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ABSTRACT

Nowadays the economic, environmental and societal issues
concerning energy consumption require a deeper understand-
ing of the factors influencing it. The influencing factors could
concern the technical characteristics of the systems, the oper-
ational conditions and usage of equipment, the environmental
conditions, etc. To understand the main contributing factors
a knowledge model with the influencing factors is formalized
in the form of an ontology. This ontology model allows to
distinguish in a general way the main concepts (i.e. factors)
that show higher consumption trends. This way, a prelimi-
nary analysis reflecting the key influencing factors could be
perform in order to focus later on a deeper analysis with data
mining techniques. This paper focuses on the formalization
of an ontology model in the marine domain for energy con-
sumption purposes. Then, the approach is illustrated with an
example of a fleet of diesel engines.

1. INTRODUCTION

Managing energy consumption has become a key factor in en-
terprise concerns (Saidur, 2010), (Abdelaziz, Saidur, & Me-
khilef, 2011). Indeed, it impacts not only from an economical
point of view but from societal and sustainable development
point of view as well (Hepbasli & Ozalp, 2003). Indeed, en-
ergy consumption:

• Increases in the price of energy,

• Carbon impact taxes,

• Environmental impact...
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medium, provided the original author and source are credited.

Hence when designing new systems, engineers aim at opti-
mizing and decreasing energy consumption. However, many
“old” systems are still in used and require attention for de-
creasing their energy consumption. Toward this aim, one so-
lution is to bring new technologies to “old” systems. For in-
stance, in the building domain, one has seen outer insulation,
heat pump as new technologies available for upgrading old
buildings. Nevertheless, such way is slowed down because
of:

• The upgrading cost may be too high regarding the price
of the “old” system or the economical capabilities of the
owner;

• The ratio number of old systems by upgrade providers
is always very high when a new technology emerge and
makes the time to upgrade all “old” system very long.

When regarding quality management in enterprise, it preaches
to learn from mistakes and to pool and share best practices.
From this last idea, one can think to apply it to energy con-
sumption reduction. Indeed, such a way does not suffer from
both drawbacks outlined earlier. It cost almost nothing to ap-
ply new procedures since they do not require hardware up-
grade and they can be widely spread using information tech-
nologies. However, it requires tools in order to support the
determination of the best practices. Such tools have to deal
with large/huge amount of data, multi-dimensional data, het-
erogeneous data, business knowledge structuring”. One way
is to use data mining techniques in order to highlight those
best practices. However, data could be heterogeneous since
it can come from different units with different characteristics.
Then the use of data mining techniques alone may provide
poor results, since they are only based on data. Moreover,
data mining always requires pre-analysis in order to struc-
ture data and ease the search. Another way lies in using data
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structuring techniques through knowledge modeling in order
to help expert to detect those best practices. The paper pro-
poses to explore this second way. It shows how an expert can
use an ontology to analyze from several points of view the en-
ergy consumption “trajectory” in order to detect what are the
key factors impacting the reduction or increase of energy con-
sumption. The purpose of this approach is not to replace data
mining techniques, but to provide an overview of the factors
affecting power consumption in order to help data miners and
statisticians identifying the relevant data that require deeper
analysis. This paper focuses on the formalization of an on-
tology model in the marine domain for energy consumption
purposes. Then, we show on an example how the analysis can
be conducted.

2. TOWARDS A SEMANTIC MODEL FORMALIZATION

To identify the factors that impact energy consumption one
common approach is data mining where artificial intelligence,
statistics and machine learning techniques helps to explore
and discover knowledge from data. However, some draw-
backs of data mining techniques is the time and efforts re-
quired to treat real process data due to:

• the noise and outliers values in the signals,

• the synchronization between the multiple data sources,

• the heterogeneity of signals since systems evolve in dif-
ferent environments, with different missions and thus mon-
itored signals show significant variations (Voisin, Medina-
Oliva, Monnin, Léger, & Iung, 2013).

To facilitate the work of data miners and statisticians and to
overcome some oh these drawbacks, we propose to use se-
mantic models that integrate the knowledge from experts of a
domain and provide common semantic to data. In that sense,
semantic models, such as ontologies, structure information
from a common understanding of experts. The structured
knowledge is based on the definition of the main concepts
related to a domain and on the relationships among those con-
cepts.

This paper focuses on the formalization of knowledge in the
marine domain for energy consumption purposes. To provide
the structure to the energy consumption of diesel engines in
the marine domain, an ontology model is used. An ontology
determines formal specifications of knowledge in a domain
by defining the terms (vocabulary) and relations among them
(Gruber, 2009). Ontologies are composed of classes, proper-
ties of the classes and instances:

• Classes describe concepts in the domain. In the marine
domain, examples of classes are “components” or “diesel
engines”. Subclasses represent concepts that are more
specific than the superclass (mother class). When a su-
perclass has a subclass, it means that they are linked by

a subsumption relation, i.e. “is a” relation, allowing a
taxonomy to be defined. Hence, a hierarchy of classes is
established, from general classes to specific ones.

• Properties are contained in a class definition and describe
relationships among the classes. For example, the class
“component” has property called “is monitored by” with
the class “performance indicator”. The property “is mon-
itored by” links the individuals of the class “component”
with the individuals of the class “performance indicator”.

• Instances are the set of specific individuals of classes.
For example, the engine “Baudouin 12M26.2P2-002” is
a specific individual that is part of the class “diesel en-
gine”.

Ontologies define through concepts or classes, the character-
istics of similarities among units and contexts, for instance,
by defining common characteristics in the operational and
contextual domains. The ontology gathers knowledge which
is shared on one hand by the Condition Monitoring/ Prognos-
tics and Health Management (PHM) community and on the
other hand by the naval community. Some of the capabilities
provided consist in (Noy and McGuinness, 2001): sharing
common understanding of the structure of information among
people or software agents, making domain assumptions ex-
plicit, defining concepts and knowledge and making domain
inferences to obtain non-explicit knowledge.

The ontology model was built through experts interviews lead-
ing to the identification of the concepts to be considered and
of the relationships among those concepts.

3. ENERGY ORIENTED SEMANTIC MODEL

The main factors that impact energy consumption are classi-
fied in:

• Maintenance factors

• Operation factors

• Environmental factors

An ontology model is formalized in order to structure knowl-
edge and relationships among concepts coming from experts.
The semantic model allows grouping data, building clusters
and making them comparable. The different clusters will al-
low to detect differences between the groups and to identify
specific directions for deeper investigation. A brief explana-
tion of the factors that were integrated in the ontology model
is presented in the following.

For the maintenance factors, it is well known that some degra-
dation modes imply higher energy consumption. So a clas-
sification of degradation modes is included in the ontology
model. The classification is built from the norm IEC 60812
(Analysis techniques for system reliability – Procedure for
failure mode and effects analysis (FMEA), 2006) (Figure 1).
The type of maintenance that is performed affects the energy
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consumption trends of equipments as well. Hence, it is in-
cluded and built from the norm EN 13306 (Maintenance ter-
minology, 2001) (Figure 1).

The operational context integrates the operational conditions
to which the units are exposed to. Operational conditions usu-
ally lead to different units’ behaviors (Medina-Oliva, Voisin,
Monnin, & Léger, 2014). In the naval domain, operational
context is break up into (Figure 2):

• The operation conditions (Figure 3): which include the
speed of the engine, torque as well as the engine oper-
ation temperatures, such as the engine outlet water tem-
perature. Moreover, engine speed are classified accord-
ing to expert’s rules into “low”, “medium” and “high”
speed engines. This rule is coded in the ontology; for in-
stance, the “low speed” engine are those whose speed is
lower than 200 rpm.

• The operation modes enumerate the working modes of
the machine. For instance, steady state during constant
speed or transient state during the acceleration/braking
phases, etc.

• The production conditions include how the user main-
tains and uses the equipment. For this reason, the type
of machine-operator is included (e.g. rough, smooth and
regular driving), as well as the number of stops made.
The lubrication and coolant consumption and types are
included as well, since they affect the engine performances.

• Machine configurations corresponds to the arrangement
or structure of the equipment. It can be in series or in
parallel. This factor is formalized in order to differentiate
behaviors of the power consumption evolution. Material
and performances will depend if the machine is used in
series with high demand (constantly) or if they are used
with a lower load in a parallel configuration.

• Mission of the engine depends on its usage. This factor is
quantified either by the distance travelled or by the work-
ing time. Also the usage of the engine will depend on the
mission of the ship. This is why different types of ships
were included (non-exhaustive list).

The environmental context describes the surrounding envi-
ronment of the engines as a third class of influencing factors.
The environment takes into account the weather conditions,
the chemical composition of water (pH, salinity), the environ-
mental temperature, water turbulence, etc. (Figure 4) which
might impact units functioning behavior.

Hence, the main classes of factors that influence power con-
sumption are formalized. This formalized knowledge is used
with the gathered data in order to understand the power con-
sumption behavior.
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Figure 3. Part of operation conditions: speed classes.
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Figure 4. Part of environmental factors.

4. ENERGY ORIENTED CAUSALITY RELATIONSHIPS

Once an ontology model is built, it allows querying on the
data stored in the database. The user (e.g. statistician) is able
to have a first approach suggesting plausible explanations of
some behaviors. To do that, one must first classify the studied
scenarios in two clusters: Low Consumption (LC) or High
Consumtion (HC) individuals. As a first approach the median
value of the power consumption indicator was used allowing
to divide the scenarios in two clusters. In Figure 5 the LC
individuals are colored in green and the HC individuals in
red.

After, the number of occurrences found for each concept are
counted. For example, if an instance has ran 50% of the work-
ing time in “low speed”, then 0.5 of individual is counted for
that concept. Once the occurrences of every individual are
counted for all the concepts in the ontology, bar charts repre-
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Figure 5. Definition of two clusters of individuals.

senting the differences trends of LC and HC individuals are
shown (Figure 6). These bar charts reflect the most important
factors influencing energy consumption at a first sight. This
way a pre-analysis tool to data mining is proposed. Such tool
helps to:

• search meaningful comparisons though the definition of
clusters,

• identify possible causality relationships through compar-
isons,

• identify where to investigate further.

To illustrate the added-value of this approach a case study of
a diesel engine used in the marine domain is studied.

5. CASE STUDY

To illustrate the feasibility of the proposed approach as well
as the added-value, a scenario is proposed. This scenario
shows how the ontology model is useful for statisticians be-
fore a deeper analysis for energy consumption purposes. The
scenario contains 33 identical individuals exposed to differ-
ent operational conditions. As a first step, the two clusters of
individuals are presented in Figure 5: LC and HC individuals.
The objective is to identify the key factors that influence the
most the power consumption. To do such analysis, the impact
of the concepts described in the ontology are investigated.

5.1. Speed classes (Figure 3)

According to the different speed classes defined by the ex-
perts, a bar chart is built showing the number of individuals
belonging to each class (Figure 6). The chart uses the ratio of
time spent in each speed class. For example if one individual
spent 50% of time in the class “stopped”, 25% in the class
“low speed” and 25% in the class “medium speed”, then the
corresponding fraction of the individual is associated to each
class. Finally all the fractions of individuals are summed for
each class.

As a result we can see that the HC individuals spent more
time in the medium and high speed classes (Figure 6). Deeper
analysis is needed in that sense.
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Figure 6. Bar chart with the distribution of individuals ac-
cording the different speed classes.
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Figure 7. Bar chart with the distribution of individuals ac-
cording the different speed direction classes.

5.2. Speed direction classes (Figure 3)

The speed direction was also considered. In Figure 7, it can
be seen that there is a slight difference between the LC in-
dividuals running in the positive direction and the HC ones.
The same behavior is found for the negative direction con-
cept. However there is few difference so it can be possible to
conclude that this concept is not interesting for further analy-
sis.

5.3. Torque classes (Figure 2)

From the torque classes’ analysis, it can be noticed that the
individuals that belongs to the very high torque classes have
a higher power consumption (Figure 8). Deeper analysis is
needed to understand the relation between the increment of
torque and power consumption.

5.4. Machine-Operator classes (Figure 2)

There are two types of machine-operators for the engines.
With this approach it is possible to notice a significant differ-
ence between both machine-operators (Figure 9): Machine-
operator Y produces higher power consumption. This factor
is interesting for further analysis.
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5.5. Operation modes (Figure 2)

The effect of the engine operation mode is also addressed. As
expected, individuals that are more in operation mode (and
thus more loaded) require more power (Figure 10).

5.6. Transient mode classes (Figure 2)

The analysis of the time spent in transient modes (accelera-
tion and braking) was also studied (Figure 11). Such opera-
tions modes are listed in the ontology (Figure 2). It is possible
to observe that LC individuals spent more time in acceleration
and braking modes. It is also known that the acceleration and
braking phases demand more load (regarding the inertia). So
such result is surprising. For this reason and in order to under-
stand better the effect of the acceleration/braking modes, this
factor needs to be further studied. For example the number
of acceleration/braking, the speed delta among the accelera-
tions/braking, etc. Maybe some correlated factors exist and
should be investigated such as the waiting/moving factors.

5.7. Operation condition - engine exhaust gases tempera-
ture (Figure 2)

Concerning engine exhaust gases temperature, it can be seen
a slight trend of more power consumption when the exhaust
gases temperature is very high (class 380-400◦C) (Figure 12).
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Figure 10. Bar chart with the distribution of individuals ac-
cording the different operation modes classes.

0	  

20	  

40	  

60	  

80	  

Accelera-on	   Brake	  

Distribu-on	  of	  individuals	  according	  the	  
accelera-on/braking	  -me	  

LC	  individuals	   HC	  individuals	  

Figure 11. Bar chart distribution with the distribution of indi-
viduals according the acceleration/braking time.

However, this trend is not clearly established and thus with
the existing information, it is not possible to draw conclu-
sions.

5.8. Environmental temperature class (Figure 4)

A final factor that was study was the effect of the environmen-
tal temperature on the power consumption (Figure 13). It can
be noticed that for lower temperature classes (¿25”éC and 25-
28 “éC), the power consumption is higher and for the higher
temperature classes, the power consumption is reduced.

With this preliminary analysis based on a semantic model it
is possible to focus the attention on the more relevant factors
that affect the power consumption. In this case-study some
factors were irrelevant such as the speed direction, the opera-
tion modes classes, and the exhaust gases temperature. On the
other side, factors that require deeper analysis are: the speed
and torque classes, the operator, the transient mode classes
and the environment temperature.
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6. CONCLUSIONS

The proposed approach provides the basis for the analysis of
the influencing factors on performances. In this paper the tar-
get performance is the power-consumption. To do such anal-
ysis, an ontology model is formalized. The ontology contains
expert knowledge which is introduced as a part of the classes
(concepts) in the model. The classes allows to make clus-
ter to bring information for engineers/statisticians. Moreover,
the ontology model contains contextual information about the
operational and environmental conditions of the engines, al-
lowing to understand better some behaviors.

The influence of each cluster (represented as classes in the
ontology) on the power consumption can then be visualized.
This way, data-mining time and efforts are reduced. More-
over, the semantic model could integrate causality links that
could not always be explained with data.

Some experimentations have already been done as shown in
this paper. However, further experimentations have to be con-
ducted to show the feasibility and the added value of this
methodology. Moreover embedded knowledge could be re-
fined while implementing this solution to different industrial
systems.

As a future work, the analysis must take into account several

factors at the same time. Hence, we propose to use 3D bar
chart to show correlated influences of 2 factors. Moreover,
a semantic model to deal with the technical characteristics
of different units will be integrated, in order to use it from a
fleet-wide perspective (Medina-Oliva et al., 2014).
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Figure 1. Part of the maintenance factors.
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Figure 2. Part of the operational factors.
9


