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ABSTRACT 

Machine learning methods are increasingly used for rotating 

machinery monitoring. Usually at set up, only data 

associated to an engine in a good state, the so called 

nominal data, are available for the machine learning phase. 

Nevertheless a classifier requires faulty data to be trained at 

identifying the causes of the anomalies and this fact has 

generally limited the usage of data driven approaches to 

fault detection tasks. The paper suggests a strategy to use 

machine learning methods even for fault classification 

purposes and diagnostics.  Within the proposed framework 

three different machine learning methods, Gaussian Mixture 

Model (GMM), Support Vector Machines (SVM) and Auto 

Associative Neural Networks (AANN) have been 

implemented, tested and compared. The idea is to take into 

account some ‘a priori’ knowledge about the faults to be 

classified, to drive the behavior of the machine learning 

methodology (SVM or AANN or GMM) to be more or less 

reactive to the different faults. The indicators (features) 

more sensitive to each kind of fault are firstly selected on 

the basis of expert knowledge.  For each different fault, a set 

of indicators is defined and computed from nominal data 

only. Each set is then used to produce training data for one 

specific fault. Such data sets are then used to train one 

instance of each method for each different fault. The 

underlying logic is that fault tuned input data is able to 

produce fault tuned instances of the methods.  For example 

the instance trained with the indicators associated to a fault 

‘A’ reacts more powerfully in presence of the fault ‘A’ than 

the others. Once an anomaly is detected, the comparison 

among the reactions of the different ‘fault tuned’ instances 

allows classifying the fault, not just to detect it. The results 

show best detection performances for SVM whilst AANN 

outperforms the other two methods for classification. 

1. INTRODUCTION 

Data driven approaches are methodologies which are 

progressively more employed for anomaly and fault 

detection for machine condition monitoring purposes. 

However high integrity systems could not always use the 

traditional learning\classification method for a number of 

reasons: abnormalities are very rare or there are no data that 

describes the fault conditions. One of the main limitations 

lies indeed in the fact that, at engine setup, only valid 

(nominal) data are available for training. Novelty detection 

offered a solution to this problem by modeling normal data 

and using a distance measure and a threshold for 

determining abnormality. However in this framework, 

learning algorithms can be taught only the nominal behavior 

of the system and they cannot be used for fault 

classification. (Samanta, Al-Balushi, & Al-Araimi, 2003), 

(Jack & Nandi, 2002), (Booth & McDonald, 1998), (Sanz, 

Perera, & Huerta, 2007), (Guttormsson, Marks, El-

Sharkawi, & Kerszenbaum, 1999), (Rojas & Nandi, 2006) 

(Prego, et al., 2013) (Alguindigue & Uhrig, 1991), 

(Fulufhelo, Tshilidzi, & Unathi, 2005), (Rubio & Jáuregui, 

2011) developed methods to detect anomalous behaviors 

(anomaly detection) using Neural Networks (NN), Support 

Vector Machines (SVM) and Gaussian Mixture Models 

(GMM).  

 

In the following we will propose an idea to extend machine 

learning capabilities from fault detection to fault 

classification with the constraint that only nominal data are 

available for training. The logic is to use a priori knowledge 

about the effects of each fault to be classified in order to 

produce training data which are somehow fault tuned.  

These training data are generated by computing, on nominal 
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data, features which are known to be the most responsive to 

each kind of fault which has to be classified. 

 

For instance, in the case of neural networks, for each fault 

one NN is trained with its own fault tuned training data set.  

When a new sample to be analyzed arrives it will be 

processed by each one of the networks. The results of each 

network are then treated with a simple logic to determine if 

there is a fault and which fault it is, respectively fault 

detection and fault classification The paper is organized as 

follows: An overview of data driven approaches for 

anomaly detection will be presented in section 2. The focus 

will be on Auto Associative Neural Networks (AANN), 

Unsupervised Support Vector Machines and Gaussian 

Mixture Models. 

 

The proposed strategy to extend the data driven capabilities 

from detection to classification will be described in section 

3. Section 4 will illustrate the test rig. The results obtained 

with the three data driven methodologies will be then 

compared and discussed. 

2. MACHINE LEARNING METHODS 

According to Johannes (2001) we can identify three major 

classes among the machine learning techniques:  the density 

methods like GMM, the boundary methods as SVM and the 

reconstruction methods AANN.  In recent times, all these 

possible data driven approaches have been employed for 

machine condition monitoring purposes (Chandola, 

Banerjee, & Kumar, 2009). In  (Samanta, Al-Balushi, & Al-

Araimi, 2003), (Jack & Nandi, 2002) and (Booth & 

McDonald, 1998), ANN and SVM have been employed to 

diagnose bearing faults and faults in power transformers. In 

(Alguindigue & Uhrig, 1991) ANN, (Fulufhelo, Tshilidzi, & 

Unathi, 2005) GMM, (Rojas & Nandi, 2006) SVM and 

(Prego, et al., 2013) ANN multiclass fault diagnostics was 

achieved using fault seeded data during training phase.  All 

these approaches require the availability of fault data during 

the learning phase. 

 

However, when new machinery is set up, fault data are not 

available and such diagnostic approaches are not viable.  

For this reason, in an operational context, data driven 

methods are more frequently used for fault detection tasks. 

Detection methods used in (Rubio & Jáuregui, 2011), 

(Guttormsson, Marks, El-Sharkawi, & Kerszenbaum, 1999) 

and (Sanz, Perera, & Huerta, 2007) are also called one-class 

classification. In one-class classification, it is assumed that 

only information of one target class is available and can be 

used for training. These methods using Auto-Associative 

Neural Networks (Sanz, Perera, & Huerta, 2007) or 

boundaries (Guttormsson, Marks, El-Sharkawi, & 

Kerszenbaum, 1999) only need nominal/healthy data for 

training. 

 

One-class classification methods have been used so far only 

for fault detection tasks. In the following we will propose a 

strategy for their use for fault classification.  The endeavor 

of this approach is to include expert (‘a priori’) knowledge 

in these data driven (‘a posteriori’) methods. 

 

In the proposed classification strategy we have integrated 

one data driven method from each of the three previously 

identified classes: GMM as a density method, SVM as a 

boundary method and AANN as a reconstruction method. 

 

The following subsections give a theoretical overview of the 

three data driven methods which have been integrated in our 

classification framework. 

2.1. Gaussian Mixture Models 

The normal distribution is a widely used model for the 

distribution of continuous variables (Bishop, 2006).  

For a D-dimensional vector x of variables, the multivariate 

Normal distribution can be written in the form 

 

          
      

 
 
                

             
 (1) 

 

Where   is a D-dimensional mean vector,   is a D   D 

covariance matrix, and     denotes the determinant of  . 

 

The Normal distribution makes very strong assumptions 

about the model of the data. It should be unimodal and 

convex (Johannes, 2001). To obtain a more flexible density 

method, the normal distribution can be extended to a 

mixture of Gaussians (MoG). It is a linear combination of 

normal distributions: 

 

           
 

    

   

 

           (2) 

 

where    are the mixing coefficients and         is the 

Gaussian mixture distribution. If the number of mixture 

     is defined beforehand, the means    and covariances 

   of the individual Gaussian components can efficiently be 

estimated by the Expectation-Maximization (EM) algorithm 

(Bishop, 2006) and (Bilmes, 1998). 

 

Once the model is estimated, it is possible to associate to 

each new measure a probability of belonging to the 

distribution. 

2.2. One Class SVM 

The SVM algorithm is usually constructed as a two-class 

algorithm which needs negative and positive examples for 

training (Ng, 2015). Schölkopf in (Schölkopf, Platt, Shawe-

Taylor, & Smola, 2001) proposed a modification to allow its 
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use for only positive examples. This is called the one-class 

learning or unsupervised SVM. Basically, the algorithm 

returns a function f that takes the value +1 in a “small” 

region capturing most of the data points and -1 elsewhere. 

The strategy is to map the data into a feature space using an 

appropriate kernel function, and then try to separate the 

mapped vectors from the origin with maximum margin. 

Let            be training examples belonging to one class 

X, where     is the number of observations and X is a 

compact subset of R
N
. Let        be a kernel function 

which maps the training examples from X to the feature 

space  .Then, to separate the mapped vectors from the 

origin, the following quadratic problem has to be solved: 

 

     
 

 
      

 

  
      

 

   

  (3) 

subject to                                          , 

where   is the offset and   the weight vector. The weight 

vector and the offset determine the hyperplane in the feature 

space associated with the kernel. In Equation (3),          
sets an upper bound on the fraction of outliers (training 

examples regarded out-of-class) and a lower bound on the 

number of training examples used as support vectors. 

 

Since nonzero slack variables    penalize the objective 

function, we can expect that if   and   solve this problem, 

then the decision function 

 

                       (4) 

 

will be positive for most examples    contained in the 

training set.  

2.3. AANN 

Auto-Associative Neural Networks (AANN), also known as 

Replicator Neural Networks or Autoencoders, are a family 

of ANN which are trained to reproduce their input at the 

output (Kramer, 1992).   

 

An ANN can be viewed as a system of interconnected 

processing elements called “neurons” exchanging messages 

between each other. Each neuron possesses numeric 

parameters (weights), which are set by means of a training 

process. In AANN, during training, the network learns to 

duplicate the input at the output, whose sizes are therefore 

the same as it can be observed in Figure 1. At first sight, this 

replication task could seem trivial; however, the network 

structure has a “bottleneck” as the hidden layer has fewer 

nodes than the input and output layers. This means that 

within the hidden layer(s) a compression process of the 

input data takes place. This forces the network to learn the 

significant features of the input data.  

 

Once trained with healthy data, the AANN will able to 

replicate unseen nominal data with good accuracy. However 

faulty data are expected to possess information content 

which is structured differently from the healthy ones; as a 

consequence the compression step in the hidden layer 

cannot be performed efficiently and the reconstruction result 

will be inaccurate.  Once a new sample is processed by the 

AANN, the measure of the difference between output and 

input, the Reconstruction Error (RE) of an input vector X, is 

computed as  

 

        ║X-Out X║ (5) 

 

where Out X  is the output of the AANN and || symbol 
stands for any p- norm. 
 

The RE measures how much the new sample belongs to the 

same class of data used for training i.e. the healthy class. 

Once computed the RE, a fault or anomaly detection logic 

can be easily implemented for instance by thresholding. 

 

 

Figure 1. A simple Auto-Associative Neural Network 

 

3. DIAGNOSTICS STRATEGY 

As highlighted in the previous section, data driven methods 

have been proven to be successful in accomplishing 

anomaly detection task when trained with examples 

belonging to the healthy class. Our strategy proposes to 

combine several anomaly detection subtasks to perform a 

multi class fault classification.  

 

In the following, feature is meant an individual measurable 

property of the phenomenon being observed. In this study, 

the features are the different characteristics of the signals 

that can be extracted by the monitoring system. 

 

Let                be the set of the features generated 

by the monitoring system. For example,    could be the 

amplitude of the vibration signal.  

 

The idea is to exploit the fact that certain features are more 

responsive to certain faults than others. Let   be the number 

of faults which have to be discriminated and    a subset of   



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016 

4 

containing the features most reactive to fault i.  For 

example,            means that features j and k have been 

selected to train the machine learning module for fault i.  
One machine learning module    is then trained for each 

fault i. M can be either AANN, SVM or GMM method and 

Figure 2 represents the above described definitions.  

 

 

 
 

Figure 2. Definition of the different modules for a fault i 

It is important to clarify that at this stage of the research 

each machine learning method is processed independently 

from the others. 

 

To illustrate the process of fault detection and classification,  

the procedure for the AANN case is described (see also 

Figure 3).  Consider the test sample X; its raw data are 

initially processed to produce the fault tuned feature 

subsets Fi 
X  which are then analyzed by the corresponding 

AANN modules (one network per fault), to create a set of 

measures   
X 

 (     L). 
 

Feature 
Computation

X Raw data

F1

AANN1 AANNi AANNL

FLFj

OR
Anomaly 
detection

D1 > T1

Dj> Tj

DL > TL

False

No Anomaly

Classification
By Ranking Di

True

  
 

Figure 3. Block diagram for detection and classification 

process 

 

If any of the values   
X 

exceeds its corresponding threshold 

   an anomaly A
X
 is declared. If an anomaly is present (A

X
 

is true), then the values   
X 

 are ranked in descending order. 

If 

 

            
                   (6) 

 

the algorithm concludes that K is the most likely fault which 

occurred. 

 

The following subsections detail for each method how the 

thresholds and distances are computed and ranking is 

performed.  

3.1. Detection and classification with AANN 

Once the AANN module have been trained, the training 

samples are fed again into the networks to obtain mean     
   

 

and standard deviation     
    of the RE distribution. 

The threshold of module       of fault i is then defined as: 

 

          
           

   
 (7) 

 

Here     is a parameter which enables to adjust the 

sensitivity of the detection model. Under the assumption 

that the distribution of the training RE values is Gaussian, 

with    , 99.7% of the nominal RE values are smaller 

than T.  For      , the distance of sample   is defined as:  

 

       
        

   

    
   

 
  
 
 

  (8) 

 

where     
   

 and     
   

 are the RE references of one       

associated to fault i and     is the reconstruction error of 

the sample under analysis. 

 

As described, if       exceeds the threshold for at least one 

of the modules       , an anomaly is detected. 

In such case         are sorted in descending order: 

 

                (9) 

 

The fault with the greatest distance is selected as the most 

likely cause of the anomaly. 

3.2. Detection and classification with GMM 

Once the parameters of the Gaussian mixture have been 

calculated with the EM algorithm, for each training sample 

X the smallest Mahalanobis distance     
   (X) from an 

element of the mixture is computed. The threshold    is then 

set as: 
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   (X)), X                 (10) 

 
Where max indicates the maximum value and again      

is a parameter which enables to adjust the sensitivity of the 

detection model. 

When a new sample   is analyzed, the Mahalanobis distance 

is computed by each      module: 

 

              
   

         (11) 

 

These distances are then compared to the thresholds    . If 

for at least one module         , an anomaly is detected. 

When the anomaly is detected, the classification is done by 

ranking the       for all i, similarly to the AANN 

classification: 

 

                (12) 

 

As for AANN, the fault with greatest distance represents the 

most likely cause of the anomaly. 

3.3. Detection and classification with one class SVM 

In each SVMi fault tuned module, the thresholds and the 

distances are computed by the method itself. The distance 

that the algorithm outputs is the argument of the “sign()” 

function  of  equation (4) : 

 

                 (13) 

 

with  ,     and   as defined in section 2.2 and i is the fault 

id . 

 

      is positive for samples that are inside the boundary, 

zero at the boundary and negative for samples that are 

outside the boundary. Positive distances are considered as 

normal and an anomaly i is detected for negative distances 

      hence         .When at least one SVM module 

detects an anomaly, classification is performed and the 

distances are sorted, in this case, in ascending order: 

 

                  (14) 

 

In this case the fault with most negative distance is 

classified as the cause of the anomaly. 

4. EXPERIMENTAL SETUP 

During experiments, data have been generated by a Rotor 

Kit STI (see Figure 4) and acquired by the VM600 platform 

and VibroSight™ software. Seventeen sensors can be 

located at different places on the Rotor Kit (proximity 

sensors, accelerometers and velocity sensors). The right-

hand side motor enables the rotation of two disks at 

different regimes.  

There are different configuration possibilities on the Rotor 

Kit which make possible data fault generation. Small 

weights of different size can be added on the disks to 

simulate unbalance conditions and misalignment faults can 

be generated at the shaft junction. 

 

 

 

 

 
Figure 4. Experimental test rig (top); Sensor emplacements 

(bottom) 

With the different setup options described, five faulty 

configurations have been be generated: unbalance on disk 1 
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(UnbalD1), unbalance on disk 2 (UnbalD2) misalignment 

(Misalignment), misalignment and unbalance on disk 1 and 

misalignment and unbalance on disk 2. Each fault has a 

major impact only on the signals recorded by a subset of 

sensors. As a consequence a subset of sensors has been 

associated to the detection of each fault as shown in Table 1. 

 

Table 1. Sensors associated to the different faults ;ID 

column  identifies the position in figure 4 

Sensor Type ID Fault 

Horizontal proximity 

sensor  

1 
UnbalD1 

Vertical proximity sensor  2 UnbalD1 

Horizontal proximity 

sensor  

3 
UnbalD1 

Vertical proximity sensor 4 UnbalD1 

Horizontal accelerometer  5 UnbalD1 

Vertical accelerometer 6 UnbalD1 

Vertical accelerometer  7 UnbalD2 

Vertical accelerometer 8 UnbalD2 

Horizontal accelerometer 9 UnbalD2 

Vertical accelerometer  10 UnbalD2 

Axial proximity sensor  11 Misalignment 

Axial proximity sensor 12 Misalignment 

 

5. RESULTS 

Tests have been conducted at two different speed regimes:  

R1 (regime one) @3300 RPM and R2 (regime two) @2100 

RPM. For each regime 10000 training samples have been 

recorded over several days to capture different room 

temperatures, and bearing warm-up conditions. Small 

weights have been added to one or both disks to increase the 

dispersion of the nominal data.  

For each regime six test sets have been acquired in a 

different configuration of the rotor kit (see Table 2). They 

represent nominal data and five combinations of 3 types of 

faults: UnbalanceD1, UnbalanceD2 and Misalignment. For 

Misalignment fault, four features have been selected, twelve 

for UnbalD1 and eight for UnbalD2. 

Each AANN module has been designed with a single hidden 

layer, and the number of mixtures in GMM is provided in 

the table 3.  Several trials with different set of parameters  

(number of neurons in the hidden layer, number of 

mixtures)  have been performed in order to identify the 

optimal configuration for each algorithm for which results 

will be reported in the following. The features used as input 

are computed from harmonic analysis of the vibration. 

Table 2. Data sets for testing phase 

Configuration 

name  
Description  

Set size 

(R1)  

Set size 

(R2)  

Nominal 
No weight and no 

misalignment 
400 300 

UnbalanceD1 Weight on disk 1 400 400 

UnbalanceD2 Weight on disk 2 400 400 

Misalignment Misalignment 100 100 

Misal&unbalD1 
Misalignment and 

weight on disk 1 
200 200 

Misal&unbalD2 
Misalignment and 

weight on disk 2 
200 200 

 

As metrics for detection, the percentages of false alarms 

(FA) and missed detections (MD) have been estimated. The 

accuracy is determined as the percentage of tests where the 

fault detection process is performed correctly divided by the 

size of the test set. Table 4 summarizes the detection results 

for the 3 methods. 

 

Table 3. GMM modules description 

GMM modules Number of mixtures 

Misalignment 2 

UnbalD1 5 

UnbalD2 2 

 

For detection, the method with the best accuracy is SVM. It 

appears that SVM, as a binary classifier, is the most 

efficient in defining the nominal region in the feature space 

when only two classes (healthy and unhealthy) are present. 

As a consequence, this minimizes the number of 

classification errors. However, what represents strength in 

the case of fault detection, will become a weakness within 

the proposed classification framework.  

 

Table 4. Detection results 

Method FA% MD% Accuracy 

AANN 11.4 11.0 88.7% 

SVM 0.4 0 99.9% 

GMM 8.1 0 98.3% 
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To determine the classification performance, the confusion 

matrices have been computed for the three methods. When 

two faults were present in a sample, classification has been 

considered correct if one of the two faults have been ranked 

first. Using this assumption, accuracy has been determined 

as the percentage of the number of samples correctly 

classified divided by the size of the test set. Results are 

presented for each machine learning method in tables 5,6 

and 7. 

The fault case in which most miss-classification occurred is 

the unbalanceD2. This is due to the fact that disk 2 is 

heavier and has a smaller radius than disk 1. As the same 

weight has been used to generate the unbalance on both 

disks, the specific unbalance is less on disk 2 than on disk 1: 

then UnbalanceD2 fault has less impact on the vibration 

signal. The misclassification is larger for SVM and GMM 

whilst AANN performs much better. Being a reconstruction 

method AANN has a more ‘holistic’ approach in the 

analysis of the data, which results in the capability to take 

into account the relative sizes of the components of the 

feature vector and not simply their individual positions in 

the feature space. 

Tests also show that whenever two faults are present, the 

anomaly is always detected and one of the two faults is 

always the first in the ranking for all machine learning 

modules. The overall best accuracy for classification, 

presented in Table 8, is obtained with the AANN method. 

SVM, in this case, significantly underperforms the other two 

methods.  

SVM is a “boundary method” which gives more weight to 

samples close to the border during learning. It is by “nature” 

a binary classifier and this clearly makes it more suitable for 

a two class problem. However our classification strategy 

compares the results of several two-class modules. In this 

case a class membership indication appears more 

appropriate than the binary output provided by SVM. 

Reconstruction methods as AANN and density methods like 

GMM make a more “ democratic” use of the learning set 

allowing  to use information about the whole class data 

distribution not just about its boundary. GMM and AANN 

produce a measure of belonging rather than a binary 

decision. This turns out into a better and more meaningful 

integration of the results from the different modules.  

The logic conclusion of this analysis is that the best results 

are produced by the synergy between the different machine 

learning methods. In a schema which uses SVM for 

anomaly detection and then classifies the anomalies with 

AANN, 94.5% of correct classifications is achieved on our 

test set.  This represents a remarkable result considering we 

only used healthy data for training. 

 

 

Table 5. AANN classification confusion matrix 

F
au

lt
 

Classification 

 Nominal UnbalD1 UnbalD2 Misalig 

Nominal 620 0 0 80 

UnbalanceD1 0 701 0 99 

UnbalanceD2 287 0 411 102 

Misalignment 0 0 0 200 

Mis.&unbalD1 0 0 0 400 

Mis.&unbalD2 0 0 0 400 

 

Table 6. SVM classification confusion matrix 

F
au

lt
 

Classification 

 Nominal UnbalD1 UnbalD2 Misalig 

Nominal 697 3 0 0 

UnbalanceD1 0 474 100 226 

UnbalanceD2 0 485 216 99 

Misalignment 0 0 0 200 

Mis.&unbalD1 0 246 0 154 

Mis.&unbalD2 0 0 103 297 

 

Table 7. GMM classification confusion matrix 

F
au

lt
 

Classification 

 Nominal UnbalD1 UnbalD2 Misalig 

Nominal 643 27 0 30 

UnbalanceD1 0 797 0 3 

UnbalanceD2 0 577 223 0 

Misalignment 0 0 0 200 

Mis.&unbalD1 0 263 0 137 

Mis.&unbalD2 0 0 0 400 

 

Table 8. Summary of classification results 

Method Accuracy% 

AANN 82.8 

SVM 72.3 

GMM 80.7 
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6. CONCLUSIONS 

A strategy for data driven fault classification when only 

healthy data is used for training has been proposed. Results 

obtained with three different machine learning methods 

have been presented. The experimental analysis conducted 

at two different regimes indicated that whilst SVM 

performances are close to 100% accuracy for anomaly 

detection, AANN method outperforms for fault 

classification. A synergic exploitation of the different 

machine learning techniques allows obtaining overall 94.5 

% of correct classifications over a test set containing four 

data classes (one healthy and three types of fault).  Using 

this strategy provides also a fault ranking estimation, and 

this is particularly useful for this application on rotating 

machinery, such as gas and steam turbines, where, almost 

always, an unbalance fault shows up as well, even if another 

fault is the root cause of the anomaly. Examining the 

classification details is then a true benefit of the method. 

The proposed method currently produces one classification 

result for each new sample. The focus of our research is 

nowadays on the integration of the classification results over 

time hence considering more samples to produce the 

classification decision. This should allow enforcing the 

robustness of the method and further improving the 

classification results. In parallel, the same method can be 

extended to other fault types. There should be no limit in the 

number of classes, as soon as separate sets of features are 

available for each fault.  

 

NOMENCLATURE 

L Number of faults 

 i Threshold for the fault i 

   Distance for the module i 

x Sample under test 

X Sample of the training set 
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