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ABSTRACT

Particle filtering is a model-based, Bayesian filtering algo-
rithm widely employed in many scientific and engineering
fields. It has been recently applied many times for the di-
agnosis and prognosis of engineering systems. Within the
prognostics and health management scenario, particle filter-
ing stood out as an effective and robust algorithm to predict
the system’s remaining useful life because of its capability
in tracking nonlinear/non-Gaussian systems. One of the fun-
damental equations underneath particle filtering is the evolu-
tion equation describing the system’s dynamics. This equa-
tion composes of a deterministic model and an artificially-
added random process or random noise, thus making the evo-
lution equation a stochastic equation. The selection of ran-
dom noise is up to the algorithm’s designer discretion and
may vary on a case-by-case basis. Concentrating on the field
of structural degradation processes, many studies on particle
filtering-based prognostics have shown encouraging results.
Though, they did not provide detailed discussions in support-
ing the appropriateness of the selected random noises altering
the degradation model. An improper choice may cause the
algorithm to be inefficient, moving the projected trajectories
outside the state-space domain of the system, sometimes also
introducing a bias in the stochastic evolution model. There-
fore, this work examines the evolution equation with the aim
of creating an optimal prognostic framework for monotonic
degradation phenomena. The paper gives special emphasis to
structural degradation caused by fatigue, which is a widespread
monotonic damage progression process. Some of the exist-
ing works are reviewed, discussing the effectiveness of the
random noises embedded in the algorithm. Eventually, the
paper presents an unbiased, optimal random noise for mono-
tonic damage progression, pointing out the strengths of the
proposed solution against formulations suggested in litera-
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ture. The presented particle filtering-based prognostic algo-
rithm is applied to experimental crack growth observations on
an aeronautical stiffened structure and the prediction perfor-
mance is validated using dedicated prognostic metrics.

1. INTRODUCTION

A key task of prognostics and health management (PHM)
is the estimation of the remaining useful life (RUL) of en-
gineering systems. The RUL estimation deals with predict-
ing future degradations that include, inherently, a certain de-
gree of uncertainty (Sankararaman & Goebel, 2015). Differ-
ent sources of uncertainty characterize the RUL prediction.
These include, but they are not limited to, the uncertainty of
the knowledge of the current system’s condition, the mod-
eling uncertainty and the uncertainty of future loading con-
ditions (Sankararaman, 2015). In this context, a sequential
Monte Carlo method known as particle filtering has proven its
ability to monitor and predict the evolution of nonlinear, non-
Gaussian processes by filtering the uncertainties affecting the
systems’ dynamics (Gordon, Salmond, & Smith, 1993). It is
a model-based, Bayesian filter that enables the estimation of
the conditional probability density function (pdf) of the sys-
tem’s state given a set of observations, called posterior pdf
(according to the Bayes’ nomenclature). Starting from the
posterior pdf, the estimated system’s state can be projected in
the future using a series of Monte Carlo samples to calculate
the RUL.

Particle filtering grounds on two equations called evolution
(or process) equation and observation equation. The first
models the system’s state dynamics, while the second links
the observations (obtained with a measurement system) with
the system’s state. Usually, deterministic models are the bases
of the evolution and observation equations, and error terms
add to such models to generate stochastic equations. These
error terms describe: (i) approximations caused by the mod-
eling approach, and (ii) uncertainties of the measurement sys-
tem. They are typically represented by random processes
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called (i) process noise, which adds to the evolution equa-
tion, and (ii) measurement noise, which adds to the observa-
tion equation.

The strengths of particle filtering are extensively tested in di-
agnostics and prognostics, insomuch as it now is considered a
state-of-the-art technique (Jouin, Gouriveau, Hissel, Péra, &
Zerhouni, 2015). The PHM domain provides many success-
ful examples of particle filtering-based algorithms for predic-
tion of the systems’ degradation caused by fatigue damage ac-
cumulation (Cadini, Zio, & Avram, 2009b, 2009a; M. E. Or-
chard & Vachtsevanos, 2009; Baraldi, Compare, Sauco, &
Zio, 2013; J. Chiachıo, Chiachıo, Saxena, Rus, & Goebel,
2013). The use of particle filtering is supported by its ability
to deal with highly nonlinear systems and non-Gaussian pdfs,
so non-Gaussian noises. The modeling of the measurement
noise depends on the type of measurement system and mea-
surement procedure, so it can be quantified and modeled con-
sistently with the precision of the instrumentation. Instead,
the process noise is mostly a choice of the algorithm’s de-
signer. Existing works use additive Gaussian noises to add
disturbances to the evolution equation. This choice is often
justified by the absence of quantitative, precise information
on the type and the amount of uncertainty affecting the degra-
dation process. Though, particle filtering-based predictions
using a log-Normal process noise were presented in some pa-
pers. The use of log-Normal random processes was supported
by probabilistic fracture mechanics literature. Despite these
explanations, the effect of such process noises on the evolu-
tion equation was not investigated.

With this in mind, this work discusses the selection of parti-
cle filtering process noise to monitor and predict monotonic
degradation processes. The paper focuses on fatigue dam-
age accumulation, which is monotonic in nature. Though, the
discussion can be further extended to other degradation pro-
cesses that undergo the hypothesis of monotonic behavior. In
this scenario, the effect of the process noise is analytically
examined using the algebra of random variables and the con-
ditional expected value of the system’s state. The analysis un-
derlines that the process noise strongly affects the exploration
of the state-space. Its effect is notable in the prognostic stage,
when the system’s state is projected several steps ahead in the
future. The review of the existing works emphasizes that:

• the use of an additive Gaussian noise may compromise
the efficiency of the algorithm, and

• the log-Normal process already utilized in several papers
produces a biased projection of the samples in the state-
space.

Then, the paper proposes a log-Normal random process with
specific relation between mean and variance. The suggested
formulation solves the issues provoked by process noises adopted
in literature so far. Eventually, the selected process noise

is used in a particle filtering algorithm for combined state-
parameter estimation. This algorithm efficiently predicts the
RUL of a cracked aeronautical stiffened panel subject to tension-
tension fatigue in a laboratory environment. The appropriate-
ness of the selected process noise is assessed against previ-
ous, existing formulations using dedicated prognostic perfor-
mance metrics.

2. SUMMARY OF PARTICLE FILTERING

The objective of the filtering problem is to recursively es-
timate the state of a system governed by a dynamic state-
space (DSS) model (Haug, 2005). The DSS model composes
of the evolution equation, f(·), describing the system’s dy-
namics, and the observation equation, g(·), which links the
measurements with the true (hidden) system’s state. Equa-
tion (1) shows the discrete form of the DSS model, which
satisfies the first order Markovian assumption (Arulampalam,
Maskell, Gordon, & Clapp, 2002).

xk = f (xk−1,θ,uk−1,ωk−1)

zk = g(xk,ηk)
(1)

The vector x = [x1, x2, . . . , xn]T ∈ D ⊆ IRn×1 collects
the system’s state variables, z = [z1, z2, . . . , zm]T ∈ Dz ⊆
IRm×1 is the observation vector and the subscript k indicates
the discrete k-th time step. The state-space domain D is the
physical domain of the system’s state variables, often repre-
sented by a partition of the set IRn×1. The evolution function
depends on the input u, the model parameters θ and the pro-
cess noise, ω. The measurement system is governed by g(·)
and affected by the measurement noise, η. As already stated
in the introduction, the noises are random processes trans-
forming the deterministic equations into stochastic equations.

Particle filtering aims at estimating the posterior pdf of xk
given the sequence of noisy observations z0:k, p(xk|z0:k),
in case of nonlinear and non-Gaussian systems. The poste-
rior pdf can be approximated by Ns weighted samples (also
called particles) of the system’s state, as expressed in Eqs.
(2)-(3) (Doucet, Godsill, & Andrieu, 2000; Arulampalam et
al., 2002; Haug, 2005).

p̂(xk|z0:k) =

Ns∑
i=1

w
(i)
k δ

x
(i)
k ,xk

(2)

w̃
(i)
k = w

(i)
k−1p(zk|x

(i)
k )

w
(i)
k =

w̃
(i)
k∑Ns

j=1 w̃
(j)
k

(3)
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Where: p̂(xk|z0:k) is the approximation of p(xk|z0:k), x(i)
k

is the i-th sample of the system’s state vector, w(i)
k is the nor-

malized weight of x(i)
k , p(zk|x(i)

k ) is the likelihood of the
observation given x(i)

k and δi,j is the Kronecker delta. The
number of samples Ns is supposed to be large enough to de-
scribe the (unknown) true shape of p(xk|z0:k). It should be
noted that Eqs. (2)-(3) refer to the bootstrap particle filter
(Arulampalam et al., 2002).

The particle filtering-based prognosis is carried out by pro-
jecting the samples x(i)

k ; i = 1, . . . , Ns many steps ahead in
the future using Eq. (4), which is the p-step ahead prediction
equation (Doucet et al., 2000).

p̂(xk+p|z0:k) =

Ns∑
i=1

w
(i)
k

∫
D
p
(
xk+1|x(i)

k

) k+p∏
j=k+2

p(xj |xj−1)dxk+1:k+p−1

(4)

The practical implementation of the algorithm requires the
definition of two fundamental functions: the transition den-
sity function (tdf), p(xk|xk−1), and the likelihood function,
p(zk|xk). Both of them come from the probabilistic form of
the DSS model, Eq. (5), (Jouin et al., 2015).

xk = f (xk−1,θ,uk−1,ωk−1)→ p(xk|xk−1)

zk = g(xk,ηk)→ p(zk|xk)
(5)

The tdf drives the generation of the samples of x(i)
k and the

p-step ahead prediction in Eq. (4). Therefore, an improper
selection of the process noise (that transforms the determin-
istic model in p(xk|xk−1)) may compromise the efficiency
of particle filtering. The generation of the tdf through ω is
discussed in Section 3.

3. ON THE SELECTION OF THE PROCESS NOISE FOR
FATIGUE DAMAGE ACCUMULATION

Without loss of generality, let us consider a uni-dimensional
system’s state xk → xk ∈ D ⊆ IR1×1, a deterministic model
parameter vector θ and a deterministic input vector u. The
damage extent xk increases with time, and the randomiza-
tion of the evolution equation relies only on ω. The versa-
tility of Monte Carlo sampling permits the use of any kind
of process noise. However, it is desirable to build a tdf that
is consistent with the true damage progression: the particles
generated with the tdf should be representative of a potential
damage growth. Consequently, the development of the tdf
should satisfy the following requirements:

• The particles should remain inside the physical domain
or support of the system’s state variable D. Otherwise,

the algorithm would waist computational effort propa-
gating samples that cannot describe the real system.

• Each particle should represent a possible damage pro-
gression path. It is well-known that fatigue damage ac-
cumulation is a monotonic phenomenon. Once the dam-
age is nucleated in the material, it can only increase with
time. Therefore, each particle x(i)k must behave consis-
tently with the physical process.

• The process noise must not change the trend of the evo-
lution equation. It should introduce only a random dis-
turbance, unless the algorithm’s designer is aware that is
altering, on purpose, the deterministic trend.

The three conditions above can be mathematically expressed
through Eqs. (6)-(8).

x
(i)
k ∈ D ⊆ IR ∀ k ∈ IN , i = 1, . . . , Ns (6)

x
(i)
k ≥ x

(i)
k−1 ∀ k ∈ IN , i = 1, . . . , Ns (7)

E[xk|xk−1] = E[f(xk−1,θ,uk−1, ωk−1)]

= f ′(xk−1,θ,uk−1), ∀ k ∈ IN
(8)

Where E[xk|xk−1] is the conditional expected value of xk
and f ′(·) is the deterministic evolution equation, i.e., the evo-
lution equation without any process noise. It should be noted
that the monotonicity is represented by the constraint in Eq.
(7), while Eqs. (6) and (8) should be satisfied for any kind of
dynamic process.

Typical examples of damage accumulation processes that should
be modeled like monotonic phenomena are: fatigue crack
growth (FCG) in metallic alloys (Corbetta, Sbarufatti, Manes,
& Giglio, 2014), matrix crack density and delamination in
fiber-reinforced laminates (Corbetta, Saxena, Giglio, & Goebel,
2015) and creep-induced plastic strains (Baraldi, Mangili, &
Zio, 2012). These damages cannot fall below zero, so the sup-
port of the system’s state is the positive subset of real num-
bers, D ⊆ IR[0,+∞]. Moreover, these damages are mono-
tonic; they increase with the number of load cycles (or time,
in case of creep-induced degradation). Commonly, these types
of fatigue degradation processes are modeled using linear dam-
age accumulation models that ground on the damage growth
rate, Eq. (9).

xk = xk−1 +
dx

dN

∣∣∣∣
k−1

∆N (9)

Where dx/dN is the damage growth rate per load cycle, and
∆N is the number of load cycles between k-1 and k (however,
creep degradation is expressed against time). The modeling
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of the damage growth rate usually resorts on power laws like
Paris’ laws or modified Paris’ laws, Eq. (10).

dx

dN
= θ1h(x)θ2 (10)

Where θj , j = 1, 2 are empirical parameters depending on
the material and h(·) is a function of the damage extent. The
damage growth rates of cracks, micro-cracks, delamination,
creep, etc. are always positive: dx

dN ≥ x, ∀x ∈ D. Therefore,
they force the linear damage accumulation model in Eq. (9)
to be monotonic, xk ≥ xk−1, ∀ k ∈ IN.

Equations (9) and (10) form the deterministic evolution equa-
tion f ′(·) for fatigue damage accumulation, and the process
noise ω transforms f ′(·) in f(·). Thereupon, the derivation of
the tdf from f(·) is straightforward. The approaches to add
the process noise ω presented in literature are examined be-
low, and the consequent tdf is derived. All of them ground
on damage growth rates similar to the Paris’ law in Eq. (10),
and the discussion shows that they may fail one or more re-
quirements expressed through eqs. (6)-(8): the capability to
keep the particles in the domain D, the monotonicity of the
particles, or the process noise-induced bias. Then, a process
noise that satisfies all the requirements is proposed.

3.1. Additive Gaussian process noise

The simplest approach to generate a tdf is to add a Gaussian
process noise to the deterministic evolution equation to gen-
erate f(·), Eq. (11).

xk = xk−1 +
dx

dN

∣∣∣∣
xk−1

∆N + ω (11)

Where ω ∼ N (µω, σ
2
ω). The process noise has been assumed

stationary, so the dependence of ω on the time step has been
neglected. Thus, the tdf becomes a Normal distribution (12),
and the propagation of the particles follows Eq. (13).

p(xk|xk−1) =

1√
2πσω

exp

{
− [xk − (f ′(xk−1,θ,uk−1) + µω)]

2

2σ2
ω

}
(12)

x
(i)
k = x

(i)
k−1 +

dx

dN

∣∣∣∣
x
(i)
k−1

∆N + ω(i) (13)

Where ω(i) is the i-th sample from N (µω, σ
2
ω). Additive

Gaussian noises were used in many papers: (M. E. Orchard
& Vachtsevanos, 2007), (M. Orchard, Kacprzynski, Goebel,
Saha, & Vachtsevanos, 2008), (M. E. Orchard & Vachtse-
vanos, 2009), (Tang, DeCastro, Kacprzynski, Goebel, & Vacht-

Figure 1. Prognostic stage of a 4 mm semi-crack length.

sevanos, 2010), (J. Chiachıo et al., 2013) and (M. Chiachıo,
Chiachıo, Saxena, Rus, & Goebel, 2014). They were mostly
designed as zero-mean noises, ω ∼ N (0, σ2

ω), thus generat-
ing an unbiased evolution equation. So, the expected value of
the samples x(i)k , i = 1, . . . , Ns is equal to the deterministic
damage evolution, Eq. (14), satisfying the condition in Eq.
(8).

E[xk|xk−1] = xk−1 +
dx

dN

∣∣∣∣
xk−1

+ E[ω]

= xk−1 +
dx

dN

∣∣∣∣
xk−1

+ 0

= f ′(xk−1,θ,uk−1)

(14)

Since ω(i) adds to the deterministic equation, it may cause the
sample x(i)k to be smaller than x(i)k−1, thus generating particles
with a decreasing trend. If this happens for a sufficient num-
ber of time steps, some particles will fall below zero. Then,
the use of an additive Gaussian noise may fail two require-
ments: the monotonicity of the particles and the correct ex-
ploration of the state-space (since the particles fall outside
D).

Figure 1 shows an example of particles falling outside from
the system’s state support. A simulated FCG from the cen-
ter of a metallic plate subject to fatigue load has been used
as case study. The FCG has been simulated using Eqs. (9)
and (10). The damage growth rate has been modeled using a
Paris’ law for Aluminum alloys and an analytical model for
the stress intensity factor. The features to simulate the FCG
are reported in table 1. This simulation is representative of the
prognostic stage, when the posterior pdf p(xk|z0:k) has been
already computed and the prediction of the RUL is carried out
by propagating the samples x(i)k using the tdf.

As visible from figure 1, the step-by-step simulation makes
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Table 1. Initialization of Monte Carlo simulation of FCG.

number of samples 100
initial crack length x0 ∼ N (2, 0.1), [mm]
applied far-field stress ∆S = 20MPa
load ratio R = 0
Paris’ law parameters θ1 = C = 1.1994e− 14

θ2 = m = 3.79
stress intensity factor h(x) = ∆K(x) = F∆S

√
πx

geometry factor F = 1
process noise variance σ2

ω = 1

the particles fall outside D. The longer the prognostic stage,
the higher the number of samples may fall outside state-space
domain. This behavior compromises the calculation of the
RUL, since the samples that fall below zero will never reach
the critical threshold (usually defined as a critical damage
size). The algorithm’s designer may reduce the variance of
the process noise to overcome the problem. Nonetheless, two
main issues arise:

• the procedure to select the variance would become strongly
case-dependent: the initial distribution of the damage ex-
tent and the closeness of x0 to 0 would affect the selec-
tion of the variance, diminishing the general validity of
the algorithm, and

• if the variance became too small, the randomization ef-
fect would become negligible.

Another solution is the selection of a positive process noise
mean µω > 0 using historical data, as presented in (M. E. Or-
chard & Vachtsevanos, 2009) and (Baraldi et al., 2013), which
adjusts the particles’ trend. In this manner, a positive µω may
keep the particles within D. Though, historical data may not
be available for the component that has to be monitored, and
this solution still has some drawbacks. First, the particles
still do not fulfill the monotonicity requirement producing un-
likely damage progression paths. In addition, a positive value
of µω would produce a faster damage growth with respect to
the deterministic equation, supposing that the future damage
growth will be faster than the expected one. This conclusion
cannot be drawn during the tuning of the filter, before that the
damage actually starts propagating.

3.2. Multiplicative non-Gaussian process noise

Another type of process noise from fracture mechanics the-
ory was proposed. A log-Normal random process eω, ω ∼
N (0, σ2

ω) was multiplied to the FCG rate to satisfy the mono-
tonicity requirement, Eq. (15).

xk = xk−1 +
dx

dN

∣∣∣∣
xk−1

∆N eω (15)

In this case, the tdf and the propagation of the particles follow

Eqs. (16) and (17), respectively.

p(xk|xk−1) =

1

(xk − xk−1)σω

√
2π

exp

{
− [log(xk − xk−1)− µ̃]2

2σ2
ω

}
(16)

x
(i)
k = x

(i)
k−1 +

dx

dN

∣∣∣∣
x
(i)
k−1

∆Neω
(i)

(17)

Where Eq. (16) is a log-Normal distribution with shift pa-
rameter xk−1, and µ̃ = µω + log( dx

dN

∣∣
xk−1

∆N). Since the
log-Normal distribution is defined in the positive domain, it
can be efficiently used to force each sample x(i)k to stay within
D and to increase with time.

Such a log-Normal process noise was used in (Cadini et al.,
2009b), (Cadini et al., 2009a), (Zio & Peloni, 2011), (Yang,
Yuan, Qiu, Zhang, & Ling, 2012) and was also used in (Zio &
Di Maio, 2012), where a relevance vector machine was used
to predict fatigue crack propagation. However, this random-
ization of the evolution equation introduces a bias in the tdf.
This can be proved calculating the conditional expectation of
xk using the algebra of random variables, Eq. (18).

E[xk|xk−1] = xk−1 + E

[
dx

dN

∣∣∣∣
xk−1

∆N eω

]

= xk−1 +
dx

dN

∣∣∣∣
xk−1

∆N e

(
µω+

σ2ω
2

) (18)

Equation (18) has been calculated exploiting the properties of
the log-Normal distribution, which states that c ω ∼ logN (µω+
log (c), σ2

ω), where c is constant. As visible from Eq. (18),
the mean and variance of the random process alter the ex-
pected value of the linear damage accumulation model. If
ω ∼ N (0, σ2

ω) as made in previous, existing works, the bias
between the deterministic evolution equation and f(·) can be
quantified through Eq. (19).

E[xk|xk−1]−f ′(xk−1,θ,uk−1) =
dx

dN

∣∣∣∣
xk−1

∆N

(
e

(
σ2ω
2

)
− 1

)
(19)

Then, the particles move away from the expected (determin-
istic) trend, and the distance increases as time passes by. This
result is particularly important for the prognostic stage: the
longer the prediction, the higher the difference between the
deterministic equation and f(·). Also, the error is propor-
tional to the noise variance σ2

ω . The higher the variance, the
higher the bias.
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Figure 2. Particles swarm using eω ∼ N (0, σ2
ω) and different

values of σ2
ω .

Figure 2 presents the effect of the log-Normal process noise,
showing the propagation of the samples using the tdf in (16).
The case study refers to a FCG in a metallic plate, as made
in Subsection 3.1, using ∆S = 45 MPa. If the process noise
variance is relatively small, the particles remain close to the
deterministic equation. Yet, the difference between the de-
terministic equation and the trend of the particles increases
with σ2

ω and time. It should be noted that the algorithm can
provide satisfactory results even if the evolution equation is
affected by a bias, provided that the biased swarm of parti-
cles will cover the state-space region where the future dam-
age will growth. However, it is not possible to predict whether
the future damage will growth slower or faster of the expected
damage progression. Also, the algorithm’s designer may need
to increase (decrease) the process noise variance to increase
(decrease) the particles’ dispersion. If the evolution equa-
tion is biased, that procedure modifies also the trend of the
particles, as clarified in Figure 2. Summarizing the discus-
sion above, the process noise eω, ω ∼ N (0, σ2

ω) satisfies the
monotonicity condition, produces a correct exploration of the
state-space domain, but introduces a bias in the tdf, thus not
fulfilling Eq. (8).

A modification of the log-Normal process noise able to meet
the requirement in Eq. (8) is proposed in the next Subsection.

3.3. Optimal tuning of the process noise

The log-Normal random process presented in the previous
section introduces a multiplicative term in the evolution equa-
tion, as already shown in Eq. (15), and the conditional expec-
tation of xk is affected by both µω and σ2

ω , Eq. (18). Since
µω and σ2

ω are choices of the algorithm’s designer, the mean
can be selected to ensure that E[eω] = exp(µω + σ2

ω/2) = 1,
Eq. (20).

µω = −σ
2
ω

2
(20)

By so doing, the expected value of f(·) remains equal to the
deterministic evolution equation regardless on the value of
σ2
ω , Eq. (21).

E[xk|xk−1] = xk−1 +
dx

dN

∣∣∣∣
xk−1

∆N e

(
−σ

2
ω
2 +

σ2ω
2

)

= xk−1 +
dx

dN

∣∣∣∣
xk−1

∆N ; ∀σ2
ω ∈ IR[0,+∞)

(21)

The tdf is still a log-Normal distribution with shift parameter
xk−1, Eq. (22), and the generation of the samples still follows
Eq. (17).

p(xk|xk−1) =

=
1

(xk − xk−1)σω

√
2π

exp

{
− [log(xk − xk−1)− µ̃]2

2σ2
ω

} (22)

Where µ̃ = −σ
2
ω

2 + log( dx
dN

∣∣
xk−1

∆N). The proposed log-
Normal process noise, which does not introduce any bias in
the tdf, is defined balanced log-Normal process noise hence-
forth. Figure 3 shows the particles’ propagation referring to
the case study in Subsection 3.2. The particles have been
propagated using the unbiased tdf and different values of σ2

ω .
They remain centered on the deterministic evolution equation
regardless on the amount of perturbation introduced by eω .

This property is particularly useful during the development
of the prognostic unit. In fact, the algorithm’s designer may
need to increase the particles’ dispersion to explore the state-
space correctly, or decrease the particles’ dispersion if many
samples fall in unlikely regions of the state-space. The use of
the log-Normal random noise with µω = −σ2

ω/2 permits to
increase or decrease the randomization of the evolution equa-
tion always satisfying the requirements discussed in Section
2: (i) the particles remain in the state-space support D, (ii)
each particle increases over time, thus representing a poten-
tial fatigue damage accumulation path, and (iii) the swarm of
samples remains centered on the deterministic trend regard-
less of the amount of noise. The latter allows the user to in-
crease or decrease the process noise without introducing any
bias in the swarm of particles. If the user needs to modify the
particles’ trend, he may resort on combined state-parameter
estimation methods (Liu & West, 2001). In this way, the
model parameters can be updated during the run-time to ad-
just the particles’ trend. Thus, the trend of the particles and
their dispersion can be adjusted independently to each other.
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Figure 3. Particles swarm using eω, ω ∼ N (−σ
2
ω

2 , σ
2
ω) and different values of σ2

ω: 0.1 (left), 3 (center) and 6 (right).

4. APPLICATION TO REAL FATIGUE CRACK PROPAGA-
TION DATA

This section shows the application of particle filtering to ex-
perimental observations of FCG in an Aluminum helicopter
panel. The experimental activity was conducted in a repre-
sentative, but rather simplified, laboratory environment. The
aim of the experiment was the testing of SHM systems com-
posed of sensor networks and machine learning algorithms,
as well as the testing of prognostic methodologies for real-
time SHM applications. However, the data from the sensor
networks and the diagnostic algorithms have not been used in
this work. The data on damage propagation caused by fatigue
loading have been used here to evaluate the particle filtering
capabilities in tracking the crack propagation and predicting
the remaining life of the structure. The section compares the
proposed balanced log-Normal process noise to the other ex-
isting formulations discussed in Section 3 using three dedi-
cated performance metrics (Saxena et al., 2008).

4.1. Fatigue crack growth experiment

A stiffened aeronautical panel with dimensions 600 mm ×
500 mm composed of 0.81 mm skin and four stringers was
used as test structure. The panel was rigidly grounded on
its lower end by a proper design of the lower edge, thereby
simulating the skin-stringer-frame connection of real struc-
tures. The applied load was transferred from the actuator to
the specimen through a dedicated steel structure composed
of two C-shaped beams and a thin steel triangle, which were
connected together using two series of bolts. Then, the steel
triangle was connected to the actuator. By so doing, the struc-
ture has been clamped at its lower end and stretched along
the stringer axis by the vertical load. A positive load ratio
R = Smin/Smax = 0.1 was selected to avoid buckling in-
stability. An artificial hole (with a diameter of 10 mm) and
two deep narrow notches on the hole sides generated a high
stress concentration factor that favored the crack initiation
and propagation (the total length of the notch was around
16 mm). Figure 4 shows the panel and the test rig. The
zoom on the central bay-notch shows the crack propagated
from the tips of the notch. Table 2 summarizes the test fea-

Figure 4. FCG experiment: the aeronautical panel is subject
to tension-tension fatigue loads, and an artificial notch in the
center of the bay induced the fatigue crack propagation. The
thick, vertical arrow on the actuator rod represents the load
direction.

tures. The stress range acting on the skin was approximately
50 MPa, calculated using a finite element model (Sbarufatti,
Manes, & Giglio, 2014). The FCG was observed by means
of a simple caliper during the test, thus collecting the semi-
crack length against load cycles, Figure 5. The semi-crack
length measured by the caliper is provided to the algorithm at
pre-determined load cycles, thus simulating a real-time appli-
cation of the algorithm.

4.2. Application of particle filtering algorithm to FCG ob-
servations

Here, the objective of the particle filtering-based prognostic
algorithm is the estimation of the remaining number of load
cycles to reach the end of the test, which is the instant when
the semi-crack length becomes xf = 60.5 mm, after Nf =
346000 load cycles. The RUL is the difference between the
current load cycle, N , and the end-of-life of the damaged
panel,Nf . Then, RULk = Nf−Nk, whereNk is the number
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Table 2. Test features.

load shape sinusoidal
load frequency 12 Hz
maximum force Fmax = 35 kN
load ratio R = 0.1
damage type skin crack
damage location central bay
damage initiation artificial notch, 16 mm
skin material (driving FCG) Al2024-T6

Figure 5. Semi-crack length as a function of the number of
load cycles.

of applied load cycles at time step k.

The algorithm is a sequential importance resampling, described
in (Arulampalam et al., 2002), with embedded kernel smooth-
ing sub-algorithm for combined state-parameter estimation
(Liu & West, 2001), named KS-PF, which states for kernel
smoothing-particle filtering. The evolution equation f(·) grounds
on the linear damage accumulation in Eq. (9) and the Paris’
law (10) already used for the simulations in Section 3. The
model parameter vector contains the two empirical parame-
ters of the Paris’ law: θ = [log(C),m]T , which are updated
during run time, according to the kernel smoothing method.
Since information on the uncertainty of the caliper was not
available, the likelihood function has been modeled as an un-
biased Gaussian pdf centered on the true semi-crack length
and the variance of the measurement noise was empirically
selected: σ2

η = 2 mm2. Equation (23) defines the main steps
of the state estimation process from k-1 to k using KS-PF.

µ
(i)
θ,k =

√
1− h2 θ(i)k−1 + (1−

√
1− h2) E[θ]k−1

x
(i)
k = f(x

(i)
k−1, µ

(i)
θ,k,uk−1,ω

(i)
k−1)

θ
(i)
k = θ

(i)
k−1 +N (0, h2V[θ]k−1)

w̃
(i)
k = w

(i)
k−1p(zk|x

(i)
k )

w
(i)
k =

w̃
(i)
k∑Ns

j=1 w̃
(j)
k

(23)

Figure 6. RUL prediction using the optimal log-Normal noise
formulation.

Where h ∈ IR[0,1] is the smoothing parameter, which has
been kept equal to 0.1 for all the simulations. The term µ

(i)
θ,k

is the kernel location of the i-th sample, which helps in con-
centrating the parameter samples in the high probability re-
gions of the parameter-space. The input vector uk−1 con-
tains the maximum and minimum stress within a single load
cycle, uk−1 = [Smax,k−1, Smin,k−1], and forms the input
of the damage growth rate model. Once a new observation
becomes available, the algorithm propagates the samples up
to the time step k referring to that observation, computes the
likelihood of the observation given the samples p(zk|x(i)k ),
and updates the weights to obtain an updated posterior distri-
bution of the semi-crack length. Then, the samples are prop-
agated in the future through (4) to provide the posterior esti-
mation of the RUL. The resampling stage is performed using
p(xk|z0:k): the posterior cumulative distribution function of
the semi-crack length is approximated by the cumulative sum
of the weights w(i)

k , ∀i = 1, . . . , Ns. Then, the j-th sample is
extracted from the cumulative distribution function using the
traditional Monte Carlo approach, i.e., Pr{x(j)k = x

(i)
k } =

w
(i)
k , ∀j = 1, . . . , Ns: the sample j replaces the sample i. The

procedure in (23), the RUL estimation (4) and the resampling
stage are repeated until the true semi-crack length reaches xf .
Figure 6 shows the RUL predicted by the KS-PF algorithm
based on the balanced log-Normal process noise discussed in
this work and σ2

ω = 2. The confidence bands always included
the true RUL, and the expected value of the RUL prediction
seemed to converge to the true RUL. Figure 6 shows also the
time of prediction Nf −N∗, where N∗ is the number of load
cycles when the crack was detected and the algorithm started
operating, and some indices that are discussed later to assess
the prognostic performance: the prognostic horizon (PH) and
the triangle used to calculated the αλ accuracy (AL).

4.3. Analysis of the particle filtering performance

The performance of the algorithm is examined using the pro-
cess noises presented in Subsections 3.1, 3.2 and 3.3. The
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Figure 7. normalized PH (left), αλ accuracy (center) and CRA (right) using different process noises.

three algorithms have been run several times, and the pro-
cess noise variance has been increased at every run in order to
evaluate the prognostic capabilities with respect to σ2

ω . The
first process noise variances have been chosen empirically:
σ2
ω,0 = 1e−4 for the additive Gaussian noise and σ2

ω,0 = 0.1
for the log-Normal process noises. Then, the variances have
been incremented using the following sequence: 10, 20, 30,
50, 80 and 100 times σ2

ω,0.

Three performance metrics from (Saxena et al., 2008) have
been calculated after each run: PH, AL and cumulative rela-
tive accuracy (CRA), which are described below.

• Prognostic horizon has been defined here as the differ-
ence between Nf and the time instant when the 60% of
the RUL pdf area first falls between the range [RUL ±
10%(Nf − N∗)]. Also, it has been normalized over the
time of prediction (Nf −N∗). Then, different PHs com-
ing from different damage propagations can be compared
to one another.

• αλ accuracy is defined as the number of times that the
60% of the RUL pdf area falls within a region that shrinks
as time passes by, once the PH criterion has been satisfied
(Saxena et al., 2008). The region of interest has been
defined here as a triangle starting when the PH criterion
is satisfied, and the end of the region is represented by the
vertex of the triangle in (Nf ,0). AL has been normalized
over all the RUL predictions made after the PH criterion
is satisfied, then: AL ∈ IR[0,1]. Figure 6 emphasizes the
region to calculate the AL.

• Cumulative relative accuracy is an overall measure of
the RUL prediction error over the entire run time. Here,
CRA has been calculated as the sum of the relative ac-
curacy (RA) values (23) weighted by linear, normalized
weights (25).

RAk = 1− RULk − E[RUL]k
RULk

(24)

CRA =

k′∑
j=1

γjRAj (25)

Where RULk is the true RUL of the panel at the k-th

time step, while E[RUL]k is the expected RUL calcu-
lated with KS-PF at time step k. The term RAk refers
to the relative accuracy, which is the complement of the
relative error (24) and k′ is the total number of RUL pre-
dictions made during a single run of the algorithm. The
weights γj are linearly increasing from 0 to 1, so RUL
prediction errors close to the end-of-life of the panel are
penalized with respect to RUL prediction errors made at
the beginning of the operation, when the algorithm has
collected a few data. The weights are then normalized
such that

∑k′

j=1 γj = 1.

The prognostic results are collated to one another in Fig-
ure 7, where the prognostic metrics described above are an-
alyzed against the increasing process noise variance. Ana-
lyzing the results of the PH (Fig. 7, left), the Gaussian pro-
cess noise seems to outperform the other formulations. How-
ever, the results noticeably change using larger σ2

ω . The PHs
of the log-Normal and balanced log-Normal are compara-
ble until σ2

ω ≤ 50 · σ2
ω,0. It is worth noting that the algo-

rithm with additive Gaussian noise sometimes does not con-
verge when σ2

ω ≥ 30 · σ2
ω,0 because some samples fell below

zero. Also, the algorithms with Gaussian and log-Normal
process noises never converge when the variance becomes
too large (≥ 80 · σ2

ω,0). The algorithm with additive Gaus-
sian noise stopped because some particles never reached the
critical semi-crack length xf as they had fallen below zero.
The algorithm with log-Normal noise failed because the bias
introduced by the variance became too large and all the parti-
cles failed too early. Instead, the balanced log-Normal noise
always converged and its normalized PH is fairly constant
regardless the selected noise variance. This accentuates the
reliability and robustness of the algorithm based on the bal-
anced log-Normal noise. The analysis of the αλ accuracy
(Fig. 7, center) stresses on the reliability of the proposed
noise already emphasized by the PH. The additive Gaussian
noise-based algorithm never met the αλ requirement but in
two runs, and these runs are characterized by a small PH. The
log-Normal noise-based algorithm met the αλ requirement in
5 cases over 7, and the accuracy is similar to the accuracy
of the balanced process noise. However, the latter always
met the requirement and provides an average αλ accuracy
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of 0.7323. This means that, once the PH criterion is met,
the RUL pdf calculated with the particle filtering based on
the balanced log-Normal remains close to the true RUL. The
three algorithms show comparable CRA until σ2

ω < 50 ·σ2
ω,0.

Then, the algorithms with additive Gaussian and log-Normal
noises failed (Fig. 7, right).

The application of the three process noises emphasized the
stability of the tdf built with ω ∼ N (−σ

2
ω

2 , σ
2
ω): the algorithm

always converges to the RUL and the performance is appar-
ently independent of σ2

ω . From these results, it is reasonable
to assume that the tuning of particle filtering based on the
balanced log-Normal process noise requires a limited effort
if compared to the other existing formulations presented in
literature. A wide range of σ2

ω would produce the same prog-
nostic results, while the tuning of the variance of the Normal
and biased log-Normal process noises appears less robust. In
addition, the authors believe that the introduction of a bias
caused by a random perturbation in the evolution equation is
not appropriate for real-time applications, where the damage
progression trend cannot be predicted in advance.

5. CONCLUSIONS

The analysis conducted in this work emphasized that the se-
lection of the process noise is a primary issue for prognostics
of monotonic degradation phenomena using particle filtering.
The selection and design of a proper process noise is dis-
cussed analyzing three requirements: (i) the particles must
remain in the state-space support, (ii) each particle should
behave like the physical phenomenon, which is a monotonic
damage growth, and (iii) the process noise must not introduce
any bias in the evolution equation.

The review of existing formulations, extensively applied in
literature, has shown that the additive Gaussian noise does
not meet conditions (i) and (ii), while the log-Normal noise
eω, ω ∼ N (0, σ2

ω) produces a biased evolution of the sam-
ples, and the bias depends on σ2

ω . So, it does not meet condi-
tion (iii). The process noise proposed in this paper grounds on
a log-Normal distribution with specified mean and variance
(eω, ω ∼ N (µω, σ

2
ω), µω = −σ2

ω/2) and it is able to satisfy
all the conditions expressed above: the particles remain in the
state-space support, each of them represents a potential dam-
age progression path and the amount of process noise (i.e.,
the selection of σ2

ω) does not alter the evolution equation.

A particle filtering algorithm with embedded kernel smooth-
ing sub-algorithm for combined state-parameter estimation
has been applied to FCG data from a relevant aeronautical
structure, and the use of the three different process noises
discussed in this paper has been critically analyzed. A pre-
liminary sensitivity analysis of the filter against the process
noise variance σ2

ω has shown that, at this stage of the research,
the proposed formulation outperforms other process noises
already existing in literature. The prognostic algorithm based

on the balanced log-Normal noise always converges regard-
less of the amount of perturbation introduced by ω.

The work should be further extended with: (i) a sensitivity
analysis of particle filtering to the process noise variance us-
ing several runs, (ii) additional case studies concerning fa-
tigue damage progression (e.g., damages growing in compos-
ite laminates or creep degradation), and (iii) the extension to
other monotonic degradation processes.
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