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ABSTRACT

The primary role of a machine tool is produce the good qual-
ity parts, but a machine tool goes always through a process of
degradation and wear which will affect the accuracy and pre-
cision of machining and the quality of products. Therefore,
monitoring the degradation of machine tool and quantifying
its health is very important. The degradation level of a ma-
chine can be qualified by an index which is called health in-
dicator (HI). Based on the HI, fault prognosis can provide the
Remaining Useful Life (RUL) of machine which is useful for
an effective maintenance policy, thus, that helps to increase
efficiency of operations and manufacturing. However, the HI
is not usually predetermined in most Discrete Manufacturing
Processes (DMP). This paper presents a new method of HI
extraction based on the degradation reconstruction. The HI is
then modeled with a stochastic process. For the online super-
vision, the RUL is estimated for each inspection time.

1. INTRODUCTION

Fault prognosis of industrial systems is one of central issues
of Condition Based Maintenance (CBM). It is important to
minimize the downtime of machinery and production, and
thus to increase efficiency of operations and manufacturing.
Till now, the production units in most DMP use a strategy
of Preventive and Corrective Maintenance which is less effi-
cient than the CBM, and few studies are conducted on this
subject. There is not yet an efficient method which is capable
to extract the underlying state of DMP tools because of their
complex processes, which are highly non-linear, time varying
and usually exhibit batch-to-batch variation disturbances.

In semiconductor manufacturing, a survey of data-driven prog-
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nosis of (Thieullen, Ouladsine, & Pinaton, 2012) shows that,
most of the HI are calculated as the values of the indexes
such as Squared Prediction Error (SPE), Hotellings T2, Ma-
halanobis distance, etc. In this paper, the health index is not
built from these indexes but from the trend of critical points
of sensors. Based on the same principles of reconstruction-
based fault identification (Yue & Qin, 2001), (Gang, Qin,
Ji, & Zhou, 2010), a method of degradation detection and
identification is proposed. The EWMA Hybrid-wise Multi-
way PCA (E-HMPCA) (Zhang, 2008) which is an extension
of Principal Component Analysis (PCA) is used to perform
degradation detection and diagnosis for the batch process ma-
chine. This is because E-HMPCA combines the advantages
of both batch-wise and variable-wise unfolding approaches.
Moreover, the EWMA algorithm considers the time depen-
dencies. The index SPE is calculated and is compared to its
upper control limit (UCL) to detect the degradation. The sig-
nificant sensors which carry the degradation information of
machine are localized and their critical points are identified
based on an optimization algorithm. The HI is then extracted
for the failure prognosis.

This paper proposes a new fault prognosis method for DMP
tools, as illustrated in the schema of Figure 1. The on-line
supervision is supported by the off-line analysis. A degrada-
tion reconstruction is executed to determine the set of criti-
cal points of processes which are considered representing the
tool’s underlying state. Then an indicator of degradation is
extracted from the evolution of these points and is modelled
with an adequate stochastic process to predict the Remain-
ing Useful Life (RUL). In on-line supervision, the value of
RUL is updated for each inspection time. A real case appli-
cation using data collected in STMicroelectronics Rousset is
presented to illustrate the efficiency of the proposed method.

The remaining of this paper is organised as follows. Sec-
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Figure 1. Schema of fault prognosis

tion 2 presents the off-line analysis where 2.1 provides the
formulation of health index contribution, 2.2 describes the
degradation modelling based on an adequate process. The
online supervision procedure is proposed in section 3. Sec-
tion 4 presents a real case application using data collected in
STMicroelectronics. Section 5 gives the conclusion.

2. OFF-LINE ANALYSIS

2.1. Heath indicator extraction

2.1.1. Identification of degraded sensors

From the measurement of machine during processing a set of
products, a data matrix X of three dimensional matrix I ×
J ×K is obtained, respectively I is number of products, J is
the number of sensors and K is the number of observations
(sampling time).

Suppose that the first n products (n < I) are considered re-
specting the good quality norm. These n products are thus
used to build the degradation detection index.

The data of these n products is unfolded according to batch-
wise, it is then mean-centered and rearranged in a variable-
wise structure, it becomes a ((n × K) × J) matrix. This
hybrid-wise unfolding combines the advantages of both batch-
wise and variable-wise unfolding approaches. Then the algo-
rithm EWMA is employed for considering time dependen-
cies.

After the unfolding step, X ((n×K)× J) is decomposed by
PCA:

X = TPT (1)

where T and P are score and loading matrices. npc is the
number of the more significant principal components which
are sufficient to explain the variability of data. The matrices
of npc first columns of T and P are signed respectively T̂
and P̂ . C̃ is the projection matrix onto the residual subspace:

C̃ = (I− P̂ P̂T ) (2)

Call ek (J × n) and Xk (n × J) are respectively the projec-
tion on the residual subspace and the data matrix of the kth

observation of all the batches. The relation between them is
given as:

ek = C̃XT
k (3)

Signing:

XE,k = λ

k∑
j=1

(1− λ)k−jXj (4)

EWMA is used to filter the covariance matrix SE,k and the
residual subspaces projection eE,k as:

eE,k = λek + (1− λ)eE,k−1 = λ

k∑
j=1

(1− λ)k−jej

= λ

k∑
j=1

(1− λ)k−jC̃XT
j

= C̃ ×
(
λ

k∑
j=1

(1− λ)k−jXT
j

)
= C̃XT

E,k (5)

The coefficient λ (0 ≤ λ ≤ 1) represents the degree of
weighting decrease that determines the weight of older data
in the calculation.

Degradation detection indices Call Xnew,k (1× J) is the
kth observation of a new batch Xnew (K × J). Xnew,E,k is
calculated in the similar way:

Xnew,E,k = λ

k∑
j=1

(1− λ)k−jXnew,j (6)

and

enew,k = C̃XT
new,k (7)

enew,E,k = λenew,k + (1− λ)enew,E,k−1

= C̃XT
new,E,k (8)

In E-HMPCA, fault detection is ensured by classical PCA de-
tection index as Squared Prediction Error (SPE) for each ob-
servation k:

SPEE,new,k = eTnew,E,kenew,E,k (9)

The process is considered reliable if SPE is under their upper
control limit (UCL):

UCLSPEE,k =
vE,k
mE,k

χ2
2m2

E,k/vE,k
(10)
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wheremE,k and vE,k are the mean and variance of the SPEE,k
at the observation k of training data.

Degradation estimation via reconstruction The degrada-
tion reconstruction estimates the normal values X∗ by elimi-
nating the effect of a degradation direction Fr on the SPE. A
reconstruction Xr,k from Xk (k is the index of observation)
can be calculated as follows:

Xr,k = Xk − ΞrF̂r,k (11)

where F̂r,k is the estimated degradation magnitude along degra-
dation direction matrix Ξr such that Xr,k is closest to the
normal region. From (Mnassri, El Adel, & Ouladsine, 2013),
the F̂r,k and the projection of the reconstructed sample onto
SPE-subspace is given:

F̂r,k =
(

ΞTr C̃Ξr

)−1
ΞTr C̃X

T
k (12)

C̃
1
2XT

r,k =
(
I− C̃ 1

2 Ξr
(
ΞTr C̃Ξr

)−1
ΞTr C̃

1
2

)
C̃

1
2XT

k (13)

Singular value decomposition of C̃
1
2 Ξr:

C̃
1
2 Ξr = Ξ0

rDrV
T
r (14)

Call er,k is the ek after reconstruction.

er,k = C̃XT
r,k

= (I − Ξ0
rΞ

0
r
T

)C̃XT
k (15)

After the EWMA filter, the residual subspaces become:

er,E,k = λ
∑k
j=1(1− λ)k−jer,k

= λ
∑k
j=1(1− λ)k−j(I − Ξ0

rΞ
0
r
T

)C̃XT
k

= (I − Ξ0
rΞ

0
r
T

)C̃XT
E,k

= (I − Ξ0
rΞ

0
r
T

)eE,k (16)

The index SPE after reconstruction of a new batch Xnew at
observation k is:

SPEr,E,new,k = eTr,E,new,ker,E,new,k (17)

The degradation direction matrix Ξr is considered the true
degradation variables if the SPE is below their new UCL,
which are given as follows:

UCLSPEr,E,k
=

vr,E,k
mr,E,k

χ2
2m2

r,E,k/vr,E,k
(18)

where mr,E,k and vr,E,k are the mean and variance of the
SPEr,E,k at the observation k of training data. Notice that

the subscript r designates one set among the assumed de-
graded variable sets. The total number of possible sets of
J sensors is:

C1
J + C2

J + ...+ CJ−1J = 2J − 2

is really large when J ≥ 8. To reduce the number of can-
didate variable sets, an analysis of the SPE-contribution may
help. An illustration of this is provided in section 4.

2.1.2. Health indicator extraction

After subsection 2.1.1, the degraded sensors set {J s} = {j1, ..., jS}
is determined where S is the number of sensors. The critical
points are then identified via an algorithm with the idea: the
critical point of a degraded sensor js is the observation inter-
val kj at which the variance is the maximum:

kjs = arg max
k
{V ar(X̃js

i,k), i = n+ 1→ I} (19)

where X̃js
k =

Xjs
i,k−m

js
k

σjs
k

, Xjs
i,k is the measurement of product

i at observation k of sensor js; mjs
k = mean(Xjs

i=1→n,k),
σjsk = standard deviation (Xjs

i=1→n,k). With this algo-
rithm, the point (js, kjs) is considered representing the degra-
dation dynamics of the process. It is because a machine which
carries the degradation process, this process will come out
in some way of the evolution of the degraded sensors. The
variance of the measurement Xj

i,k from the beginning of de-
graded batch n+1 (because the first n batches are considered
as good quality) to the last batches I is the most logical way
which presents this degradation process.

The measure value of them is Xjs
i,kjs

with i ∈ 1, ..., I . They
are then arranged in a new matrix Xc:

Xc =


Xj1
n+1,kj1

Xj2
n+1,kj2

. . . XjS
n+1,kjS

Xj1
n+2,kj1

Xj2
n+2,kj2

. . . XjS
n+2,kjS

...
...

. . .
...

Xj1
I,kj1

Xj2
I,kj2

. . . XjS
I,kjS

 (20)

Xc is then mean-centered and unit-deviation scaled and is de-
composed by PCA:

Xc = TcP
T
c (21)

Each point of {j1, ..., jS} set has a progressively increasing
or decreasing evolution, but the increasing is just an inverse
trend of decreasing and vice versa. Therefore, the trend of all
these points can be presented in a vector, that is the first PC
of Xc, assigned I0:

I0 = XcPc1 (22)
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where Pc1 is the first eigenvector of Pc.

2.2. Analysis of health indicator dynamics

Applying the health index extraction presented in the previ-
ous section, a common form of the indicator is provided in
Fig. 2, called I0 (applied on a real data provided by STMi-
croelectronics). It is highly noisy with a large variance over
time. We might think that I0 can be modelled with the Wiener
process, which considers the HI as:

I0(t) = x0 + µt+ σB(t) (23)

where x0, µ, σ are constant, B(t) is the Brownian movement.
(23) can be rewritten as followings:

I0(t+ 1) = I0(t) + µ
(
(t+ 1)− t

)
+ σB(1)

⇔ I0(t+ 1)− I0(t) = µ+ σB(1) (24)

thus, the variance of ∆t = I0(t+ 1)− I0(t) does not depend
on t. Figure 3 shows ∆t of I0, which demonstrates that ∆t is
dependent on t. Therefore, the Wiener process is not adequate
to modelling this raw HI.

Figure 2. Raw health index I0

Figure 3. Variation of I0 between (t+ 1) and t

Therefore, it is necessary to choose an another method for HI
modelling.

2.2.1. Filtering:

A real health indicator is always monotonic over time because
we assume that the degradation is not reversible. However,

Figure 4. Health indicator I1

under the influence of perturbations of machine, of environ-
ment and significant disturbances of quality of input products,
I0 is not monotonic. First, a low-pass filter (e.g: an average
filter with a window size of 10) is used to eliminate high fre-
quency noises, the result is called I1 and given in the Fig. 4.

Then, if I1 increases progressively, the higher values reflect
the degradation better than their lower neighbour values and
inversely if I1 decreases progressively. Therefore, an algo-
rithm is proposed to eliminate disturbances and to monotonize
the indicator: I1 is analysed to structure a top curve It which
is then considered as health indicator if I1 increases or a
bottom-curve Ib if I1 decreases. This algorithm is presented
for an increasing index as follows (for a decreasing indicator
it is the same but replacing ”maximum” by ”minimum” and
replacing the signs by their opposite sign):

Step 1: Searching the maximum peaks of I1
{I1(i), i = 1→ I} is divided into several subsets:
{I1,u(i), i = 1 + wu→ w + wu}, u,w are integers
w > 1 (e.g:w = 10), u = 0, 1..., [I/w]
• If ∃u : max(I1,u(i)) > max(I1,u−1(i), I1,u+1(i))

=⇒ max(I1,u(i)) is a maximum peak
=⇒ It = It ∪max(I1,u(i))

Step 2: Monotonizing It
• Eliminating minimum peaks of It:

It(i) ≤ min(It(i− 1), It(i+ 1)) (this step is executed several
times till there is no minimum peak on It)

• Eliminating It(end) if It(end) ≤ It(end− 1)
After this step, the last value of It is the maximum. Signing imax is
the index of product of this last value. It(imax) = I1(imax) and
I1(imax) is also the maximum value of I1

Step 3: Interpolating and extrapolating It by linear method for all
product i, i ∈ {1, ..., imax}

2.2.2. Health index modelling

Gamma process is widely used for the deterioration mod-
elling because it is suitable to model gradual damage mono-
tonically accumulating over time such as wear, crack growth,
degrading health index, etc. which is presented clearly in a
survey of Gamma process (Van Noortwijk, 2009). Therefore,
in this work, Gamma process is chosen to model Y .
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A random quantity Y has a gamma distribution with shape
parameter ν > 0 and scale parameter u > 0 if its probability
density function is:

Ga(y|ν, u) =
uν

Γ(ν)
yν−1exp(−uy), y > 0 (25)

where Γ(a) =
∫∞
t=0

ta−1e−tdt. It is assumed that the ex-
pected deterioration can be described as a power law between
cumulative deterioration and time:

E(Y (t)) =
ν(t)

u
=
ctb

u
(26)

Consider a gamma process with shape function ν(t) = ctb

and scale parameter u. A data set consists of inspection times
ti, i = 1, ..., n where 0 = t0 < t1 < ... < tn, and cor-
responding of the cumulative deterioration yi, i = 1, ..., n,
where 0 < y0 ≤ y1 ≤ ... ≤ yn.

The parameters (u, c, b) of the gamma process have been es-
timated by combining the methods of least squared and maxi-
mum likelihood (Bakker & van Noortwijk, 2004). First, b can
be estimated using the least-squares method:

b =

∑n
i=1 log( titn )log( yiyn )∑n

i=1[log( titn )]2
(27)

Then the parameters u and c can be estimated by using the
method of moments (Van Noortwijk, 2009)

ĉ

û
=

∑n
i=1 δi∑n
i=1 wi

=
yn
tbn

= δ̄ (28)

yn
û

(1−
∑n
i=1 w

2
i

[
∑n
i=1 wi]

2
) =

n∑
i=1

(δi − δ̄wi)2 (29)

where wi = tbi − tbi−1, δi = yi − yi−1.

3. ON-LINE SUPERVISION

For on-line supervision: assigning in is the index of product.
For a new product in processed on machine, the obtained data
is used to calculate the health indicator and to estimate the
RUL. We repeat again that the time unit here is the duration
of processing a product on machine, thus, it is also the index
of product.

3.1. Extraction of HI and filtering

From the equation (22), the value of raw health index at prod-
uct in is calculated as:

I0(in) = Xc(in)× Pc1 (30)

whereXc(in) =
(
X̄j1
in,kj1

X̄j2
in,kj2

. . . X̄jS
in,kjS

)
, each

value X̄js
in,kjs

is computed from the raw measurement value

Xjs
in,kjs

of online data as follows:

X̄js
in,kjs

=
Xjs
in,kjs

−mjs
kjs

djskjs
(31)

mjs
kjs
, djskjs are respectively mean and standard deviation of

the critical points (js, kjs) of off-line data, Pc1 is the eigen-
vector given in subsection 2.1.

The curve I0 for 1→ in is then similarly filtered and the ob-
tained health index called Yn(1→ inmax), see 2.2.1.

3.2. RUL estimation

A failure threshold L is predefined. Supposing that the health
index is increasing (if it decreases, the method is the same but
with opposite signs). When Yn exceeds the normal operating
threshold TN , the prognosis model is launched. The cumula-
tive distribution function (cdf) of time to failure (Van Noortwijk,
2009) with the upper threshold L is:

F (t) = Pr{TL ≤ t} = Pr{X(t) ≥ L}

=

∫ ∞
x=L

fX(t)(x)dx =
Γ(ν(t), Lu)

Γ(ν(t))
(32)

where Γ(a, x) =
∫∞
z=x

za−1e−zdz

At the moment tn, the value of X(tn) is known as xn. The
definition of the RUL at time tn can be represented by the
first passage time of {X(t), t ≥ tn} crossing L as htn =
inf{htn : X(tn + htn) ≥ L|X(tn) < L}. The cdf of RUL
can be written:

F (htn) = Pr{X(tn + htn) ≥ L}
= Pr{X(tn + htn)−X(tn) ≥ L− xn}

=

∫ ∞
x=L−xn

Ga(ν(htn + tn)− ν(tn), u)dx

=
Γ(ν(htn + tn)− ν(tn), (L− xn)u)

Γ(ν(htn + tn)− ν(tn))
(33)

The probability density function (pdf) of RUL is:

f(htn) =
δ

δhtn
[
Γ(ν(htn + tn)− ν(tn), (L− xn)u)

Γ(ν(htn + tn)− ν(tn))
] (34)
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The expected RUL is:

E(htn) =

∫ ∞
htn=0

htnf(htn)dhtn (35)

The value of xn is updated for the online supervision, which
updated the RUL estimation.

4. APPLICATION

This section provides the result of application of the pro-
posed method on real industrial data from STMicroelectron-
ics. Measured variables are sampled at 1 second intervals
during a process, for 351 observations of totally 19 sensors
for one month of production, which represents about 1000
wafers from the first wafer to the last one. The data is pre-
processed by Dynamic Time Warping technique to obtain the
common length trajectories.

4.1. Off-line analysis

4.1.1. Health indicator extraction

The first two hundred wafers n = 200 are used to build the
UCL of SPE. The last batch is considered bad quality. Fig. 5
gives the result of degradation detection. The violations be-
fore k = 20 are characterized as in short duration, appear on
step/phase changes and not repeatable unit-to-unit, therefore,
they are spurious violations. Meanwhile, the violations from
k = 118 to k = 351 exhibit the drift of machine’s quality, this
is because of their long durations and their unit-to-unit repeat
since the last wafers. The most observation at which the SPE
is significant is k = 351. Thus, the contribution of SPE at
this observation is investigated. The candidature sensors are
1, 2, 9, 10, 12 and 18.

Figure 5. Degradation detection and SPE contribution

The result of degradation reconstruction on these sensors are
given in Fig. 6. We see that there are 4 cases whose recon-
struction make SPE under the threshold UCL. The set of case

3 is the set which consists the common sensors of the others
cases. Thus, the significant sensors are {9, 10, 18}. The crit-
ical point of these sensors are determined as given in Fig. 7.
Then the HI extracted from these points are shown in Fig. 2.

Figure 6. Reconstruction of degradation

Figure 7. Variance of observation points of sensors

4.1.2. Analysis of health indicator dynamics

Applying the filtering proposed in 2.2.1, the health index Y is
given in Fig. 8. The normal operating threshold is predefined
TN = −0.5 and the failure threshold is predefined L = 2.3.

The parameter result of health indicator modelling is u =
604.7, c = 0.94 and b = 1.15.
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Figure 8. Health indicator

4.2. Online supervision

Assuming that the reference HI represents all the system dy-
namics of degradation in the considered operating mode; to
validate the prognosis model, the online data is generated by
a simulator which takes into account the dynamics of histori-
cal data. One profile of online HI is given in Fig. 9 compared
to the off-line one (shifting forward with n=200). At each in-
spection time in, the available online data is known only for
t = 1, ..., in. When Yn(inmax) > TN , (see section 3.1), the
degradation alarm launches the prognosis model.

Figure 9. Online data

At each inspection time in, the real failure time is 731 thus
the real RUL is (731 − in). Hence, the estimate RUL (the
expected RUL, equation (35)) and the real RUL can be com-
pared as given in Fig. 10. The result shows that the RUL esti-
mation of almost inspection times gives a small error. This er-
ror is really small during i = 260→ 430 and i = 530→ 660
due to the updating of last value of Y in the equation 33.

However, from i = 673, the error becomes larger. The reason
for this is found in Fig. 9, that the degradation (Y -online)
decelerates during i = 673→ 704 then it re-accelerates. The
degradation is much fluctuating during some small intervals
but the average rate of Y -online is generally fitted to Gamma
process, that’s why the error is smaller before i = 673. This
profile is a particular example, which implies that the method
adapts to the available data but an improvement of the pro-
posed method is necessary to overcome the influences of lo-
cal fluctuations.

Figure 10. Estimation error

The root mean squared error of RUL estimation is 49 time
units (equivalent to the duration of processing 49 wafers or
nearly 2 lots in STMicroelectronics manufacturing) is a small
error.

5. CONCLUSION

This paper proposed a method of health indicator contribution
for discrete manufacturing processes based on degraded sen-
sors identification via degradation reconstruction. The Gamma
process is used for HI modelling. An application of the pro-
posed method on a real industrial case shows a small error
of RUL estimation for the online supervision. A further im-
provement of the proposed method is necessary to overcome
the influences of local fluctuations of HI in some particular
situations.
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