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ABSTRACT 

More electric aircraft are lighter and more energy efficient 
than conventional aircraft. Hence, the design of 
electromechanical devices and its preventive maintenance 
strategies are in increasing need and challenge for flight 
control systems. One of the most significant mechanical 
parameter for aging is the backlash gap size. Hence, it 
presents a good indicator for failure detection, diagnosis and 
prognostic. In this work, an estimation method of this 
parameter is proposed for any electromechanical actuator 
(EMA); rotary or linear with roller screw or ball screw, used 
to actuate any flight control surface of the aircraft; flaps, 
ailerons…etc. This method presents a simple and easy 
technique for implementation in real time based on a Linear 
Kalman Filtering (LKF). 

1. INTRODUCTION 

Couplings mechanical components, such as gearbox, ball 
screw and roller screw…etc., introduce backlash 
phenomenon. Therefore its estimation is fundamental for its 
compensation and implementation in control, for fault 
detection, diagnosis, or prognostic. Unfortunately, there are 
only few contributions in the literature in this way. 

In modeling viewpoint, most popular model of backlash is 
considered as a dead zone (Tustin, 1947), (Liversidge, 
1952), (Cosgriff, 1958), (Freeman, 1957). De-Marchi (1998) 
presents a backlash model with ‘Compliance’ that means an 
intrinsic property allowing an object to be elastic. Nordin, 
Galic and Gutman (1997) and, Lagerberg and Egardt (2007) 
consider the backlash model as flexible shaft, this model is 
physically more accurate than the traditionally used dead-
zone. Vörös (2010) proposes a mathematical model for 
backlash with hard dynamic nonlinearity, which uses 
appropriate switching functions and their complements. The 

so called inertia driven model (Nordin & Per-Olof, 2002) is 
applied to describe the backlash phenomenon. 

In the way of backlash estimation, some identifications 
schemes are proposed but still remain open. In (Egardt & 
Lagerberg, 2007) a nonlinear estimators for backlash size 
and state are developed, using Kalman filtering theory, this 
estimation schemes considers that the state model is a 
system switching between two linear modes, called ‘contact 
mode’ and ‘backlash mode’ in absolute reference of state. 
Hence, this presents a complex model with a significant cost 
computing. In (Vörös, 2010) an identification method based 
on a mathematical model for backlash with hard dynamic 
nonlinearity, which uses appropriate switching functions 
and their complements, therefore, the knowledge of the 
model structure is required and any industrial application is 
given in this approach. Too many papers treat of the control 
for mechanical system with backlash compensation (Lorinc 
& Béla, 2009), (Lagerberg & Egardt, 2007), (Nordin & Per-
Olof, 2002), (Kalantari & Saadat, 2009) and (Kolnik & 
Agranovich, 2012). Indeed, Nordin and Per-Olof (2002) 
summarize the introduced backlash models and 
compensation within controller. Lorinc and Béla (2009) take 
into account backlash compensation and nonlinear friction 
in the same time where the mechanical system is treated in a 
hybrid system approach. In (Kalantari & Saadat, 2009) an 
adaptive algorithm is designed, based on different regions of 
the system angular position error. Since for backlash 
compensation, this one is estimated by a learning unit in the 
adaptive controller. Therefore, learning method is not very 
accurate and requires a known backlash structure. In 
(Kolnik & Agranovich, 2012) a backlash compensation 
control method is proposed, it’s based on two-mass system 
model where the backlash is treated as torque disturbance, 
then a disturbance observer (DOB) is constructed in order to 
estimate and compensate the disturbance. So, the aim of this 
method is to reduce torsional vibrations, but not to give a 
precise value of the backlash gap size. As well, one can find 
an estimation method based on signal processing, in this 
way Jaber and Bicker (2016) propose a backlash diagnosis 
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in the gearbox of industrial robot joints, it’s based on time-
frequency signal analysis scheme, as wavelet transform 
applied on a specific signal profile. Adding to significant 
cost computing, the studied displacement profile is neither 
operational nor random behavior. 

In this paper we propose a dynamic model backlash with 
dead zone and a flexible shaft. This model is similar to 
(Lagerberg & Egardt, 2007) and (Nordin & Galic, 1997), 
but, it’s presented on the relative reference. The aim is to 
identify the backlash gap size related to the dead zone by 
assuming that the stiffness and damping are known, and 
upstream and downstream actuator positions are measured. 
So, the advantage of this estimation approach is that it’s 
based on linear Kalman filtering with three variables state 
only by considering the backlash gap as white noise. Thus, 
this makes the implementation very easy in real time with a 
very low computing cost. 

2. MODELING OF EMA 

In the goal to estimate the mechanical backlash with an 
operational profile displacement, one has to build a generic 
dynamical model equivalent to the EMA. So any 
electromechanical actuators; rotary or linear can be viewed 
as a transmission between two masses; the first one is a 
permanent magnet synchronous motor (PMSM), the second 
inertia is a transformation into the motor axis of screw mass 
according to the screw thread and/or reduction ratio, i.e. if 
θ  is the angular position, and r is reduction ratio, then, 
PMSM position in translational absolute reference is given 
by πθ .2.1 rX = . Thus, one considers a dynamic system with 

two masses and spring damper as explained bellow (Figure 
1).

 

Figure 1. Backlash model of EMA. 
where: 

X  Position in the absolute reference (m) 
f Damping coefficient (N/(m/s)) 
K Stiffness (N/m) 
S(t) Backlash (m) 
mm Motor inertia (in translational) (Kg) 
ms Roll screw mass (Kg) 
Fl Aerodynamic load (N) 
Ff Frictions force (N) 

0Xδ  Initial displacement (m) 

Remark: Motor inertia in translational is given by the 

transformation: ( )2.2. πrJm mm =  where mJ  is the rotary 

inertia ( 2.mKg ). 

2.1. Frictions Model 

Prior to give backlash model, it is important to highlight the 
friction assumptions considered in this study, because these 
hypotheses have an impact on the aerodynamic load 
measurement, we will see in the simulation example. For 
simplification, let us consider that the coupling between the 
screw and the PMSM is infinitely rigid. Thus, the whole 
frictions considered in this study are given by (Karam, 
2007): 

 [ ]ldryvf FFXsigneXFF η++= )( &&  (1) 

where: 

X  Position in the absolute reference (m) 
X&  Speed in the absolute reference (m/s) 

fF  Global frictions (N) 

vF  Viscous friction parameter (N/(m/s)) 

dryF  Dry frictions (N) 

η  Efficiency (%) 
Notice that these frictions can be distributed among two 
masses. Emphasize also that the force sensor measures only 
the aerodynamic loadslF . Thus, sum of external forces 

applied to the screw is given by: 
 flext FFF +=  (2) 

2.2. Backlash State Model 

By considering us within the relative reference fixed at the 
motor inertia i.e. 12 XXX −=δ , the fundamental principle 

of dynamics related to the position variation applied on the 
screw inertia gives: 

 ( )( ) ( ) extFXffSXXKKXsm +∆+−−−∆+−= &&& δδδδ .0.  (3) 

Terms K∆ and f∆ are respectively the uncertainties of 
stiffness K and structural damping f. 

The backlash identification scheme is based on Kalman 
filtering by using the relative dynamic model (3). Thus, the 
goal is to estimate the backlash variation S(t) that is 
considered as an exogenous input perturbation. The main 
hypothesis here, is to consider that the dynamic variable S(t) 
is an integral type added to a random white noise with a 
known spectral power density. That means: 

 )(0 tbS +=&  (4) 

Where b(t) is a white noise without bias and with a known 
spectral power density.  



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016 

3 

Using the backlash model of EMA (3) and the hypothesis 
(4) the process model can be written in state space form: 

 )()()()( tMwtButAxtx ++=&  (5) 

 )()()( tvtCxty +=  (6) 

Where: 

 [ ]TSXXx &δδ=  (7) 

 [ ]TXy δ=  (8) 

are the state and measurement vectors, v(t) is measurement 
noise, w(t) includes uncertainties and global disturbances 
input process: 

 [ ])()(0)( tbtptw ∆=  (9) 

with 

 )(...)( tSKXfXKtp ∆+∆−∆−=∆ &δδ  (10) 

Therefore we assume that the covariance matrices of v(t) 
and w(t) are known. And: 
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are respectively, state matrix, input control matrix, 
exogenous input matrix and measurement matrix. Finally, 
the input control is given by 

 extFu =  (16) 

Therefore, notice that speed and frictions are unknown, so 
the external forces as given by (2) are unknown. Thus, by 

considering lf FF << , the input control can be written as: 

 lFu ≅  (17) 

Well, loads are measured by forces sensor. This hypothesis 
has a little impact on result that will be discussed in the 
illustration example. 

3. ESTIMATION OF BACKLASH WITH KALMAN FILTER 

3.1. Model Discretization 

To implement Kalman Filter, we assume that the output of 
the continuous system (5) and (6) is sampled within a period 
time Ts in discrete observation. We assume that the control 
input u is a piecewise constant over the sampling period Ts 
by using Zero-order hold. One notices that )()( kxkTx s = . 

Hence, the discrete state equation is given by: 

 )()()()1( kwMkuBkxAkx ddd ++=+&  (18) 

 )()()( kvkxCky d +=  (19) 

Where these matrices are approximate starting from the 
general solution of continuous system (5) and by integration 
between instants skTt =0  and sTkt )1( += . Thus, we find 

(Franklin, Powell, and Workman, 1997): 

 sAT
d eA =  (20) 

 υυ BdeB
sT

A
d ∫=

0
 (21) 

 nd IM =  (22) 

 CCd =  (23) 

Hence, we can use a numerical approximation, or using The 
Control Toolbox of MATLAB® to obtain discreet matrices. 

3.2. Kalman Algorithm 

The LKF is an optimal estimator which searches the cost 

function { }∑ == )(~2
1 kxEJ m

k  at the least square sense. The 

)(~ kx  is defined by )()(ˆ)(~ kxkxkx −=  which is the difference 
of estimation state )(~ kx , and system state )(kx . The LKF 
algorithm is described by the following two step recursive 
equations by using the discreet state model (18) and (19) 
(Maybeck, 1982): 

Step 1 (prediction step) 

 )()/(ˆ)/1(ˆ kuBkkxAkkx dd +=+  (24) 

 T
ddd

T
dd MWMAkkPAkkP +=+ )/()/1(  (25) 

Step 2 (prediction step) 

 ( ) 1
)/1()./1()1(

−
+++=+ d

T
dd

T
df VCkkPCCkkPkK  (26) 

 ( ))1()/1(ˆ)1().1(

)/1(ˆ)1/1(ˆ

+−+−+++
+=++

kuDkkxCkykK

kkxkkx

dddf
 (27) 

 ( ) )/1()1()1/1( kkPCkKIkkP dfn ++−=++  (28) 
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Where dW and dV are the process noise and measurement 

noise covariance respectively with known power spectral 
densities. )/1(ˆ kkx +  and )1/1(ˆ ++ kkx  are the prediction and 
the estimation state covariance respectively. )1/1( ++ kkP  
and )/1( kkP +  are the prediction error and the estimation 
error covariance respectively (Maybeck, 1982). 

 

4. SIMULATION AND DISCUSSION 

4.1. Simulation Result with Real Data Loads 

To improve the result of this estimation scheme, one uses a 
complete dynamic model that includes frictions which are 
distributed among screw and PMSM independently 
according to (1). Therefore, frictions are considered 
unknown in this study. Hence, all values parameters used in 
backlash state model (18) and (19) are not provided for 
confidentiality reasons, as well, all data used for illustration 
are normalized. 

To make an operational scenario we use the real data 
profile, especially PMSM and screw positions in 
translational (Figure 2) and aerodynamic loads (Figure 3). 

 

Figure 2. Screw and motor position in translational. 
Notice that a zoom in a small interval also is given for more 
visibility. 

 

Figure 3. Aerodynamic loads. 
The measured state considered in this study is the relative 
position between screw and PMSM in translational. Thus, 
Figure 4 shows the convergence of estimated relative 
position to the real one by using LKF. 

 

Figure 4. Relative position (Screw – PMSM) in 
translational. 

Hence, by considering the backlash as a dynamic variable, it 
fluctuates between two values corresponding respectively to 
the upper and lower bound of real gap backlash as shown in 
Figure 5. We also note a small variation around both upper 
and lower backlash bound. This phenomenon is due to the 
measured loads that not include frictions as defined by (2). 
Indeed, aerodynamic loads are often supporting moving 
(positive load) who push the backlash to the upper bound, 
and the dry frictions are either added or subtracted into real 
aerodynamic loads, according to speed sign as defined in (1) 
and shown in Figure 6 and Figure 7. The same problem 
occurs around the lower backlash bound, when the loads are 
in the opposite (negative) way of the screw displacement as 
shown in Figure 7. 
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Figure 5. Backlash gap estimation. 

 

Figure 6. Backlash vs Speed. 

 

Figure 7. Backlash vs loads. 
Thus, the backlash fluctuations around the upper or lower 
bound is considered negligible by assuming that 
aerodynamic loads are more important than dry frictions. 
Hence, based on this assumption, to estimate the gap size of 

backlash that we note S∆ , we propose a statistical method 
using upper average and lower average of the estimated 
backlash signal: 

 ∑∑
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Where: 
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Are respectively; upper average and lower average of the 
estimated backlash 

5. CONCLUSION 

In this paper, a new method of identification is proposed; 
it’s about the backlash gap size estimation for 
electromechanical actuator in an operational behavior. The 
estimation scheme is based on LKF by considering that the 
backlash variable as an integral type added to a random 
white noise with a known spectral power density. This 
method has the advantage to estimate any backlash form 
that can be considered as a random signal. In the end, an 
example of simulation using real loads and displacement 
profile is illustrated to show the relevance of this method. In 
perspective works, more complex model of backlash will be 
studied with the same philosophy. 
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