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ABSTRACT

Extended Kalman filter in Riemann sampling framework
(RS-EKF) has been widely used in diagnosis and prognosis,
navigation systems, and GPS for its advantage of simplicity
and reasonable solution for nonlinear systems. New parti-
cle filter based fault diagnosis and prognosis algorithms in
Lebesgue sampling framework have been developed to en-
able the implementation on systems with limited computa-
tional sources, such as embedded systems. In this Lebesgue
sampling-based approach, Lebesgue states are defined on the
fault dimension axis and algorithm is executed only when the
measurement causes a transition from one Lebesgue state to
another, or an event happens. This is a need-based fault di-
agnosis and prognosis (FDP) philosophy in which the algo-
rithm is executed only when necessary, thus less computa-
tional resources are required. In order to make algorithms
more efficient, EKF algorithm is developed in Lebesgue sam-
pling framework (LS-EKF). With the philosophy of “execu-
tion only when necessary”, the proposed approach is able to
eliminate unnecessary computations, especially in the sce-
nario that the fault grows slowly. The prediction horizon de-
fined by Lebesgue states on the fault dimension axis is usu-
ally small and, therefore, LS-EKF naturally benefits the un-
certainty management by reducing the uncertainty accumu-
lation. One feature of diagnosis and prognosis in Lebesgue
sampling is that it requires two models, one for diagnosis and
one for prognosis. The diagnostic model describes the dy-
namics of fault and is used to estimate the fault state. Prog-
nostic model for LS-EKF describes the time for fault state
reaching each defined Lebesgue state. The new algorithms is
verified with an application to the diagnosis and prognosis of
the state of health of Li-ion battery. The results show that LS-
EKF and RS-EKF have comparable performance in diagnosis
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but LS-EKF has much less computation. Moreover, LS-EKF
is more accurate and time-efficient on long term prognosis
than RS-EKF algorithms, which makes it a promising solu-
tion for FDP in distributed applications.

1. INTRODUCTION

Condition-based maintenance (CBM) and Prognosis and
Health Management (PHM), which refers to health monitor-
ing of complex engineering systems based on minimal inva-
sive condition measurements, become active research topics
in the past decades. Reliable diagnosis and time-efficient
prognosis are important for maintenance and essential for
fault detection and remaining useful life (RUL) prediction of
critical components, such as batteries, bearings, and drive-
trains (Strangas, Aviyente, Neely, & Zaidi, 2013; Orchard,
Hevia-Koch, Zhang, & Tang, 2013; Cheng & Pecht, 2009;
Capolino & Filippetti, 2013; Immovilli, Bianchini, Coc-
concelli, Bellini, & Rubini, 2013; Lou & Loparo, 2004;
Bellini, Filippetti, Tassoni, & Capolino, 2008; Zhang et al.,
2011). Extended Kalman filter (EKF) is widely used in nav-
igation, mission planning, economic prediction, and state es-
timation due to the simplicity and capability to handle non-
linear systems (Lall, Lowe, & Goebel, 2011; Lall, Wei, &
Goebel, 2012).

With the increasing of system complexity, the utilization of
embedded systems grows rapidly. Traditional centralized
PHM design cannot meet the demands of carrying more com-
plicated and critical functions to monitor and troubleshoot
components for timely and optimal maintenance because of
the limitation of communication bandwidth, computational
sources, and power consumption. Thus, distributed system
design is widely accepted in engineering design, especially
for complicated systems (Genc & Lafortune, 2007; Qiu, Wen,
& Kumar, 2009; Kumar & Takai, 2009; Liu, Qin, & Chai,
2013; Lefebvre, 2014). With this tendency, more and more
FDP algorithms are deployed on local processors and embed-
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ded systems to alleviate the requirements on communication
bandwidth among the micro-controllers. However, these lo-
cal processors and embedded systems have limited compu-
tational capabilities, which cannot afford the traditional Rie-
mann sapling (RS) based FDP algorithms. RS-based FDP
(RS-FDP) takes samples and executes algorithms in periodic
time intervals (Olivares, Cerda Munoz, Orchard, & Silva,
2013; Pola et al., 2015; Xian, Long, Li, & Wang, 2014) and,
in most cases, requires significant computational resources
because of iterative calculations.

To overcome this bottleneck, a novel Lebesgue sampling-
based FDP (LS-FDP) framework was developed (Wang &
Zhang, 2014; Zhang & Wang, 2014; Yan, Zhang, Wang,
Dou, & Wang, 2016), in which FDP algorithms are exe-
cuted “as-needed”. The execution of FDP is triggered only
when the value of feature, or condition indicator, changes
from one Lebesgue state to another, or an event happens.
This event-based diagnosis adopts the philosophy of “execu-
tion only when necessary”, which significantly reduces the
computation requirements by eliminating unnecessary com-
putation. LS-based prognostic algorithm is executed based
on the Lebesgue sampling model (LSM) to estimate distri-
butions of operating time for the fault state reaching each
Lebesgue state. The prediction horizon of LS-FDP is defined
on the fault dimension axis and represented by the number
of Lebesgue states. This eliminates the recursive state es-
timation in RS-based prognosis and provides a straightfor-
ward method to conduct prognosis that requires little compu-
tational resources.

In our previous works, the LS-FDP was developed with parti-
cle filter method, in which the distributions of fault state and
RUL are approximated by a set of particles whose dynamics
are governed by the diagnostic and prognostic models. From
the computation point of view, it is not the optimal method,
especially for those systems with small nonlinearities. EKF
has much less requirements on computation and has demon-
strated performance in many applications. It linearizes the
nonlinear system model, and calculates the mean and vari-
ance of the system state based on the linearized system model
instead of the progress of every particle. In this paper, the
Lebesgue sampling and EKF are integrated to design a more
efficient LS-EKF algorithm for state estimation and RUL pre-
diction in nonlinear systems. The proposed method takes full
advantage of EKF and Lebesgue sampling to reduce compu-
tation and make it possible to be deployed on most of the
distributed FDP systems.

The paper is organized as follows: Section 2 provides an
overview of Lebesgue sampling method and EKF, and the
new LS-EKF based on Lebesgue sampling method is devel-
oped. A case study based on lithium ion battery is presented
to demonstrate the advantages of LS-EKF in Section 3, the
experimental results of the EKF competitor are also shown.

Conclusions and future research topics are given in Section
4.

2. LEBESGUE SAMPLING-BASED EXTENDED KALMAN
FILTER

Kalman filter is a recursive algorithm that estimates the true
state of a linear system based on noisy measurements. It as-
sumes that the system can be described by a linear dynamic
model and the noise is subject to Gaussian, which is not al-
ways true in real applications. Extended Kalman filter (EKF)
is developed by linearizing the dynamic model using Taylor
expansion at a local point. EKF has been used for prognosis
of electronic components and battery management in the Rie-
mann sampling framework (Lall et al., 2012; Saha, Goebel,
& Christophersen, 2009). With the new concept of Lebesgue
sampling, it is desirable to study the performance and charac-
teristics of FDP with EKF algorithms.

Suppose the fault dynamics can be described by the following
nonlinear model:

xk = f(xk−1, uk−1) + ωk−1 (1)

where xk is the states to be estimated, f(·) is the nonlinear
function of states, uk is the input at time k, wk is a zero
mean Gaussian noises with covariance matrixQk. Since most
faults cannot be measured directly, it relies on some measur-
able variables. The observation model that describes the rela-
tionship between state xk and measurements zk is given by:

zk = h(xk) + vk (2)

where zk is the measurement, h(·) is the measurement func-
tion of state, which can be linear or nonlinear, vk is a zero-
mean Gaussian noises with covariance matrix Rk.

Since f(·) and h(·) are nonlinear functions, they cannot be
used to calculate the covariance directly. Instead, their Jaco-
bian are calculated as follows:

Fk =
∂f

∂x
|x̂k−1|k−1

Hk =
∂h

∂x
|x̂k−1|k−1

(3)

Note that the Jacobian needs to be calculated with the pre-
dicted state at each instant.

The EKF algorithm includes two steps: the first step (predic-
tion) is to propagate the state vector x into the next time step
by using the state transition model; the second step (update)
is to correct the prediction from the first step by using the
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measurement z. The prediction step can be described as:

x̂k|k−1 = f(x̂k−1|k−1, uk)

Pk|k−1 = FkPk|k−1F
T
k +Qk

(4)

where Pk andQk are the covariance matrices of the predicted
state and the process noises.

The equations for the update state are expressed as:

ỹ = zk − h(x̂k|k−1)
Sk = HkPk|k−1H

T
k +Rk

Kk = Pk|k−1H
T
k S
−1
k

Pk|k = (I −KkHk)Pk|k−1

x̂k|k = x̂k|k−1 +Kkỹk

(5)

where ỹk is the measurement residual, Sk is the residual co-
variance, K is the near-optimal Kalman gain, Rk is the co-
variance matrix of the observation noises, Pk|k is the updated
covariance estimate, x̂k|k is the updated state estimate, and I
is the identity matrix.

Lebesgue sampling (LS) is introduced in diagnosis and prog-
nosis by (Wang & Zhang, 2014; Zhang & Wang, 2014). Dif-
ferent from RS method, LS method divides the state axis by
a number of predefined states (also called Lebesgue states).
The FPD is triggered only when the feature value changes
from one Lebesgue state to another, or an event happens.
The prediction horizon is described by the number of the
Lebesgue states instead of the periodic sampling intervals in
RS framework. This LS-based FPD is need-based and its ex-
ecution is justified by an event. These features enable it to
significantly reduce the computation demands and the uncer-
tainty accumulation by eliminating unnecessary computation
and decreasing the prediction horizon.

When LS-based prognosis is activated, prognostic algorithm
is executed based on the Lebesgue sampling model (LSM)
to estimate distributions of operating time for the fault state
reaching each Lebesgue state. The LSM is described as:

tk+1 = tk + gt(D(tk), x̂(tk), ˙̂x(tk)) + ωt(tk) (6)

where tk is the operation time for fault state reaching the k-th
Lebesgue sate, D is the Lebesgue state length, ωt(tk) repre-
sents the uncertainties, and gt(·) is a nonlinear function that
describes the time distribution of the fault state arriving at
each Lebesgue state. Note that the output of diagnosis at the
time instant of the current event td is a fault state distribution
defined on the state axis, which cannot be used in LS-based
prognosis, which is based on Eq. (6) and needs an initial dis-
tribution of operation time. To obtain the time distribution
on the current Lebesgue state, the time instant of the current
event td is set to be the mean of the time distribution µt, the

sigma point µx−σx of the state distribution has a cross point
with the filtered feature curve, which is marked in Figure 1.
The coordinates of the cross point (µt − σt, µx − σx) repre-
sent that sigma point µx − σx reaches the threshold at time
instant µt − σt. The time interval between td and the marked
point in Figure 1 is set to be the variance of the time distri-
bution. By this method, the variance of state distribution σx
is approximately converted to that of the time distribution σt.
Here, µx, σx, µt, and σt are the mean and variance of the state
estimation, the mean and variance of the time distribution, re-
spectively. The details are shown in Figure 1. For the case of
hazard zone, the overlap of state distribution and the hazard
zone can be calculated to get a new distribution PDFh, and it
can be converted to a time distribution with the same method
mentioned above.

Figure 1. Conversion from state distribution to time distribu-
tion

3. AN APPLICATION TO LITHIUM ION BATTERY DIAG-
NOSIS AND PROGNOSIS

Battery is a safety critical component that provides power
for most autonomous systems, such as computers, robots,
electrical vehicles, and unmanned aircraft (Pola et al., 2015;
Olivares et al., 2013; Zhang, Tang, DeCastro, Roemer, &
Goebel, 2014; Scacchioli et al., 2014). Diagnosis and prog-
nosis are critical for estimating the battery state, such as state-
of-health (SOH), state-of-charge (SOC), and remaining use-
ful life (RUL) in order to ensure the devices work as expected.
In this section, the proposed LS-EKF method is verified in a
case study of the diagnosis and prognosis of SOH of lithium
ion battery. The results are compared against those from RS-
EKF to illustrate the advantages of LS-EKF.

The experiment investigates the SOH of a Li-ion battery with
1.1 Ah rated capacity. The degradation of the capacities is ob-
tained from charge-discharge tests on an Arbin BT2000 bat-
tery test system under room temperature at a discharge cur-
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rent of 1.1 A (He, Williard, Osterman, & Pecht, 2011). The
charge-discharge cycle is cut off at pre-determined cut-off
voltages. The failure threshold for the SOH is set as 0.35Ah
and the battery capacity reaches this threshold at the 810th
cycle.

3.1. EKF in Riemann sampling framework

In traditional Riemann sampling framework, samples are
taken equivalently along the time axis. The diagnosis and
prognosis model is identically developed and is written as:

C(t+ 1) = C(t)− γ · (p1 + p2 · t+ p3 · t2)p4 + ωC(t) (7)

where C is battery capacity, t is the time index given by cycle
number, p = [0.01, 45, 0.2, 1.25] are parameters, γ is a hyper
model parameter with mean of 1.6e−8 and variance of 5e−12,
and ωC is a model noise.

Figure 2 shows the diagnostic results at the 400th cycle. The
mean of capacity estimation is 0.9418 and the 95% confi-
dence interval is [0.939, 0.9446]. The upper sub-figure is the
comparison of the capacity from Arbin system against the ca-
pacity estimation from EKF. The bottom sub-figure shows the
comparison of initial baseline probability distribution func-
tion (pdf) (green) compared with the real-time estimated pdf
(magenta) at the 400th cycle. Note that the diagnostic algo-
rithm is executed 400 times in the past 400 cycles, i.e., every
time when a new measurement becomes available.

Figure 2. RS-EKF diagnosis for battery at 400th cycle.

With an estimation of the current battery capacity as the ini-

tial condition, the prognosis is executed to conduct the long-
term prediction and estimation of RUL. Figure 3 shows the
expected value, upper and lower bounds of 95% confidence
interval (CI) of the battery capacity pdf at each future cycle.

The TTF distribution from EKF-based prognosis is a Gaus-
sian distribution with mean value of 833 cycles when the
mean predicted fault size reaches the failure threshold. The
upper-bound and lower-bound of the distribution are calcu-
lated based on Eq. (4) in EKF algorithm, and can be sim-
ply approximated as the time instant when the upper-bound
and lower-bound of the capacity distribution reach the failure
threshold, details are shown in Figure 1. By this means, the
standard deviation of the TTF distribution is approximated to
be 59.25 cycles.

Figure 3. RS-EKF prognosis for battery at 400th cycle.

In this figure, the predicted RUL is 433 cycles. The distance
between the prediction and ground truth is 23 cycles. The
95% confidence interval of the RUL pdf is [714.5 951.5],
which indicates that the uncertainty accumulated along the
prediction horizon is very large.

3.2. EKF in Lebesgue sampling framework

In LS-FDP, the feature value range is divided into a series of
Lebesgue states. If a new measurement causes a transition
of Lebesgue state, i.e., an event happens, the diagnostic algo-
rithm is executed.

To implement LS-FDP for the battery capacity degradation,
initially, 40 uniformly distributed Lebesgue states are defined
in the battery’s full capacity of 1.1Ah. With this setting, the
diagnostic algorithm is executed only when the capacity de-
grades from one Lebesgue state to another. During the di-
agnosis process, the length of the Lebesgue states is opti-
mally adjusted according to the fault growth speed. If the
fault grows faster, the next Lebesgue length will be decrease,
otherwise, the next Lebesgue length will be increased. The
adjustment details are illustrated in (Yan, Dou, Liu, Peng, &
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Zhang, 2015). The number of Lebesgue states changes during
this optimization process.

The model for diagnosis is given by:

C(tk+1) = C(tk)−pd·C(tk)·D·sgn(C(tk)−C(tk−1))+ωC(tk)
(8)

where tk is the time instant of the k-th event, pd is a constant,
D is the Lebesgue length, which is given by the difference
between two successive Lebesgue states, ωC(tk) is the noise
term.

Figure 4. LS-EKF diagnosis for battery at 400th cycle.

Figure 4 shows the diagnostic results at the 400th cycle based
on LS-EKF. The mean of capacity estimation is 0.9407 and
the 95% confidence interval is [0.925, 0.9608]. Same as the
example in RS-EKF, the upper sub-figure shows the compar-
ison of capacity from Coulomb counting (blue) against the
estimated mean value from diagnosis (magenta). The lower
sub-figure shows the comparison of initial baseline pdf com-
pared with the real-time estimated pdf at the 400th cycle.
Note that the diagnostic algorithm is only executed 70 times
in the past 400 cycles.

The output of fault diagnosis is the fault state distributions at
the current time instant, which cannot be used for LS-based
prognosis directly and has to be transformed into the oper-
ation time distribution. To implement prognosis in LS-EKF
framework, the operation time distribution is achieved as dis-
cussed in Figure 1, which is used as the initial condition for
prognosis.

Prognostic part in LS-EKF is conducted on fault dimension

axis to predict the time-to-Lebesgue-state directly. The model
for prognosis is given as:

tk+1 = tk + pp · C(tk) ·D · exp
(
−Ċ(tk)

)
+ ωt(tk) (9)

where pp is a constant and ωt is the model noise.

Figure 5. LS-EKF prognosis for battery at 400th cycle.

Figure 5 shows the prognostic results at the 400th cycle. To
make the figure clear, only the time distribution pdf at a few
selected Lebesgue state are plotted. The prediction horizon
is 59 Lebesgue states, which is very small compare to the
433 cycles in RS-EKF. The predicted TTF for this battery
is 795.7 and the RUL is 395.7 cycles. The 95% confidence
interval of the TTF distribution is [786.7 804.7]. The uncer-
tainty is much smaller than that of RS-based prognosis due
to the small prediction horizon. Compared with the ground
truth TTF of 810,the difference between ground truth and the
prediction is 14.3 cycles.

3.3. Comparison of RS-EKF and LS-EKF

Compared to RS-EKF prognosis with large horizon (433 cy-
cles), the LS-EKF prognosis shown in Figure 5 only has a
prognostic horizon of 59 Lebesgue states. The reduction of
computation time is (0.055146-0.007064)/0.055146=87.19%
and the computation is about 7.8 times faster.

Diagnostic and prognostic results of RS-EKF and LS-EKF al-
gorithms are compared in Table 1. Compared with RS-EKF
prognosis with a horizon of 433 cycles at the 400th cycle,
the LS-EKF prognosis has a horizon of 59 Lebesgue states.
The computation time for every LS-EKF prognosis routine is
only 12.8% of that of the RS-EKF prognosis. Note that the
Lebesgue state length in the LS-EKF prognosis is changed ac-
cording to the fault growth speed to keep a closer monitoring
on the SOH. If the fault growth speed becomes faster along
the prediction steps, the Lebesgue state length for the follow-
ing prediction steps will be decreased, otherwise, it will be
increased. The computational sources is optimally distributed
during the diagnosis and prognosis process by increasing the
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Lebesgue state length and reducing the unnecessary execu-
tion when the fault grows slowly. When the fault grows fast,
more computational sources is assigned to the FDP algorithm
to monitor the health state of the system.

Diagnosis results RS-EKF LS-EKF
Capacity expectation 0.9418 0.9406

Capacity 95% CI [0.939 0.9446] [0.9205 0.9607]
Execution numbers 400 (100%) 70 (17.5%)
Prognosis results RS-EKF LS-EKF

True TTF 810 810
Estimate TTF 833 795.7

95% CI of TTF [714.5 951.5] [786.7 804.7]
Prognostic horizon 433 59
Computation time 0.55146 (100%) 0.007064 (12.8%)

Table 1. Comparison of Traditional RS-EKF and LS-EKF for
Battery

Accuracy is one of the most important properties in FDP.
In order to compare the accuracy of RS-EKF and LS-EKF
methods, α - λ matrix is introduces in (Saxena, Celaya, Saha,
Saha, & Goebel, 2010), as shown in Figure 6 with α = 0.3.
The matrix is defined as:

[1− α] · rt(tk) ≤ rl(tk) ≤ [1 + α] · rt(tk) (10)

where rl is the predicted RUL at the lth time instant, rt is the
ground truth TTF, α is the accuracy modifier (Saxena et al.,
2010).

Figure 6. Prediction accuracy comparison between RS-EKF
and LS-EKF.

Judging from Figure 6, the mean of the predicted RUL for
RS-EKF is as accurate as that of LS-EKF. However, the vari-
ance of predicted RUL of LS-EKF is much smaller as shown
in Table 1, which is the natural benefit from Lebesgue sam-
pling methodology, since the prediction horizon in LS-EKF
is much smaller than that of RS-EKF, the uncertainty ac-
cumulation during the prediction process is much smaller.
Based on these advantages, LS-EKF can provide strong sup-
port for decision-making. More importantly, the LS-EKF
required less calculation sources compared with RS-EKF,

which makes it more feasible for distributed FDP with lim-
ited computational sources.

4. CONCLUSION

EKF based diagnosis and prognosis methods were developed
based on Riemann sampling framework with great achieve-
ment for its simplicity. With the trend of distributed FDP,
Lebesgue sampling method is introduced with a philosophy
of “execution when needed” to reduce the computation and
make the long-term online prognosis possible on embedded
systems. In this paper, EKF algorithm is developed in the
Lebesgue sampling framework. An experiment of Lithium-
ion battery SOH diagnosis and prognosis with comparison
against traditional RS-based approach is presented. It is
demonstrated that the proposed approach is able to reduce the
requirement on computational sources compared with tradi-
tional RS-EKF. This proposed approach combines the advan-
tages of EKF and LS method, which results in low computa-
tion and small uncertainty accumulation.
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