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ABSTRACT 

In the present paper, a systems engineering methodology is 

presented for the analysis and condition assessment of 

complex marine machinery systems. Two important 

characteristics of these systems are (i) that they comprise of 

a multitude of subcomponents which influence the overall 

system condition/performance and (ii) the continuously 

varying operating and environmental conditions. The 

methodology presented herein is capable to evaluate the 

system level effects of component degradation and faulty 

states under realistic system operation. By virtue of this, it is 

employed along with sensor signal data for the identification 

of degraded states and the allocation of the problem to 

specific system components. The modelling platform used 

in this work is the DNVGL COSSMOS (Complex Ship 

System Modelling & Simulation).  

At the methodological level, an automated model-based 

sensitivity analysis is conducted with respect to a set of 

component degradation/failure modes. The latter is used 

along with a clustering algorithm for the precise allocation 

of the failure to specific components and system particulars. 

The selected case-study is the Diesel-electric marine 

propulsion system of a 2300 tonnes DWT (deadweight 

tonnage) anchor handling vessel embedded with its cooling 

network. Based on the results, the approach is capable to 

successfully identify faults at various subcomponents of the 

cooling network system including pumps, regulating valves, 

heat exchangers and piping. Due to the fact that the system 

is treated in an integrated manner, a fault can be identified 

in a component using sensor signals placed in other system 

locations.  

1. BACKGROUND 

Within the maritime industry there is a strong trend of 

machinery components and systems becoming more 

integrated and thereby also more complex. Advanced 

control and monitoring systems are enablers for safer, 

greener and smarter maritime transport of goods and people 

but also add to the level of complexity with regards to 

design, commissioning and operation. The key drivers 

behind this trend are stricter legislation related to emissions 

and the tough competitive market driving performance/cost 

optimization.  

When different components and sub-systems from a 

multitude of suppliers are combined to fulfil one or more 

functions on board a ship, the need for increased multi-

discipline knowledge and system understanding is obvious. 

It can be hard to determine and verify all possible failure 

modes and their effect, and thereby also the overall system 

reliability and safety. During operation, the increased level 

of integration and dependence of embedded control 

functions significantly escalates the level of information and 

possible failure scenarios that the operator needs to 

understand and handle. The fact that ship machinery 

systems are operated in a host of different working modes 

under continuously varying operating and environmental 

conditions further complicates the situation, and makes it 

hard to deal with process anomalies in an effective manner. 

Within this context, a systems engineering approach is 

required in order to achieve and document a safety level 

equivalent to the traditional and well proven designs.  

One of the first studies on marine energy conversion 

systems dealing with the computer-aided design of the 

overall system is (Ito & Akagi, 1986). Later, in (Campora & 

Figari, 2003; Hansen, Adnanes, & Fossen, 2001; Jefferson, 

Zhou, & Hindmarch, 2003 ; Kyrtatos & Lambropoulos, 

2000; Kyrtatos, Theodossopoulos, Theotokatos, & Xiros, 
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1999; Pedersen & Pedersen, 2012; Vrijdag, Stapersma, & 

Terwisga, 2009) process modelling approaches have been 

used for the analysis of marine propulsion systems. In 

(Dimopoulos, 2009; Dimopoulos, Kougioufas, & 

Frangopoulos, 2008; Tostevin & Nealy, 2003) the analysis 

and optimisation of generic marine energy production 

systems mostly focusing on steady-state synthesis, design 

and operation is presented. Moreover, in (Rüde, 2006) the 

cooling network of a conventional propulsion vessel with a 

four stroke Diesel engine has been modelled, the purpose of 

the analysis is the enhancement of safety and reliability 

studies.  

COSSMOS (Dimopoulos, Georgopoulou, Stefanatos, 

Zymaris, & Kakalis, 2014; Dimopoulos & Kakalis, 2010; 

Kakalis & Dimopoulos, 2012) is DNVGL’s model-based 

systems engineering simulation platform.  What 

differentiates the aforementioned approaches from DNVGL 

COSSMOS is that each one of them is dedicated to a 

specific type of analysis for a specific system/component. 

On the other hand, COSSMOS is a generic marine 

machinery systems platform that is capable of performing 

steady-state and transient analysis as well as more complex 

tasks such as optimisation and parameter estimation for all 

machinery components that can be found on-board a vessel.  

Another megatrend within the maritime industry is the 

remarkable growth in broadband satellite installations on 

board large ships over the past few years. Components and 

systems can be integrated with sensors that measure, log and 

send ashore operational system data. Access to 

comprehensive operational data from on board system 

sensors that is transferred to shore on a live basis will lead 

to tremendous opportunities for all stakeholders within the 

maritime industry to make shipping smarter, safer and more 

cost-efficient. This revolution in ship connectivity will 

enable the implementation of a host of new applications 

such as performance and environmental monitoring, energy 

efficiency optimisation, remote control/autonomy and 

condition monitoring (CM). 

CM is the process of monitoring a set of parameters of 

condition in a system in order to identify a significant 

change that is indicative of a failure or a developing fault 

that is affecting it’s function. Within the maritime industry 

the use of condition monitoring techniques to perform, for 

instance, condition based maintenance (CBM) on machinery 

components and systems is still very much in an infant 

stage. There are some early adopters within segments with 

high value vessels such as cruise and offshore but for most 

ships the on board maintenance tasks are carried out based 

on basis of either calendar or running hours (Coull, 2015). 

The need to stay competitive in a tough market is however 

pushing more and more ship owners and managers towards 

improving maintenance procedures, boosting uptime and 

cutting costs. The uptake of CBM is therefore expected to 

accelerate over the coming years. 

Diagnostics and prognostics algorithms for implementing a 

condition monitoring system are based on one of two main 

approaches (G Manno, Knutsen, & Vartdal, 2014) 

 A model-based (first principles physical model) 

approach (Isermann, 2011) 

 A data-driven (statistical and data mining) approach 

(Baraldi, Maio, Genini, & Zio, 2015; Ge, Song, & Gao, 

2013; Wang, 1999; Yin, Ding, Xie, & Luo, 2014) 

One major challenge for the maritime industry is the lack of 

reliable statistical failure data for ship equipment similar to 

the OREDA database for the offshore industry (SINTEF, 

2002). Additionally, machinery systems are run very 

differently from ship type to ship type and also under 

continuously varying operating and environmental 

conditions. These facts strongly support the use of model–

based approaches within shipping since it requires 

knowledge about the physics and function of the system and 

not large amounts of previous failure data. In (Grimmelius 

et al., 1999) a comparison between data-driven and first 

principle model-based CM approaches is presented for two 

marine machinery case studies. The systems studied are: (i) 

a Diesel engine, using only the torsional vibration of the 

crank shaft, and (ii) a compression refrigeration plant, using 

many different sensors. Both CM approaches (data-driven 

and model-based) show promising results.  

In (Monnin, Voisin, Leger, & Iung, 2011) and (Voisin, 

Medina-Oliva, Monnin, Leger, & Iung, 2013) a knowledge 

structuring scheme for achieving fleet-wide PHM utilizing 

both modelling and monitoring is proposed. Utilizing 

contextual information about the system and components by 

means of semantic modelling is identified as a key issue in 

order to allow for consideration of fleet component 

similarities and heterogeneities. Monitoring data from a 

given component are considered within their context and 

thereby enhancing the identification of the corresponding 

health condition. The fleet dimension can provide 

knowledge and data to improve both diagnostic and 

prognostic models. In the maritime sector a fleet could both 

be a ship owner fleet of typically 10 to a few hundred 

vessels or the entire fleet of a classification society such as 

DNVGL with a fleet of more than 13,000 vessels. 

Moreover, in (Grimmelius et al., 1999) the aspect of sensor 

redundancy using virtual sensing is investigated. Model-

based technologies are a key enabler for virtual sensing / 

analytical redundancy (Chen & Patton, 1999). In (Blanke, 

2001) a model-based methodology for the diagnosis of 

faults in ship propulsion systems and fault-tolerant control is 

presented. In this work mathematical models for ship speed, 

propeller and prime mover (i.e. Diesel engine) have been 

utilised. Diesel engines are among the most expensive, 

critical and maintenance intensive components on board the 

ship, and as a consequence many first principle condition 

monitoring approaches have been proposed in literature 

(Kouremenos & Hountalas, 1997; Watzenig, Sommer, & 
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Steiner, 2013). Although Diesel engine CM is a well 

investigated subject, there are less studies found for the 

auxiliary cooling network system or the Diesel engines and 

the other essential propulsion system equipment (such as 

frequency converters and electrical transformers in Diesel 

electric systems). One of the few  works is (Twiddle & 

Jones, 2002) where a model-based CM approach for the 

cooling network of an on-shore Diesel generator has been 

developed.  

During the recent years, DNVGL has initiated a number of 

projects in this area: COMPASS (Condition and operation 

monitoring for performance and ship safety), MODAM 

(Model based, data driven asset management) (DNVGL, 

2015). “Nauticus Twinity” (Ludvigsen, Jamt, Husteli, & 

Smogeli, 2016) is a first DNVGL digital twin prototype 

(Glaessgen & Stargel, 2012; Tuegel, Ingraffea, Eason, & 

Spottswood, 2011). A digital twin, Figure 1, is a model of a 

physical asset, that encapsulates (i) an information/data  

model, (ii) a simulation model (e.g. COSSMOS) and model-

based & data driven analytics, and (iii) possibly a 

dependability model and (iv) possibly a visualisation model. 

What makes a digital twin different from generic models is 

that they are specific to their physical counterparts. The 

digital twin model is specifically instantiated for the specific 

asset. Furthermore, it will follow its corresponding real life 

twin through its life cycle, through collecting sensor updates 

and history data. Any change on the physical asset must also 

be reflected in the model. As such, the digital twin is 

envisaged as a holistic simulation and analytics platform for 

performance, energy efficiency optimisation, classification 

services and condition monitoring.  

 

Figure 1. DNVGL Digital twin, MODAM project (DNVGL, 

2015; G. Manno, et, & Al., 2015). 

2. OUTLINE OF THE PROPOSED APPROACH 

The ultimate goal of the work presented in this paper is to 

have a continuous health state monitoring of the subject 

cooling system that can support classification and predictive 

maintenance activities and enhance ship safety and 

reliability. A condition monitoring approach using first 

principle model-based analytics for the cooling network 

system is proposed. The digital twin of the propulsion 

system and its cooling network is developed in COSSMOS. 

Apart from the simulation model, a set of available sensor 

measurements have to be identified.  

The approach is divided into two steps: (i) the binominal 

classification between failed and non-failed states and (ii) 

the specific failure identification on a system, 

subcomponent/location. The binominal classification 

procedure aims to compare system measurements with 

model results and class the system state between two 

different possibilities: failed or non-failed. If failed, the next 

step is to allocate the exact position of the failure. This is 

achieved by performing a holistic sensitivity analysis using 

the simulation model. The product of the sensitivity analysis 

(sensitivity maps) provides a quantitative behavioural 

analysis of the sensor variables with respect to an extensive 

envelope of system faults. Based on that, the failure pattern 

from the sensor readings can be matched to the pattern(s) of 

specific faults. In this work, an unsupervised type of neural 

network, the self-organising maps (SOM) (Kohonen, 2001) 

has been used for that purpose. The SOM task is to cluster 

the unknown failure pattern within clusters of failures that 

each one of them corresponds to a set of system failure 

modes (given by the sensitivity analysis). Although in 

literature a variety of neural networks have been used for 

condition monitoring and recognition of faults (Baraldi, 

Compare, Sauco, & Zio, 2013; Grimmelius et al., 1999; 

Schenk, Natale, Germond, Boss, & Lam, 2002), what 

differentiates this approach is that it utilises sensor signals 

along with the first principle sensitivity analysis results.  

In the rest of the paper, the description of the under study 

system is presented in section 3. The modelling 

methodology is presented in section 4, and the detailed 

discussion of the binominal classification and the failure 

identification is given in sections 5 and 6. Two different 

case studies of failures at the cooling network are presented 

in section 7: (i) a fault (infraction) at the 3-way valve 

TCV65LT and (ii) a fault at the LT pump at the main engine 

(ME) cooling circuit.  

3. SYSTEM UNDER STUDY 

The chosen case-study for this work is a 2300 DWT anchor 

handling vessel built in 2009 and operated in the North Sea. 

The vessel has a twin screw conventional propulsion plant 

consisting of: 

 Two 4.5 MW 4 stroke propulsion Diesel engines 

 Two reduction gears each with a 3 MW Power Take-In 

(PTI) electric booster motor 

 Two controllable pitch propellers with rudders 

Vessel maneuverability and station-keeping capabilities are 

further enhanced by 4 separate thruster units: 

 Two stern tunnel thrusters 

 One bow tunnel thruster 

 One bow retractable  azimuth thruster 
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Power generation is achieved by two 5 MW shaft generators 

installed on front-end of the main engines and 4 equally 

sized 2.1 MW auxiliary Diesel generator sets. The 

propulsion and power system is designed to fulfill Class 

redundancy requirements but is also configured to provide 

the operator with large operational flexibilities. 

The cooling of the vessel’s main machinery equipment is 

divided into two separate freshwater (FW) cooling systems, 

FW cooling system No. 1 & No.2. Each FW cooling system 

is arranged for one main engine with shaft generator, 

reduction gear and PTI, two auxiliary generator sets and two 

thruster units. To the authors’ knowledge this is the first 

time the entire cooling network of a Diesel electric system is 

modelled and assessed for condition monitoring purposes. 

The FW cooling system includes one main electrical 

circulation pump, engine driven pumps (for high and low 

temp systems), engine preheaters, valves and coolers. One 

3-way regulating valve is arranged for each FW system with 

a set-point of 37°C. For each Diesel engine two additional 

3-way regulating valves are installed. Crossover lines and 

one standby pump are arranged between FW Cooling 

Systems No.1 & No.2 with manual normally closed valves.  

The system under study is FW Cooling System No.2 

(starboard side) as illustrated in Figure 2. 

 

 
Figure 2. Illustration of FW Cooling System no.2. 

Propulsion, power and maneuvering system deposits heat to 

the FW system, which again deposits to a sea water (SW) 

system via 2 main coolers. The 3-way temperature 

controlled mixing valve (TCV65LT) maintains a given FW  

temperature of 37°C by mixing cold and warm water. 

 

The Main Engine cooling system is divided into two sub-

systems: a low temperature (LT) system and a high 

temperature (HT) system. Both sub-systems are equipped 

with a separate circulation pump. The LT system is used to 

provide fuel and lubrication oil cooling/heating and 2
nd

 

stage charge air cooling. The amount of cooling water 

flowing through the 2
nd

 stage charge air cooler is regulated 

by a 3-way flow control valve. The valve PID controller is 

used to give a charge air temperature of 55°C. The HT 

system utilizes output cooling water from the LT system for 

1
st
 stage charge air cooling and cylinder block cooling. The 

system has a 3-way temperature controlled valve 

recirculating cooling water inside the HT system. The PID 

controller regulates the cooling water temperature coming 

out of the cylinder block to 90°C. 

The cooling system is equipped with a limited number of 

sensors monitoring system temperatures, pressures, cooling 

water levels etc. Critical functions are protected by alarms. 

The complete FW system no.2 contains: 

 25 different plate coolers, 

 70-80 valves that can adjust cooling water flow 

(manually and automatically), 

 Approximately 200 meters of cooling water pipe of 

varying diameter. 

        
Figure 3. Illustration of Main Engine LT and HT sub-

systems. 

4. MODELLING APPROACH – DNVGL COSSMOS  

Since 2008 DNVGL has introduced MBSE (Model Based 

Systems Engineering) for modelling, simulation and 

optimisation of integrated marine energy systems 

(Dimopoulos et al., 2014; Dimopoulos & Kakalis, 2010; 

Kakalis & Dimopoulos, 2012). This work has resulted in the 

modelling framework named as DNVGL COSSMOS. 

DNVGL COSSMOS (Figure 5) aims at being one tool 

providing model-based decision support on: 

 Optimal design of on-board machinery with respect to 

energy efficiency, safety and cost effectiveness; 

 Performance evaluation, diagnostics and operation 

optimisation under real-service conditions for the entire 

mission envelope of the machinery system; and 

 Assessment of the potential, operational capabilities, 

and safety of new technologies. 

As such, the COSSMOS modelling framework 

provides the user with the capability to define and 

analyse a wide range of system configurations, model 

their behaviour in terms of their physics processes 
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(mechanical, electric, thermodynamic, heat transfer, 

fluid flow, etc.), and perform any model-based 

application of interest (simulation, optimisation, 

control, parameter estimation) under both steady-state 

(design/off-design conditions) and dynamic (time 

varying, transient operation) conditions. 

The implementation of COSSMOS is done in gPROMS 

(PSE, 2016), an equation-oriented modelling language 

specially designed for process system modelling and 

simulation that can efficiently handle the numerical solution 

of highly complex non-linear PDAE (Partial Differential 

Algebraic Equation)  systems in a variety of processes. The 

COSSMOS component models can be a phenomenological 

model based on first principles, detailed physical models or 

even correlations from experimental data.  

A general description of the component model mathematical 

equations reads: 

𝑑�⃗� 

𝑑𝑡
= 𝐹 (�⃗� (𝑡),

𝑑�⃗� 

𝑑𝑥𝑖

(𝑡), �⃗� (𝑡), �⃗� (𝑡), 𝑡)    
(1) 

 

�⃗⃗� (�⃗� (𝑡),
𝑑�⃗� 

𝑑𝑥𝑖

(𝑡), �⃗� (𝑡), �⃗� (𝑡), 𝑡) = 0 
 

(2) 

where 𝑡 is the time, �⃗� = (𝑌1, … , 𝑌𝑁𝑌
), �⃗� = (𝑢1, … , 𝑢𝑁𝑢

) and 

�⃗� = (𝑏1, … , 𝑏𝑁𝑏
)  are the vectors of differential variables, 

algebraic variables and parameters, respectively. The 

vectors �⃗�  and �⃗�  constitute the process variables of the 

system. 𝐹  and  �⃗⃗�  are vector functions. The partial derivative 

base vector  𝑥 , is an appropriate distribution domain, usually 

expressing geometry dimensions (e.g. length, width, radius, 

etc.). The PDAE system is completed by the necessary 

initial and boundary conditions.  

 
Figure 4. Propulsion system model in DNVGL COSSMOS. 

(Abbr.: ME=Main engine, SG=Shaft Generator, DG=Diesel 

Generator, VFD= Variable Frequency drive). 

 

As in any model-based systems engineering approach, the 

overall system model is synthesized from coupling the 

individual component models as shown in Figure 5. In this 

work the vessel’s propulsion system has been modelled; the 

model view from the COSSMOS GUI is presented in Figure 

4. A schematic representation of the propulsion system with 

the cooling network is given in Figure 2. Moreover, the 

overall COSSMOS model: propulsion system and cooling 

network (starboard side) can be seen in Figure 6. The model 

comprises of approx. 14300 PDAE equations and 295 

system components.  

 
Figure 5. The DNVGL COSSMOS modelling framework. 



Figure 6. Overall COSSMOS model: propulsion system & cooling network (vessel’s starboard side). 

4.1. Model Calibration 

The simulation model has been calibrated based on 

manufacturers’ data. The comparison of results between the 

system operation at design conditions (black bars) and the 

model predictions (grey bars) can be found in Figure 7. 

These are indicative results and if the model is to be used in 

a real CM application a more exhaustive calibration 

procedure (through sensor data) has to be carried out. 

However, the simulation model is adequate for 

demonstrating the CM approaches presented in the current 

work. 

Figure 7. Comparison between system data (black bars) and 

model predictions (grey bars). The system positions 

corresponding to the quantities depicted in the x-axis can be 

found in Appendix I. 

5. BINOMINAL CLASSIFICATION BETWEEN FAILED AND 

NON-FAILED SYSTEM STATES 

Let’s assume the following fault detection problem: given 

the set of signal data in  

Table 1, the engineer/analyst is asked to identify if this set 

of signals is corresponding to a degraded system condition 

(i.e. operation under the presence of fault or failure in the 

system). Based on the schematic of Figure 8: by using (i) a 

set of inputs (system operational data & sensor 

measurements that we have higher confidence in) and (ii) 

information about the condition of specific system parts (if a 

priori knowledge is available, e.g. amount of fouling at heat 

exchangers (HEXs), COSSMOS simulations can be carried 

out and the results can be used for benchmarking against the 

values of  

Table 1 (signal measurements, column headers with grey 

background). In this example the inputs are the independent 

parameter values ( 

Table 1, white background), the benchmarking results are 

depicted in Figure 9 and Figure 10. From the differences 

between these one could assume that there is some kind of 

fault/degraded state in the LT circuit that affects (among 

other system variables) the TCV65LT stem position and the 

pump power.  

In the discussion above the simulation model has been used 

for analysing the current system state by comparing with the 

“ideal” one (including HEX fouling) under the specific 

operating conditions. This is particularly useful when the 

system under study is at its infant life stage (where limited 
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historical data exist). Moreover, it is also useful for systems 

with many independent parameters that influence the 

operation. In these cases there is a challenge in obtaining 

real-life data for all possible states (combinations of the 

independent parameters) that may be needed in order to 

create a good system representation. Critical and rare events 

can only be included in the database by using model-based 

simulations as it is done in this project. Consequently the 

use of simulations models is particularly important for 

filling these “gaps” of information in the real-life data.   

 
Figure 8. Methodology schematic. From left to right: Inputs 

to the COSSMOS model, COSSMOS simulation model, 

result comparison and benchmarking with sensor signals.  

 
Figure 9. Comparison of TCV65LT stem position. Dark 

grey bars: values corresponding to a system without any 

fault. Light grey bars: set of data to be identified if 

correspond to a condition or not.  

 
Figure 10. Comparison of LT pump loads (as in Figure 9). 

 

 

Table 1. Propulsion system and cooling network TCV65LT valve and LT and pump signal data; Anchor handling (AH) 

mode. Input variables on left side (white background) and simulated variables on right side (grey background).

Input variables Output variables 

 

Load 

ME 2 

Load 

Azimuth 

Thruster 

[kW] 

Load 

Tunnel 

Thruster3 

Aft2 [kW] 

Load 

PTI 

[kW] 

El. 

demand 

STBD side 

(other) [A] 

Central 

Cooler 

fouling 

SW 

temperature 

TCV65LT 

stem [0-1] 

Pump LT 

Power [kW] 

FW Temp 

ME inlet 

[C] 

#1 20% 360 960 600 1000 No 15 0.13 37.58 88.1 

#2 30% 360 960 600 1486 No 15 0.14 37.60 87.2 

#3 20% 360 480 300 1486 Yes 32 0.72 37.44 88.1 

#4 30% 360 480 300 1000 No 32 0.82 37.07 87.2 

#5 20% 180 960 600 1000 Yes 32 0.69 37.50 88.1 

#6 30% 180 960 300 1486 Yes 32 0.78 37.31 87.2 

#7 20% 180 480 600 1486 No 15 0.12 37.57 88.1 

#8 30% 180 480 600 1000 Yes 15 0.10 37.55 87.2 

6. FAILURE IDENTIFICATION 

Herein, the scope is to address the problem of locating the 

internal failure at the corresponding part of the system, 

extending the methodology described in section 5. The 

system’s sensitivity map can be utilised for this purpose. 

DNVGL COSSMOS has the ability to perform automated 

sensitivity analysis using symbolic differentiation 

(Naumann, 2012).  The step below are followed: 

 

 Step 1: Perform Binominal classification analysis (as in 

paragraph 6). If it is identified that there is a hidden 

fault somewhere in the system, then: 

 Step 2: Perform sensitivity analysis using the systems 

engineering model.  

 Step 3: Cluster sensitivity analysis results into groups of 

faults.  

 Step 4: Identify the group of faults that the specific fault 

pattern belongs to.  
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𝑥 𝑗
,𝑦

𝑙,
𝑢

𝑚
  

6.1. Sensitivity analysis map and sensitivity derivatives 

In the sensitivity map, the sensitivity derivatives of selected 

system variables with respect to the model input parameters 

and independent variables are depicted. For condition 

monitoring, the selected system variables make sense to 

correspond to sensor measured variables (MV). In more 

detail, a non-linear differential and algebraic system of 

equations (like the COSSMOS model) that describes the 

dynamic behaviour of an engineering system can be written 

in the form: 

𝑅𝑖 (𝑥𝑗 ,
𝑑𝑥𝑗

𝑑𝑡
, 𝑦𝑙 , 𝑢𝑚) = 0 (3) 

where 𝑥 (𝑡)  and 𝑦 (𝑡)  are the vectors of differential and 

algebraic variables respectively (both are unknowns to be 

determined by the simulation) and �⃗� (𝑡) is the vector of the 

mathematical system input parameters that is a given 

function of time. The sensitivity derivative of a variable MV 

is a vector given by:   

[
𝛿(𝑀𝑉)

𝛿𝑥𝑗

|
𝛿(𝑀𝑉)

𝛿𝑦𝑙

|
𝛿(𝑀𝑉)

𝛿𝑢𝑚
]

𝑇

 (4) 

The overall matrix comprises of 𝑀𝑆𝑉 columns, where 𝑀𝑆𝑉 is 

the number of the monitored variables. Each column vector 

element, shows how much the MV is affected by a 

perturbation in the corresponding system variable (x,y) or 

parameter (u). The system variables (x,y) and parameters (u) 

are related to a certain sub-component function and 

characteristics, and thus any possible failure mode of the 

sub-component will alter the their values by 𝛿𝑥 leading to a 

change in the MV. The sensitivity maps provide a holistic 

view of the internal system relations between MV and all 

the system variables and can be used to correlate the fault 

pattern (“fingerprint”) to a specific matrix row
1
 (i.e. variable 

(x,y) or parameter (u)); and consequently to a specific 

system component and failure mode. The advantage of 

using the sensitivity analysis approach is that it requires 

only one simulation of the system irrespective of the number 

of the system variables (x,y) or parameters (u) (and 

consequently the number of failures). This reduces 

computational requirements significantly.  

In Figure 11, the sensitivity map for the cooling network is 

presented. The values are in log10 scale. The chosen MV 

variables are found in Table 2 (others could have been 

chosen as well).  

 

                                                           
1
 If clustering has been applied before, then correlate to an 

agglomeration of matrix rows (that can be seen as very 

similar failures). 

Table 2. MV for the cooling network case. 

1 Central cooler FW temperature OUT 

2 DG3 cooler FW temperature before cooler  

3 DG4 cooler FW temperature before cooler 

4 TCV65HT stem position 

5 DG3 cooler FW temperature after cooler 

6 DG4 cooler FW temperature after cooler 

7 ME pump_30HTpower 

8 ME pump_30LTpower 

9 LT circulation pump power 

10 DG3 FW pump pressure 

11 DG4 FW pump pressure 

 

 
 

Figure 11. Sensitivity map: cooling network, AH mode. 

Values are in log10 scale: 𝒍𝒐𝒈𝟏𝟎(𝒂𝒃𝒔[
𝜹(𝑴𝑽)

𝜹𝒙𝒋
|

𝜹(𝑴𝑽)

𝜹𝒚𝒍
|

𝜹(𝑴𝑽)

𝜹𝒖𝒎
]
𝑻

) . 

 
 

Figure 12. Sensitivity map: cooling network, AH mode. 

Sensitivity derivative signs: 𝒔𝒊𝒈𝒏[
𝜹(𝑴𝑽)

𝜹𝒙𝒋
|

𝜹(𝑴𝑽)

𝜹𝒚𝒍
|

𝜹(𝑴𝑽)

𝜹𝒖𝒎
]
𝑻

, white: 

-1, black:+1. 

7. CASE STUDIES 

Two different cases of failures at the cooling network are 

studied. Case study 1 concerns a fault (infraction) at the 3-

way valve TCV65LT, Figure 2 has been studied. In the 

second case study, a fault at the LT pump at the ME cooling 

circuit has been investigated (Figure 3). 
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7.1. 3-way regulation valve fault case study. 

The Self-Organising Maps (SOM) (Kohonen, 2001), an 

unsupervised machine learning clustering method, has been 

utilised aiming to aggregate together system 

parameters/faults (i.e. the rows of sensitivity matrix), that 

have the same impact to the sensor readings. The SOMPY  

Python Library for Self Organizing Maps has been used for 

that purpose (Moosavi, 2016).     

The data-set used to build the SOM was the sensitivity 

matrix (depicted in Figure 11). By using a 2-dimensional 

representation plane with a square topology (21x21 in size), 

the agglomerates of the parameters/faults can be seen in 

Figure 13 (left). Each cycle corresponds to the node of the 

SOM that has been best matched to a set/agglomerate of 

parameters/faults – the larger the cycle radius the more the 

system parameters/faults are associated with the 

corresponding node. On the right hand side of Figure 13 the 

U-Matrix
2

, that gives insight into the local distance 

structures of the data set, is presented. The red areas 

represent divisions of the data set, while the dots are the 

nodes presented also in the left graph. 

In Figure 21, the heat-maps of the sensor variables are 

depicted over the SOM. These heat-maps present the 

distribution of each sensor variable across the SOM node 

structure (21x21). By comparing them, interdependencies 

between sensors and sensor redundancies with respect to 

failures can be identified. For example, sensor variable 1 

(LT FW temperature out of the central cooler) can 

differentiate mainly between parameters/failures that are 

located to the nodes of the upper right (blue, Figure 21) and 

lower-middle (red, Figure 21) part of the map. 

  

Figure 13. 3-way regulation valve fault case study: 2-

dimensional representation plane (21x21) with the nodes 

(left). Corresponding the U-Matrix (right).  

 

From the maintenance log of the vessel’s cooling water 

system, it is known that there has been a fault at the 3-way 

valve TCV65LT, Figure 2. Unfortunately no real data were 

available for the time period of the fault. The simulation 

model has been used in order to simulate an infraction at the 

TCV65LT valve. Based on the sensor ( 

                                                           
2
 https://en.wikipedia.org/wiki/U-matrix  

Table 1) readings (simulation with fault) the Binominal 

classification analysis (Step 1, section 5) has been carried 

out. The differences between the signals that correspond to 

the fault condition and the ones that correspond to the “non-

fault” condition are depicted in Figure 14. These data are 

introduced to the clustering algorithm in order to be 

allocated in the best matching unit of the map in Figure 13. 

For this case, the best matching unit is the node (5,7) shown 

by the arrow in Figure 13 (left). Based on sensitivity matrix 

data, the components related to the faults/parameters that 

have been previously matched to node (5,7) are depicted in 

the Figure 15. The TCV65LT valve is one of them and 

consequently the approach has correctly identified the failed 

component between all the different (but influencing the 

sensor signal set) areas of the system (Figure 16).  

In order to assess the SOM performance, as set of #40 

different simulation cases has been used to create the 

true/false positive and true/false negative matrix of  

Table 3. The data set comprises of #20 different TCV65LT 

fault realisations (various infraction percentages, different 

SW and engine load conditions) and #20 system realisations 

without any fault at the TCV65LT valve. The latter includes 

the case where every component is working as new and 

other cases with faults/failures at components other than the 

TCV65LT valve. From the #20 system realisations that the 

TCV65LT valve has failed or degraded, #16 have been 

correctly identified, i.e. the sensor set signal was correctly 

matched to SOM node (5,7). For the rest #4 cases, the 

model prediction has allocated as best matching units the 

nodes (6,6) (three times) and (7,6) (one time).  Although 

counted for false negatives, it is worth mentioning that the 

latter two nodes are at the vicinity of the correct node choice 

that is again node (5,7). In Figure 17, the orange-coloured 

highlighted area includes nodes that corresponding to the 

TCV65LT infraction fault, namely node (5,7) (16 true 

positive results of Table 3) and nodes (6,6) & (7,6) (four 

false negative cases of  Table 3). In the same figure (Figure 

17), the blue-coloured square areas correspond to the 20 true 

negative cases of Table 3. 

 

Table 3. 3-way regulation valve case study: matching matrix 

that presents true/false positives and true/false negatives.  

 

Predicted 

Failed Non-Failed 

A
ct

u
a

l 

C
la

ss
 Failed 16 4 (*) 

Non-Failed 0 20 

 

https://en.wikipedia.org/wiki/U-matrix
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Sensor variables 

& locations: 

 T LT-FW @Main Cooler outlet 

 T LT-FW @Cooler Gen-Set 3 outlet 

 T LT-FW @Cooler Gen-Set 4 outlet 

 T 3WV @ME, Gen-sets (x3) 

 Pump loads (x 5) 

 
Figure 14. 3-way regulation valve fault case study; top: 

Sensor variables & locations. Bottom: Differences (%) 

between the signals that correspond to the fault condition 

and the ones that correspond to the “non-fault” condition. 

 

 
Figure 15. 3-way regulation valve fault case study: 

components related to the faults/parameters that have been 

previously matched to the node (5,7). 

 

 

 

Figure 16. 3-way regulation valve fault case study: the 

approach has identified correctly the failed component 

between all the different areas of the system which influence 

the sensors signal set values. 

 

 

 
Figure 17. 3-way regulation valve case study: 2-dimensional 

representation plane with the SOM nodes. Orange-coloured 

nodes correspond to the TCV65LT infraction fault, namely 

node (5,7) (16 true positive results of  

Table 3) and nodes (6,6) & (7,6) (four false negative cases 

of   

Table 3). Blue-coloured square areas correspond to the 20 

true negative cases of  

Table 3. 

7.2. LT pump fault case study. 

Like in the 3-way regulation valve fault case study, a SOM 

was built based on the sensitivity matrix depicted in Figure 

11. By using the sensor set variables of Figure 18 

(simulation with fault), the clustering model has been used 

to identify a fault at the LT pump at the ME (Figure 19). 

The fault has been successfully identified since it was best 

fitted to the node (5,16). In this node the failure of the LT 

ME pump has been allocated during the initial training of 

the model. In this case a smaller sensor set of six variables, 

Figure 18. 

There are some interesting aspects in this case: (i) there is 

not any signal measurement placed on the pump where the 

fault has been identified and (ii) there is not any 

measurement directly at the LT ME circuit (apart from the 

temperature value at the exit of the central cooler). By using 

signal values at other positions the algorithm has managed 

to correlate them with this specific fault. Although a simple 

example, it indicates the potential of using simulation 

models with real signals so as to reason about faults in parts 

of the system where no real signals are available.  
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Sensor specific faults/failures could also be identified using 

the proposed methodology. Similarly to other system 

component faults/failures, when sensors faults/failures are 

under the CM scope, one could again utilise the fact that the 

pattern of a specific sensor fault may differ from other 

system or sensor fault patterns. To identify these patterns 

the sensitivity analysis and SOM approach described in this 

paper could be used.  

In Figure 22, the heat-maps of the sensor variables are 

presented. These heat-maps show the distribution of each 

sensor variable across the SOM node structure (25x25). By 

comparing them, interdependencies between sensors, sensor 

redundancies with respect to failures and lack of sufficient 

sensors to monitor the entire set of possible system failure 

modes can be identified in a systematic way. 

Sensor variables 

& locations: 

 T LT-FW @Main Cooler outlet 

 T LT-FW @Cooler Gen-Set 3 outlet 

 T LT-FW @Cooler Gen-Set 4 outlet 

 T 3WV @ME, Gen-sets (x3)  

 
Figure 18. LT pump fault case study; left: Sensor variables 

& locations. Right: Differences (%) between the signals that 

correspond to the fault condition and the ones that 

correspond to the “non-fault” condition. 

 

 

 
Figure 19. LT pump fault case study: detail of the ME 

circuit (ref. Figure 6). A fault at the LT ME pump is 

indicated.  

 

 

  
 

 Figure 20. LT pump fault case study: 2-dimensional 

representation plane (25x25) with the SOM nodes (left). 

Corresponding the U-Matrix (right).  

Figure 21.  3-way regulation valve fault case study: heatmaps of the sensor variables (Figure 14).  



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016 

12 

 

 
Figure 22.  LT pump fault case study: heatmaps of the sensor variables (Figure 18).  

 

8. CONCLUSION  

By encapsulating model-based and data-driven analytics the 

DNVGL digital twin platform will enable new applications 

such as performance and environmental monitoring, energy 

efficiency optimisation, future classification services and 

potentially condition monitoring. The present paper 

describes a first principle digital twin of an anchor handling 

vessel’s propulsion system along with its cooling network 

developed in DNVGL COSSMOS for condition monitoring 

purposes. After the model was built and tested, an extensive 

and automated sensitivity analysis with respect to possible 

system failures has taken place. The underlying benefit in 

this approach is that with a single simulation run the analyst 

obtains all failure patterns related to the system operation in 

that specific state. Based on this information, a SOM was 

used to cluster the sensor readings pattern (difference 

between nominal and actual sensor readings) with the 

model-based sensitivity results. By assigning the unknown 

failure pattern (from the sensor readings) to one of the 

clusters, the algorithm directly identifies the unknown fault 

to a single or a set of failure modes (that correspond to the 

specific cluster to which the unknown fault has been 

matched). The present case-studies have demonstrated the 

potential of the methodology. A powerful aspect of the 

approach is its ability to identify faults and failures in areas 

that are not directly subjected to measurements; by simply 

using signal values at other positions and employing first 

principle models, the algorithm is capable of correlating 

sensor readings with specific failures at other parts of the 

system.  

Next steps will include the utilisation of the methodology 

along with real-life signal data. Aspects like signal filtering, 

sensor and model epistemic uncertainties will be also 

investigated. To the authors’ view the current work is a first 

step towards a model-based prognostic tool for complex 

marine energy systems that will incorporate physics of 

failure with the exact current system condition to reason 

about possible system state under an envelope of possible 

future operational scenarios. 
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NOMENCLATURE & ABBREVIATIONS 

AH  Anchor handling (vessel operating mode) 

b  model parameters vector 

CBM  Condition based maintenance 

CM  Condition monitoring 

COSSMOS Complex Ship System Modelling & 

Simulation 

COMPASS Condition and operation monitoring for 

performance and ship safety 

DG  Diesel generator 

DWT  Deadweight tonnage 

F vector function describing the transient in 

time PDAE model equations 

FW  Fresh water 

GUI  Graphical user interface 

H vector function describing steady in time 

PDAE model equations 

HEX  Heat exchanger 

HT  High temperature (cooling network) 

LT  Low temperature (cooling network) 

MBSE  Model based system engineering 

ME  Main engine 

MODAM Model based, data driven asset 

management 

MV  Measured process variables 

PDAE  Partial differential algebraic equations 

PID   Proportional-integral-derivative control 

PTI  Power take in 

SOM  Self organising maps 

SG  Shaft generator 

STBD  Starboard side (vessel) 

SW  Sea water 

t  time 

u  algebraic process variables vector 

VFD  Variable frequency drive 

x  differentiation domain 

Y  differential process variables vector 
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APPENDIX I 

In the current appendix, namely in Figure 23, the system 

locations that correspond to the comparison of results 

presented in Figure 7 are depicted. 

 

 

 

 

 

 

 

Figure 23. COSSMOS model: system locations for the comparison of results presented in Figure 7.

 


