising and in line with the expectation to 

produce a health assessment of point machines, very few 

focus on real data from the field, acquired over a period of 

time, or from a series of different assets. This paper will 

focus on addressing the issue of monitoring not a single 

point system, but rather a fleet of 20 machines in a real field 

layout, with differences in the positioning in the field and 

the environment over the course of 6 months. The method 

proposed to assess the health of the point system consists of 

three steps: first, the data are processed in order to extract 

the relevant features from the acquired data, then Self-

Organizing Maps (SOMs) are used to define a nominal and 

healthy state-space of data during the training and, finally, 

the health assessment of each new maneuver is done by the 

SOM. A comparison between a fleet-based approach and an 

asset-based approach on the SOM is proposed, to evaluate 

whether parameters such as environment and field 

positioning affect the behavior of the machines on an asset-

level. The remaining part of the paper is structured as 

follows: Section 2 describes the railway point system 

operation and the details of the case study; Section 3 

illustrates the methods proposed and the necessary pre-

processing; Section 4 discusses and compares the 

application of the two approaches on the case study; Section 

5 recalls the concluding remarks and results. 

2. RAILWAY POINT SYSTEM 

Railway point systems, also known as turnouts, consist of a 

device which generates the motion of the switch rails 

between two positions, allowing the train to travel in one of 

two directions. The switch rails can be moved laterally by a 

force generated within the point machine and passed onto 

the switch rails through the movement rods. The motor uses 

a clutch and gear mechanism to move the movement rods. 

Depending on the direction of rotation of the point machine 

motor, either the near or far switch rails close. The 

movement can be initiated remotely, and once the stroke is 

completed, the switch rails are locked into position and 

allow for a safe journey. The switch rails have two rest 

positions, designated as ‘normal’ (‘N’) and ‘reverse’ (‘R’). 

Figure 1 illustrates a point system and its parts. Indeed, the 

point system is comprehensive not only of the point 

machine, but also of the rails and the rods. The point 

machine contains the electric motor, which transmits the 

power to the movement rods. These are connected to the 

switch rails and move them from one position to the other, 

while the stock rails remain still.  

 

Figure 1: Illustration of a point system and its parts 

There exist a variety of different machines depending on the 

working principle to transfer the electric motor power to the 

rods movement, such as hydraulic, electro-mechanic and 

pneumatic. This paper focuses on electro-mechanic point 

machines.  

While the description of a point system can be limited to its 

component and functioning, fundamental aspects which are 

often overlooked are the environment, the field layout and 

the mission profile of the point system. The influence of the 

environment and context on the point system is due to 

factors such as temperature, saline air and climate, which 

can influence the behavior of any electro-mechanical 

component. The field layout refers to the position in the 

field of the point system, which can be influenced by a 

series of parameters, mainly the cant of the rails, the 

curvature of the track, and the position of the machine. 

These can be seen in Figure 2. 

The direction of the movement influences the behavior of 

the machine as the efforts to push or pull the maneuver rods 

by the motor are not symmetric. The cant of the rails 

influences the maneuver as the movement uphill, and thus 

against gravity, involves different forces. The curvature of 

the track influences the effort necessary to bend the switch 
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rail (the switch rail movement is done through the switch 

rail bending). All of these factors influence the behavior of 

the machine, and their effects on the values of the signals 

acquired is not easily identifiable. 

 

Figure 2: Visual representation of the differences on the 

direction of the maneuver (a), the cant of the rails (b) and 

the curvature of the track (c) 

While the lack of correlation between these factors and the 

rate of degradation of the point system has been extensively 

studied by Zwanenburg (2006), the effects of these on the 

nominal behavior of the machine have not been accounted 

for. Most studies evaluate the behavior of a single machine, 

without thought of how to extend the solution to multiple 

point systems (Marquez et al., 2007; Asada et al., 2013; 

McHutchon et al., 2005; Letot et al., 2015). When more than 

one point system is available, most studies proceed with the 

analysis of the single point system without regarding these 

factors and assimilate the behavior of a single asset to that 

of the fleet (Eker et al., 2010). Of the reviewed studies, only 

one has noted that the single machine has singular properties 

and as a single asset not entirely representable by the fleet 

(Vileiniskis et al. 2015). In order to evaluate whether it 

should be necessary to take the environment and field 

positioning into account, two methods for the health 

assessment are proposed and compared: an asset-based 

approach and a fleet-based approach. 

2.1. Case Study 

The case presented involves a set of 20 point systems in an 

en-route station on a trafficked line in the Italian railway 

infrastructure, over the course of 6 months. The operation of 

these point systems is vital to the circulation of both 

passenger and freight trains, as it is one of the main arteries 

for north-south rail traffic. The failure of one of these point 

systems will cause the system to have to re-route several 

trains and delays will easily accumulate. For these reasons, 

maintenance inspections are carried out every month. The 

point systems considered in this work were installed 

between 7 and 10 years ago. The mission profiles of the 

point systems are very diverse: some point systems are 

operated up to 15 times a day whilst others merely once a 

day. 

The data collected in this case study consist of the (direct) 

current and the voltage of the electric motor during a 

maneuver, as well as a series of contextual information, 

such as the direction of movement and the final position 

achieved. An example of the typical DC current and voltage 

acquired from a single point system during a maneuver can 

be seen in Figure 3. 

 

Figure 3: Typical acquisition signal from a point system 

with current (above) and voltage (below) of the maneuver 

The point system maneuver consists of the unlocking of the 

switch rails, their movement into the correct position and 

the locking. The maneuver is controlled and completed 

entirely by the electric motor, therefore it is possible to 

consider that the signals acquired during each maneuver 

contains data which are highly informative about the 

behavior of the point system, and, consequently, its health 

state. The acquired signals from the point systems in 

degraded and nominal conditions are very similar in shape, 

form and values. In fact, they are so alike that it is necessary 

to resort to a method which involves the extraction of 

relevant features and a model, such as the one proposed, as a 

simple threshold on the signals would not serve its purpose. 

Due to the frequent nature of maintenance inspections and 

actions on the field, the data of the case study contain very 

few failures. The failures and reported problems include the 

presence of an obstacle between the switch and stock rail, 

the shape of the switch rail changing over time and the loss 

of tolerance. The loss of tolerance refers to the event where 

the switch rail and stock rail do not perfectly adhere and 

there is a gap between the two: the point system in this case 

study is designed to tolerate a gap of 3 millimeters at most. 

The method will therefore try to assess whether a point 
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system is deviating from the expected nominal behavior and 

if this could result in a loss of tolerance. Over the course of 

six months, we have reported once the presence of an 

obstacle in the field, and five machines have lost tolerance. 

3. METHOD 

In this Section, the methods proposed for comparison are 

described. The procedure for the extraction of relevant 

information from the data is presented in Section 3.1, the 

SOM concepts and the two different approaches are 

presented in Section 3.2, the procedure for the health 

assessment is presented in Section 3.3, and the criteria for 

the comparison of the two methods are discussed in Section 

3.4. 

3.1. Feature Extraction 

In order to obtain the information which is significant for 

the health assessment from the data acquired from the point 

system, presented in Figure 3, a feature extraction procedure 

is necessary. Several features can be computed from the 

current and voltage signature of each maneuver: mean 

value, root mean square value, standard deviation, slope, 

maximum value and minimum value (Letot et al., 2015). 

These, coupled with information relative to the maneuver as 

a whole (e.g. duration of the maneuver, area under the 

current curve, total power consumed, etc.) make up 16 

variables that characterize the maneuver as a whole. This 

reduces the data from a time-series to 16 features, thus 

diminishing the computational time as well as the storage 

space needed. This vector is representative of a maneuver, 

and therefore of the health state of the point system during 

that maneuver. The 16-dimensional vector, containing 

characterizing information of the maneuver, will now be 

referred to as the feature vector of the maneuver. 

3.2. Self-Organizing Maps: Fleet-based approach and 

Asset-based approach 

SOMs have first been introduced in Kohonen (1995), and 

are a type of Artificial Neural Network (ANN) which use a 

supervised training to identify a topological map which 

summarizes and clusters the various behaviors present in the 

training data. The map is made up of a series of units or 

neurons, where each neuron identifies a behavior and is 

associated to a vector of the same dimensionality as the 

original training data, known as weight vector. The neurons 

of the SOM are connected to each other through a 

relationship function, known as neighborhood function.  

To construct a SOM map, the training consists of three 

steps: 

1) A training vector from the training set is randomly 

selected; 

2) The neuron with weight vector most similar to the 

selected training vector is identified, which becomes the 

Best Matching Unit (BMU); 

3) The weight vector of the BMU and its neighbor neurons 

are updated to more closely resemble the training vector.  

At the end of the training the data are now captured and 

described by the topology of the SOM, in a visually simple 

and easily comprehensible 2-dimensional representation. 

For more information on the theory of SOMs please refer to 

Kohonen (1995).  

For this application, a set of 40 maneuvers for each point 

system is selected, based on expert knowledge, to represent 

the nominal and healthy behavior of each asset. Of these 40, 

half represent maneuvers in one direction and the other half 

belong to maneuvers in the opposite direction. This will be 

referred to as the training data. The remaining maneuvers 

from the 6-month period will be referred to as the testing 

data. The SOM will be trained using the feature-vector of 

these maneuvers, thus, the weight vectors of the neurons 

will be 16-dimensional as well. 

The fleet-based approach relies on the assumption that, 

given the fact that all 20 point systems are of the same 

manufacturer, in the same station and of similar age, they 

can be assimilated to a uniform fleet: therefore, a single 

SOM for the whole fleet characterizes the fleet nominal 

behavior. In this approach, all the training data from the 

point systems are merged together to create a data set of 800 

feature vectors, 40 feature vectors from each of the 20 point 

systems, which will be the fleet training data. The SOM 

resulting from the fleet training data will be made up of 

feature vectors from all the point systems in the field.  

The asset-based approach relies on the assumption that the 

environment, field layout and positioning influence the 

behavior of the point system to an extent that, despite all the 

similarities in manufacturing, age and location, each point 

system must be treated as a single asset: therefore a 

dedicated SOM for each asset will be trained to characterize 

the nominal behavior of the specific asset in a specific 

direction. In this approach, the training data consisting of 

the 20 feature vectors for each point system for a given 

direction will be used singularly to train a unique SOM. 

Therefore, there will be 40 SOMs, each representing the 

nominal behavior of a single point system maneuver, in a 

given direction. The decision to train two different SOMs 

for each point system depending on the direction of 

maneuver reflects the ideas presented in Section 2.2 where 

the direction of the maneuver is hypothesized to influence 

the behavior. In order to assess the health of a maneuver, 

and to not confuse the effects of the direction with the 

effects of degradation, the asset-based approach is designed 

to render the assessment independent of the effects of the 

direction of maneuver. 



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016 

5 

3.3. Health Assessment  

In order to assess the health of a point system which is being 

monitored, the feature vectors of the testing data will be 

used, and the health of each of these vectors will be assessed 

through the SOM model. New unknown data will be 

evaluated by the SOM without altering the structure of the 

neurons during the testing phase. Several types of 

information can be given as output by the SOM on this test 

vector, such as the cluster to which it most likely belongs, 

the error in association or the most similar original training 

data. One of the most common outputs is the Quantization 

Error (QE), which is the Euclidean distance between the 

new data being tested and the weight vector of the neuron 

which most closely resembles the new data, as shown in Eq. 

1. 

𝑄𝐸(𝑦𝑃𝑆,𝑡𝑒𝑠𝑡)

= √(𝑦1
𝑃𝑆,𝑡𝑒𝑠𝑡 − 𝑤1

𝐵𝑀𝑈)
2

+ . . . +( 𝑦16
𝑃𝑆,𝑡𝑒𝑠𝑡 − 𝑤16

𝐵𝑀𝑈)
2
 

(1) 

 

Where 𝑦𝑃𝑆,𝑡𝑒𝑠𝑡  is the feature vector y, belonging to the 

testing data of the point system PS, 𝑤𝐵𝑀𝑈 is the weight 

vector of the BMU, and for both these vectors the pedicle 

indicates the component of the vector from 1 to 16. The QE 

represents the error in Euclidean distance of associating the 

testing data to the same cluster as the original SOM training 

data. High values indicate testing data which are very 

different from the original training data, whilst low values 

indicate similar behaviors. For this reason, a high value of 

QE will result in a point system which is degrading or 

behaving abnormally, whilst low values will indicate a point 

system which is operating consistently with our definition of 

healthy behavior. 

For both approaches, the testing data from the point systems 

being monitored are given as input to the SOM model, and 

the QE for each data is obtained as output. In the fleet-based 

approach, the same SOM evaluates the testing data for all 

point systems, while for the asset-based approach the testing 

data will only be tested on the SOM trained with the same 

point system, in the direction of the testing data. 

3.4. Comparison of Approaches 

In order to evaluate the two different approaches, it is 

necessary to evaluate the health assessment made by each in 

similar situations. The best method will be the one which: 

i) Identifies a variation in the health state of the point 

systems which are known to lose tolerance in the week 

preceding the failure, i.e., correctly identifies this failure; 

ii) Identifies variation in the health state before the failure 

of the point system in the month preceding the loss of 

tolerance, i.e., correctly identifies precursor behaviors of 

this failure; 

iii) Identifies the presence of an obstacle in the field; 

iv) Identifies a steady, non-variant health for the point 

systems which do not fail. 

These four parameters will be evaluated for each method, 

and each will be assigned a score on the basis of the fraction 

of correctly identified instances. The evaluation is done 

through a visual inspection of the QE obtained from each 

approach. For example, as we have 5 machines which have 

lost tolerance, for the first two parameters the score will be 

the number of machines correctly identified out of 5. The 

best method will be the one which has higher total score for 

all the parameters. 

4. APPLICATION AND RESULTS 

To evaluate the outcome of the health assessment for both 

approaches, we will first assess the outcome on machines 

which lost tolerance, then on the machine which had an 

obstacle, and finally, on the healthy machines.  

For ease of illustration, the results of the two approaches on 

the machines which lost tolerance are compared in Figure 4, 

where the failure event is marked with a vertical red line. 

 

Figure 4: Result of asset-based approach (in black circles) 

and fleet-based approach (in grey squares) on four point 

systems which failed at different times, with the failure 

marked by a red vertical line 

In Figure 4, it is evident that the health assessment done by 

the asset-based approach highlights the ongoing degradation 

in the point system beforehand. In all four cases, the QE 

from the asset-based approach increases about 2 months 

before the event. In comparison, the fleet-based approach 
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evaluated a QE which is remarkably stable, with a single 

indication of a slight change in point system 18, as shown in 

Figure 4 top right corner. The QE from the fleet-based does 

detect a slight shift in behavior, but it does not appear to 

substantially increase over time. Additionally, for point 

system 14, bottom left corner of Figure 4, the fleet-based 

QE seems to decrease over time, indicating that the health of 

the system is improving, which is a severe error. The QE for 

the fifth and final point system which failed increases for 

the asset-based approach whilst remaining constant for the 

fleet-based.  

Overall, the asset-based approach was able to identify all 

five failures out of five, and it was able to detect this change 

beforehand for all five. On the other hand, the fleet-based 

approach was able to merely detect the failure and the shift 

for one machine out of five. This result indicates that the 

assumption that all point systems have the same behavior 

leads to some gross overestimations of their health. When 

looking at the whole fleet, the effects of the environment 

and field positioning on the behavior of a point system may 

be very similar to the effects of a failure mechanism on a 

different point system.  

An obstacle between the switch and stock rail occurred on 

point system 10, on maneuver 257, visible in Figure 5 . 

 
Figure 5: Result of asset-based and fleet-based approaches 

on the point system which encountered an obstacle, the 

obstacle maneuver is marked in red 

 

For both the fleet-based and asset-based approach in Figure 

5, the maneuver which encountered an obstacle has a much 

higher QE value than the maneuvers just before and just 

after. Unfortunately, many other maneuvers have high QEs 

with respect to the near-by measurements. This indicates 

that the QE alone is not sufficient to isolate the presence of 

an obstacle in the field, but it does reveal itself as a 

maneuver with abnormal behavior. Both approaches fail this 

identification. 

With regards to the other 15 machines which do not result in 

any failure on-field, a specimen of four cases has been 

selected for show, in Figure 6. 

For most cases, such as the top row of Figure 6, the results 

from both approaches on non-faulty point systems yielded 

the same results, with no significant variation in trend. For 

two cases, one of which is point system 18 in the bottom left 

corner of Figure 6, the results were identical for the two 

approaches even if incorrect: the point system QE resulted 

with an increasing trend, signifying a change and an 

anomaly. 

 
Figure 6: Results of the asset-based and fleet-based 

approach to four point systems which did not fail over the 

course of the six-month investigation 

This, although counting as an error in identification, 

indicates that the point system is varying its behavior in 

time according to both approaches, though the reason for 

this variation is not yet identified. In three cases, one of 

which is illustrated in bottom right corner of Figure 6 for 

point system 15, the fleet-based approach resulted in an 

increased QE, therefore an erroneous health assessment. 

However, for these cases the increase occurs at the very end 

of the six-month trial which is right-censored, not allowing 

us knowledge as to whether the machines actually lost 

tolerance in the coming months. These will be considered as 

incorrect identifications, but this decision remains 

inconclusive, as only the data from the following months 

could confirm this claim. Overall, the asset-based approach 

correctly identified 10 out of 15 point systems as stable and 

the fleet-based correctly identified 13 out of 15 as stable. 

A review of the results of the two approaches can be found 

in Table 1, with reference to the parameters for the 

comparison outlined in Section 3.4. From Table 1 it can be 

seen that the fleet-based approach misses almost all of the 

failure events with respect to the asset-based approach. 

However, the fleet-based approach obtains less false alarms 

than the asset-based approach. This is because the fleet-

based approach over fits the problem, and regards a lot of 
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the variations in behavior as acceptable with respect to the 

fleet, and is more unlikely to report these as anomalies. 

Table 1: Comparison of the two approaches 

Parameter Fraction of Cases 

Identified 

correctly by the 

Fleet-based 

approach 

Fraction of Cases 

Identified 

correctly by the 

Asset-based 

approach 

i) variation in the 

health state of the 

point systems 

which lose 

tolerance 

1

5
 

5

5
 

ii) variation in the 

health state of the 

point systems 

which lose 

tolerance at least 

a month before  

1

5
 

5

5
 

iii) presence of an 

obstacle in the 

field 

0

1
 

0

1
 

iv) steady, non-

variant health for 

the point systems 

which do not fail 

13

15
 

10

15
 

 

5. CONCLUSION AND FUTURE WORK 

The necessity to introduce a CBM system to point systems 

is becoming ever more a reality, due to the criticality of 

point systems in the railway infrastructure. The signals from 

the case study were not adequate for a simple threshold to 

detect failures and abnormal behaviors, as healthy signals 

were very similar to degraded ones. For this reason, this 

work resorted to a method which involves the extraction of 

relevant features and a model for the health assessment of 

the point systems. 

This works aims to compare the results of a point system 

health assessment of using a fleet-based approach and an 

asset-based approach on a six-month case study on 20 point 

systems in a field setting. While the asset-based approach 

was computationally more expensive and required a greater 

memory for storage, it ensured that no failures would go 

unpredicted, whilst the fleet-based approach missed 4 

failures out of 5. Neither the fleet-based nor the asset-based 

approach alone were sufficient to identify the presence of an 

obstacle on the field. However, during the study it was 

evaluated that other information collected from the data 

acquisition, when joined to the QE, does allow for detection 

of an obstacle in the field. This is true for both approaches. 

Finally, the fleet-based approach did grant 3 fewer false 

alarms than the asset-based approach. However, these were 

considered as a mistake for the purpose of the case study, 

but the consensus as to whether these are actually false-

alarms or early detections cannot be reached: the data of the 

following months is unavailable to confirm or deny this 

claim. 

The reduction of the dataset from a time series to a 16-

dimensional vector may have affected the results, as these 

rely on the feature vector of the maneuver to be complete. 

This specific feature vector is the result of a long and 

extensive study and the authors believe that it extracts the 

most pertinent information from the original raw data. In 

addition, this paper aims to compare a fleet-based approach 

and an asset-based approach, and uses the same data to do 

so. For this reason, if the quality of the results has been 

negatively affected by the dimensionality reduction, this is 

true for both approaches and the comparison of the two is 

still possible. 

In conclusion, the fleet-based approach contains a series of 

assumptions about the general behavior of the point system 

which do not confront with the reality: a variation in a point 

system behavior is often similar to the nominal behavior of 

another point system, resulting in a lack of detection of the 

anomalous behavior. Furthermore, adopting a fleet-based 

approach removes the context information from the health 

assessment, and it misses more failures than advisable.  

Future work will be focused on the possibility of joining the 

outputs of these two approaches in a weighted ensemble, 

which could lead to an optimum output. Furthermore, in 

order to improve the fault detection, additional data might 

be necessary in order to characterize the behavior of the 

point system more comprehensively. Sensors such as rod 

displacement, vibration of the point machine motor and 

pushing force could bring valuable information to the 

method overall. 
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