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ABSTRACT

This work presents an efficient computational framework for
estimating the end of life (EOL) and remaining useful life
(RUL) by combining the particle filter (PF)-based prognostics
with the technique of Subset simulation. It has been named
PFP-SubSim on behalf of the full denomination of the com-
putational framework, namely, PF-based prognostics based
on Subset Simulation. This scheme is especially useful when
dealing with the prognostics of evolving processes with asymp-
totic behaviors, as observed in practice for many degradation
processes. The effectiveness and accuracy of the proposed al-
gorithm is demonstrated through an example for predicting
the probability density function of EOL for a carbon-fibre
composite coupon subjected to an asymptotic fatigue degra-
dation process. It is shown that PFP-SubSim algorithm is ef-
ficient, and at the same time, fairly accurate in obtaining the
probability density function of EOL and RUL as compared to
the traditional PF-based prognostic approach reported in the
PHM literature.

1. INTRODUCTION

The goal of prognostics is to make end of life (EOL) and re-
maining useful life (RUL) predictions of components, subsys-
tems, and systems that enable timely maintenance decisions
to be made under the presence of uncertainty. In practice, dif-
ferent sources of uncertainty are present in a typical prognos-
tic problem, namely, (a) uncertainty in modeling the system,
(b) uncertainty in future inputs to the system and (c) mea-
surements noise (Sankararaman & Goebel, 2013). Further it
is added the uncertainty that the PF-based prognostics algo-
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rithm (Orchard, Kacprzynski, Goebel, Saha, & Vachtsevanos,
2008) introduces itself, since, in general, these prognostics
algorithms employ a limited amount of discrete samples for
making predictions, unless analytical methods are employed,
which are limited to very specific cases in real life applica-
tions (Sankararaman & Goebel, 2013).

There is an additional source of error attributable to the prog-
nostics algorithm itself, which is due to the lack of confidence
in dealing with the EOL estimate, and it is especially rep-
resentative of systems whose evolving dynamic exhibit an
asymptotic behavior in approaching towards the thresholds.
In this situation, prediction accuracy and precision can vary
significantly unless higher-density sampling-based methods
are employed to characterize fault propagation trajectories
achieving higher resolutions in the vicinity of the threshold,
which considerably increases the computational cost. On the
other hand, choosing a conservative threshold, such that it
meets a propagation trajectory prior to the asymptotic region,
is one approach but results in throwing away potentially use-
ful component life.

In this work, a novel efficient algorithm, named PFP-SubSim,
is presented for estimating the EOL and RUL by combining
the PF-based prognostics (Daigle & Goebel, 2011) with the
technique of Subset simulation for efficient rare-event sim-
ulation, first developed in (Au & Beck, 2001). The result
is a especially suited algorithm for the prognosis of asymp-
totic processes. The idea behind PFP-SubSim algorithm is to
split the multi-step-ahead predicted trajectories into multiple
branches of selected samples (seeds) at various stages of the
process, which are further reproduced into closer approxima-
tions to the desired threshold by conditional sampling using
the propagation model. A sequence of nested subsets of sam-
ples (simulation levels) are sequentially defined such that, at
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each simulation level, the samples are increasingly distributed
in the vicinity of the threshold, achieving high resolution for
the EOL estimate.

A case study is presented for predicting the EOL of a com-
posite coupon subjected to an asymptotic fatigue degradation
process, that illustrates some of the challenges in a real-world
application of the algorithm. Matrix micro-cracks are con-
sidered as the primary degradation mode where the increase
in micro-cracks density exhibits asymptotic behavior as fa-
tigue cycling continues. Structural health monitoring in this
example is accomplished through Lamb wave-based active
interrogation using PZT sensors together with a set of strain-
gauges for measuring stiffness reduction. The data used for
this case study is an open-access dataset distributed by NASA
Ames Prognostics Data Repository (Saxena, Goebel, Larrosa,
& Chang, 2008).

The paper is organized as follows. Section 2 reviews the the-
ory underlying the prognostics problem and overviews the
computational architecture we adopt in further sections. In
Section 3 the basis of Subset Simulation method is presented
before introducing a formal Subset Simulation approach in a
prognostic context, which is provided in Section 4. The ef-
ficiency of FPF-SubSim is illustrated in Section 5 through a
case study. In Section 6, a discussion about the performance
of PFP-SubSim algorithm in relation with the standard PF-
based prognostic algorithm is provided. Section 7 provides
concluding remarks.

2. PF-BASED PROGNOSTICS

Let consider a state-space model which is used to sequen-
tially predicting the state xk ∈ X ⊂ Rnx of a dynamic sys-
tem for observed data vector yk, where k ∈ N, is the time
index. Let us also consider that the state xk may depends on
a set of model parameters θ ∈ Θ ⊂ Rnθ . Mathematically, the
state-space model can be described at time k in a generalized
manner as:

xk = fk(xk−1, uk, vk, θ) (1a)
yk = hk(xk, uk, wk, θ) (1b)

where uk ∈ Rnu is the input vector and vk ∈ Rnv and
wk ∈ Rnw , are uncertain variables introduced to account
for the model error and measurement error, respectively. The
functions fk and hk are possibly nonlinear functions for the
state transition evolution and observation equation, respec-
tively. In the last equation, the measurements yk are assumed
conditionally independent given the parameter θ ∈ Rnθ and
the states xk ∈ X , follow a Markov model of order one. In
addition, it is defined the augmented state zk in the joint state-
parameter space as zk = (xk, θ) ∈ Z = Θ × X ⊂ Rnθ+nx ,
so that p(zk) = p(xk|θ)p(θ). The focus of state-estima-
tion (also known as the filtering problem) is on sequentially
updating the probability density function (PDF) of the state

zk, given the observed measurements up to time k, y0:k =
{y0, . . . , yk−1, yk}, i.e., p(xk, θk|y0:k) ≡ p(zk|y0:k). This
implies the evaluation of multidimensional integrals parame-
terized by θ, within a Bayesian framework of prediction and
updating (Cappe, Guillin, Marin, & Robert, 2004). These
integrals are usually intractable except some especial cases
of linear systems and Gaussian noise, hence a generally fol-
lowed solution is to obtain an approximation to p(zk|y0:k) by
means of particle filters (PF) (Gordon, Salmond, & Smith,
1993), which may be directly applied to nonlinear systems
with non-Gaussian noise terms (Arulampalam, Maskell, Gor-
don, & Clapp, 2002). Using PF, the approximation to the
state distribution p(zk|y0:k) is described through a set of N
discrete weighted particles

{
(x

(i)
k , θ

(i)
k , ω

(i)
k

}N
i=1

that can be
readily sampled from a convenient importance distribution
q(x0:k, θ0:k|y0:k) as:

p(x0:k, θ0:k|y0:k) ≈
N∑

i=1

ŵ
(i)
k δ(x0:k−x(i)

0:k)δ(θ0:k−θ(i)
0:k) (2)

where ŵ(i)
k is the unnormalized importance weight for the ith

particle:

ŵ
(i)
k =

p(x
(i)
0:k, θ0:k|y0:k)

q(x
(i)
0:k, θ0:k|y0:k)

(3)

For practical reasons, the PDF q(x0:k, θ0:k|y1:k) is chosen so
that it admits a sample procedure by choosing q(x0:k, θ0:k|y0:k)
= q(x0:k, θ0:k|y0:k−1) (Arulampalam et al., 2002), hence it
can be factorized in a form similar to that of the target poste-
rior PDF, i.e. :

q(x0:k, θ0:k|y0:k) = q(x0:k−1, θ0:k−1|y0:k−1)q(xk|xk−1, θk−1),
resulting:

ŵ
(i)
k ∝ ŵ

(i−1)
k

p(x
(i)
k |x

(i)
k−1, θ

(i)
k−1)p(yk|x(i)

k , θ
(i)
k )

q(x
(i)
k |x

(i)
k−1, θ

(i)
k )

(4)

where p(x(i)
k |x

(i)
k−1, θ

(i)
k−1) and p(yk|x(i)

k , θ
(i)
k ) are1 the PDFs

of state estimation and updating, respectively, which can be
obtained using the state-space model defined in Eq. (1) and
assuming prescribed PDFs for vk and wk. Without lack of
generality, we adopt the bootstrap filter (Gordon et al., 1993)
consisting on adopting q(xk|xk−1, θk−1) = p(xk|xk−1, θk−1),
so that the expression for the ith unnormalized particle weight
yields

ŵ
(i)
k ∝ ŵ

(i)
k−1p(yk|x

(i)
k , θ

(i)
k ) (5)

Observe from Eqs. (4) and (5) that the weight values ŵ(i)
k are

known only up to a scaling factor, which can be overpassed
by normalization as: w(i)

k = ŵ
(i)
k /

∑N
i=1 ŵ

(i)
k , i = 1, . . . , N ,

where w(i)
k denotes the normalized value of the ith particle

1For simpler notation the conditioning on the model input uk is dropped
from Eq. (1)
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at time k. A pseudocode implementation of the PF is given
in Algorithm 1, which includes a systematic resampling step
(Rubin, 1987) to avoid the well-known degeneracy deficiency
of the PF (Cappe et al., 2004).

2.1. Prognostics and RUL prediction

Prognostics is concerned with the performance of the compo-
nent that lies outside a given region of acceptable behavior.
Mathematically, it requires the generation of a `-step ahead
prediction of state PDF, namely p(zk+`|y1:k), using the most
up-to-date knowledge of the system at time k (Orchard et al.,
2008). By computing the time indexes t > k ∈ N when
future states zt violate any previously defined thresholds, an
estimate of the end of life (EOL) can be derived.

Algorithm 1 PF with on-line parameter updating
1: inputs:
2: N, {number of particles per time step}
3: Algorithm:

4: Initialize
[(
θ

(1)
0 , x

(1)
0

)
, . . . ,

(
θ

(i)
0 , x

(i)
0

)
, . . . ,

(
θ

(N)
0 , x

(N)
0

)]
,

where (θ, x) ∼ p(θ)p(x|θ)
5: Assign the initial unnorrmalized weights:{

ŵ
(i)
0 = p(y0|x(i)

0 , θ(i))
}N
i=1

At k > 1 {time k evolves as new data point arrives}
6: Resampling of N particles according to weights
w

(i)
k−1, i = 1, . . . , N .

7: for i = 1 to N do
8: Sample: θ(i)

k ∼ p(θk|θ
(i)
k−1)

x
(i)
k ∼ p(xk|x

(i)
k−1, θ

(i)
k ).

9: Update the weight ŵ(i)
k = p(yk|x(i)

k , θ
(i)
k )

10: end for
11: Normalize weights w(i)

k = ŵ
(i)
k /

∑N
i=1 ŵ

(i)
k

12: output:
{

(x
(i)
k , θ

(i)
k ), w

(i)
k

}N
i=1

The region of unacceptable behavior can be defined by means
of a set of thresholds b = {b1, . . . , bc} on one or various
critical parameters. These thresholds can be combined into a
threshold function TEOL = TEOL(x, θ) ≡ TEOL(z), that
maps a given point in the joint state-parameter space to the
Boolean domain {0, 1} (Daigle & Goebel, 2011). For instance,
when a given particle i starting from time k performs a ran-
dom walk and hits any of the thresholds in b, then T (i)

EOL ≡
TEOL(z

(i)
k ) = 1, otherwise T (i)

EOL = 0. The time t > k at
which that happens defines the EOLk for that particle. Math-
ematically:

EOL
(i)
k = inf{t ∈ N : t > k ∧ T (i)

EOL = 1} (6)

Using the updated weights at the starting time k, an approxi-

mation to the PDF of EOL is given by:

p(EOLn|y0:k) ≈
N∑

i=1

ω
(i)
k δ(EOLk − EOL(i)

k ) (7)

Once EOLn is estimated, the remaining useful life can be
readily obtained as RULk = EOLk − k. An algorithmic
description of the prognostic procedure is provided as Algo-
rithm 2.

Algorithm 2 Standard PF-prognostics and RUL prediction

1: inputs:
{(

x
(i)
k , θ

(i)
k

)
, ω

(i)
k

}N
i=1

, b = {b1, . . . , bc}
2: for i = 1→ N do
3: Calculate: TEOL

(
x

(i)
k , θ

(i)
k

)

4: while T iEOL = 0 do
5: Sample: θ(i)

t ∼ p(θt|θ(i)
t−1)

x
(i)
t ∼ p(xt|x(i)

t−1, θ
(i)
t ).

6: t← t+ 1, t > k

7: zt =
(
x

(i)
t , θ

(i)
t

)
← zt+1 =

(
x

(i)
t+1, θ

(i)
t+1

)

8: end while
9: EOL

(i)
k ← t

RUL
(i)
k = EOL

(i)
k − k

10: end for
11: output EOLk, RULk = EOLk − k

3. SUBSET SIMULATION METHOD

Subset Simulation is an adaptive stochastic simulation ap-
proach originally proposed to compute small failure proba-
bilities of engineering systems (Au & Beck, 2001). The con-
ceptual idea behind Subset Simulation is to represent a small
failure probability as a product of larger probabilities.

In a general way, Subset Simulation is a method for efficiently
generating conditional samples that correspond to specified
levels of a performance function g : Rnθ+nx → R in a pro-
gressive manner, converting a problem involving rare-event
simulation into a sequence of problems involving more fre-
quent events. This general aspect makes Subset Simulation
applicable to a broad range of areas of science where the
simulation/prediction of unprovable events is required (Au &
Beck, 2003; Ching, Au, & Beck, 2005). In this section, the
Subset Simulation method is presented using its primary aim
on small failure probabilities estimation. In the next section,
Subset Simulation is specialized for the use in prognostics,
and in particular for asymptotic processes.

Let F be the region of unacceptable behavior, or failure re-
gion, in the z-space, z ∈ Z ⊂ Rnθ+nx , corresponding to
exceedance of the performance function g above some speci-
fied threshold level b:

F = {z ∈ Z : g(z) > b} (8)
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Let us now assume that F is defined as the intersection of
m regions Z, i.e, they are arranged as nested subsets of re-
gions starting from the entire space Z and shrinking to the
failure domain F , i.e., F1 ⊃ F2 . . . ⊃ Fm−1 ⊃ Fm = F ,
so that F =

⋂m
j=1 Fj . Each subset Fj (typically termed as

intermediate failure domain) is defined as Fj = {z ∈ Z :
g(z) > bj}, with bj+1 > bj , such that p(z|Fj) ∝ p(z)IFj (z),
j = 1, . . . ,m. The term p(z) denotes the probability model
for z. By definition of conditional probability, it follows that2:

P (F) = P
( m⋂

j=1

Fj
)

= P (F1)

m∏

j=2

P (Fj |Fj−1) (9)

where P (Fj |Fj−1) ≡ P (z ∈ Fj |z ∈ Fj−1), is the condi-
tional failure probability at the (j − 1)th intermediate failure
domain. Observe that the probability P (F) may be relatively
small, however it can be approximated by Subset Simulation
as the product of larger conditional probabilities involved in
Eq. (9), thus avoiding simulation of rare events.

In the last equation, apart from P (F1), which can be read-
ily estimated by the standard Monte Carlo method (MC), the
remaining factors cannot be efficiently estimated because of
the sampling conditional on Fj−1, j = 2, . . . ,m. However,
MCMC methods can be used for sampling from the PDF
p(zj−1|Fj−1) when j > 2 giving:

P (Fj |Fj−1) ≈ P̄j =
1

M

M∑

n=1

IFj (z
(n)
j−1) (10)

where z(n)
j−1 ∼ p(zj−1|Fj−1) and IFj (z

(n)
j−1) is an indicator

function for the region Fj , j = 1, . . . ,m, that assigns a value
of 1 when g(z

(n)
j−1) > bj , and 0 otherwise.

Observe that it is possible to obtain Markov chain samples
that are generated at the (j−1)th level which lie inFj , so that
they are distributed as p(z|Fj). Hence they provide “seeds”
for simulating more samples according to p(z|Fj) by using
MCMC sampling with no burn-in required, which is an im-
portant feature of Subset Simulation to avoid wasting sam-
ples (Au & Beck, 2001). As described further below, Fj is
actually chosen adaptively based on the samples {z(n)

j−1, n =
1, . . . ,M} from p(z|Fj−1) in such a way that the worst (in
the sense of closer to the intermediate failure threshold) among
theM samples define an intermediate level. For practical rea-
sons, the amount of samples defining the intermediate level
are chosen as a specified fraction of the total amount of M
samples by fixing a value P0 ∈ (0, 1), so that there are ex-
actly NP0 of these seed samples in Fj

(
so P̄j = P0 in

Eq. (10)
)
. For a specified value of P0, the intermediate thresh-

old value bj defining Fj is obtained in an adaptive manner as

2In what follows, we use P (·) to denote probability whereas a PDF is ex-
pressed as p(·). In addition, we use P (F) ≡ P (z ∈ F), for simpler
notation

the [MP0]
th largest value among the values g(z

(n)
j−1), n =

1, . . . ,M , so that the sample estimate of P (Fj |Fj−1) in Eq.
(10) is equal to P0. The remaining M(1 − P0) samples are
generated from p(z|Fj) by MCMC, giving a total of M sam-
ples in Fj . Repeating this process, we can compute the con-
ditional probabilities of the higher-conditional levels until the
final region Fm = F has been reached.

In Subset Simulation, the choice of an adequate P0 has a sig-
nificant impact on the efficiency of the algorithm. Indeed, a
small value for the conditional probability (P0 → 0) makes
that the distance between consecutive intermediate levels bj−
bj−1 becomes too large, which leads to a rare-event simula-
tion problem. In the other hand, if the intermediate threshold
values were chosen too close (P0 → 1), the algorithm would
take a large total number of simulation levels m (and hence
large computational effort) to progress toward the target re-
gion of interest, F . Hence, a rational choice for P0 is of key
importance for the efficiency of the algorithm. In the origi-
nal presentation of Subset Simulation in (Au & Beck, 2001),
P0 = 0.1 was recommended, and more recently in (Zuev,
Beck, Au, & Katafygiotis, 2011), the range 0.1 6 P0 6
0.3 was found to be near optimal after a rigorous sensitiv-
ity study of Subset Simulation. In this paper, we will adopt
P0 = 0.2. For convenience of implementation, P0 is chosen
so that MP0 and 1/P0 are positive integers.

As stated before, to draw samples from the target PDF p(z|Fj),
MCMC methods like Metropolis-Hastings (Metropolis, Rosen-
bluth, Rosenbluth, Teller, & Teller, 1953) are adequate. In
the original version of Subset Simulation (Au & Beck, 2001),
a modified Metropolis algorithm (MMA) was proposed that
worked well even in very high dimensions (e.g. 103-104), be-
cause the original algorithm fails in this case (Au & Beck,
2001)). In MMA, a univariate proposal PDF is chosen for
each component of the parameter vector and each compo-
nent candidate is accepted or rejected separately, instead of
drawing a full parameter vector candidate from a multi-di-
mensional PDF as in the original algorithm. To avoid repeat-
ing literature, the reader is refered to (Au & Beck, 2001) for
further details about MMA. More details about implementa-
tion issues can be encountered in the work of (Zuev et al.,
2011).

4. SUBSET SIMULATION IN PF-BASED PROGNOSTICS

In this section, the Subset Simulation method presented above
is adapted for its application in prognostics. The definition of
failure regionF in Eq. (8) is adopted here to establish a nested
sequence of prognostic regions Fj in Z = Θ × X , whose
points are of the form zjt ≡ (xjt , θ

j
t ), t > k, such that g(zjt ) <

bj , being g : F → R the performance function on Z. The
sequence of threshold values bj+1 > bj , j = 1, . . . ,m are

4
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obtained3 sequentially as in Section 3. Observe that the per-
formance function g works analogously to the TEOL function
defined in Section 2.1. The main difference between them
is that g allows us to know not only whether the state has
reached the threshold b, but also how close it is to b if it has
not.

Summarizing, the proposed algorithm simulate sequentially
the joint state-parameter zjt = (xjt , θ

j
t ) over a set of nested re-

gionsFj , j = 1, . . . ,m, such that zjt ∼ IFj (θ, x)p(x|θ)p(θ).
Figure 1 schematically describes the performance of the algo-
rithm.

See Algorithm 3 for a pseudocode implementation, which is
intended to be sufficient for most cases of application. The al-
gorithm is implemented such that a fixed amount of M sam-
ples are drawn per simulation level Fj , so that NT = mM :
the total amount of model evaluations required by the algo-
rithm to reach the final threshold. It is important to remark
that it does not imply any restriction but it allows control-
ling the computational burden. In addition, the conditional
probability is set to P0 = 0.2, following the recommendation
about Subset Simulation method in (Zuev et al., 2011). Fig-
ure 2 provides an algorithm flow-chart to better understand
the main steps of the algorithm. For simplicity, the time sub-
scripts are dropped from Step 10, since the time indexing in-
formation is implicitly contained at each sample.

k k + 1
. . .

t

F

Fj

Fj−1

Time index

z t

Figure 1. Generation of conditional samples in PFP-Sub-
Sim: solid disks represent samples in the joint state-parameter
space. Darker gray tones are used to represent samples dis-
tributed in increasing intermediate regions. Circled disks are
the Markov chain samples used as seeds for generating new
samples distributed as p(·|Fj), j = 1, . . . ,m.

3The bj sequence is an increasing sequence (i.e., bj+1 > bj ) or a de-
creasingly sequence (bj+1 < bj ) depending wether the process is a non-
decreasing or decreasing process, respectively. With no loss of generality, it
is considered as an increasing sequence.

Algorithm 3 Pseudocode implementation for PFP-SubSim
1: Inputs:
2: P0 ∈ [0, 1] {gives percentile selection, chosen so
NP0, 1/P0 ∈ Z+; P0 = 0.2 is recommended}.

3: M, {number of samples per intermediate level}; m,
{maximum number of simulation levels allowed};
` = M/N .

Require:
{

(x
(i)
k , θ

(i)
k ), w

(i)
k

}N
i=1

; e.g. use Algorithm 1.
4: Algorithm:
5: for i : 1, . . . , N do
6: for t : k + 1, . . . , k + ` do
7: Sample θ0,(i)

t ∼ p(θt|θ(i)
t−1)

x
0,(i)
t ∼ p(xt|x(i)

t−1, θ
(i)
t ).

8: end for
9: end for

10:
[
(θ0,(1), x0,(1)), . . . , (θ0,(M), x0,(M))

]

11: for j : 1, . . . ,m do
12: for n : 1, . . . ,M do

13: Evaluate: g(n)
j = g

(
zj−1,(n)

)
;

14: end for
15: Sort

[(
θj−1,(n), xj−1,(n)

)
, n : 1, . . . ,M

]
so that

g
(1)
j 6 g

(2)
j 6 . . . g

(M)
j

16: Fix bj = 1
2

(
g

(MP0)
j + g

(MP0+1)
j

)

17: for n = 1, . . . ,MP0 do
18: Select as a seed

(
θ
j,(n)
(1) , x

j,(n)
(1)

)
=(

θj−1,(n), xj−1,(n)
)
∼ p
(
θ, x|Fj

)

19: Run MMA (Au & Beck, 2001) to generate
1/P0 states of a Markov chain lying in Fj :[(
θ
j,(n)
(1) , x

j,(n)
(1)

)
, . . . ,

(
θ
j,(n)
(1/P0), x

j,(n)
(1/P0)

)]

20: end for
21: Renumber

[
(θ
j,(n)
(i) , x

j,(n)
(i) )

]

n = 1, . . . ,MP0; i = 1, . . . , 1/P0 as:
22:

[
(θj,(1), xj,(1)), . . . , (θj,(M), xj,(M))

]

23: if bj > b then
Record the times indexes of the first-passage
points→End Algorithm

24: end if
25: end for

5
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Algorithm flow-chart

Run forward the model
xt = fk(xt−1, ut, vt, θt)

θ ∼ p(θt|θt−1)
t > k

for j=1 : m

Evaluate the performance function:
g
(n)
j = g

(
zj−1,(n)

)
, n = 1, . . . ,M.

Fix the threshold value:
bj as [MP0]

th percentile of
{
g
(
zj−1,(n)

)}M

n=1

Automatically define the set Fj:
Fj ,

{
(z ∈ Z) : g(zj) < bj

}

Select MP0 seeds:(
z
j,(n)
(1)

)
=
(
zj−1,(n)

)
∼ p

(
· |Fj

)
,

n = 1, . . . ,MP0

Generate 1/P0 states of
a Markov Chain lying in Fj:[(
z
j,(n)
(1)

)
, . . . ,

(
z
j,(n)
(1/P0)

)]
∼ p

(
· |Fj

)

Renumber (z
j,(n)
(i) )

n = 1, . . . ,MP0;
i = 1, . . . , 1/P0 as:[(
zj,(1)

)
, . . . ,

(
zj,(M)

)]

If
bj > b
End

EOL,
{
t ∈ R : t > tP ∧ TEOLj

(z) = 1
}

Figure 2. PFP-SubSim algorithm flowchart.

5. CASE STUDY

In this section, the performance of the algorithm is investi-
gated on a challenging problem about prognostics of matrix
micro-cracks saturation in CFRP laminates using SHM data
from a fatigue experiment. The framework for prognostics of
fatigue damage in CFRP composites has been recently con-
tributed by the authors in (Chiachı́o, Chiachı́o, Saxena, Rus,
& Goebel, 2013) and (Chiachı́o, Chiachı́o, Saxena, Rus, &
Goebel, 2013). To avoid repeating literature but conferring a
sufficient conceptual framework, the relevant details are pre-
sented here in a brief manner.

5.1. Damage modeling in composites

As already shown in (Chiachı́o et al., 2013), a physic-based
prognostic framework is preferred as a versatile way to deal

with accurate predictions for fatigue damage in composites
without much training. It is based on modeling the energy
released per unit crack area due to the formation of a new
crack between two existing cracks, denoted as G. This en-
ergy, known as energy release rate (ERR), can be obtained
as (J. A. Nairn, 1989, 1995):

G =
σ2
xh

2ρh90

(
1

E∗x(2ρ)
− 1

E∗x(ρ)

)
(11)

where σx is the maximum applied axial tension to the lami-
nate, ρ is the matrix micro-cracks density defined as ρ = 1

2l̄

with l̄ being the normalized half-crack spacing, and h and h90

are the laminate and 90◦-sublaminate half-thickness, respec-
tively. See more details in the Nomenclature section. The
term E∗x(ρ), as a function of ρ, is the effective longitudinal
laminate stiffness, i.e. the stiffness due to the current dam-
age state, which can be efficiently modeled through micro-
damage mechanics models like shear-lag models (Garrett &
Bailey, 1977; Highsmith & Reifsnider, 1982), variational mod-
els (Hashin, 1985), and crack opening displacement based
models (Gudmundson & Weilin, 1993; Lundmark & Varna,
2005). In this work, the shear-lag approach is adopted for
being simpler and well-suited for symmetric cross-ply lami-
nates, which is the laminate type used in this case study, as
shown below. Equation (12) provides the analytical expres-
sion for the effective longitudinal stiffness using the classical
shear-lag model (Joffe & Varna, 1999):

E∗x =
Ex,0

1 + a 1
2l̄
R(l̄)

(12)

In the last equation, Ex,0 is the intact longitudinal Young’s
modulus of the laminate, l̄ = l

h90
is the half crack-spacing

normalized with the 90◦ sub-laminate thickness and a is a
known function of laminate properties (defined in the Ap-
pendix). The function R(l̄), known as the average stress per-
turbation function, is defined by:

R(l̄) =
2

ξ
tanh(ξl̄) (13)

where ξ is the shear-lag parameter which is expressed as a
function of ply and laminate properties (see the Nomenclature
section for further details about the terms involved in the next
expression) as:

ξ2 = Gyz

(
1

Ey
+

1

λE
(φ)
x

)
(14)

The evolution of crack-density over time is achieved by intro-
ducing the ERR into the modified Paris’ law (J. Nairn & Hu,
1992), as shown below:

dρ
dn

= A(∆G)α (15)
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In the last equation, A and α are fitting parameters and ∆G
is the increment in ERR for a specific stress amplitude during
the fatigue loading: ∆G = G(σx,max) − G(σx,min). Due
to the complexity of the expression for ∆G, which involves
the underlying micro-damage mechanics model for the com-
putation of E∗x(ρ) shown above, a closed-form solution for
Eq. (15) is hard to obtain. To overcome this drawback, the re-
sulting differential equation can be solved by approximating
the derivative using ”unit-time” finite differences, consider-
ing that damage evolves cycle-to-cycle, as:

ρn = ρn−1 +A (∆G(ρn−1))
α (16)

5.2. Filtering recursion

As discussed in the last section, the progression of damage is
modeled at every cycle n by focusing on the matrix-cracks
density, ρn, and the normalized effective stiffness, Dn =
E∗
x

Ex,0
, defining a joint response function of two components:

fn = [f1n , f2n ] for matrix cracks-density and normalized ef-
fective stiffness, respectively. Let denote by xn = [x1n , x2n ]
the actual system response, for matrix micro-cracks density
and normalized effective stiffness, respectively. Next, the
damage model can be embedded stochastically (Beck, 2010)
by adding a model-error term vn ∈ R2 that represents the dif-
ference between the actual system response xn and the model
output fn. The following input/output (I/O) state-space model
is defined:

x1n = ρn = f1n(ρn−1, θ, un)︸ ︷︷ ︸
Equation 16

+v1n (17a)

x2n = Dn = f2n(ρn, θ, un)︸ ︷︷ ︸
Equation 12

+v2n (17b)

where θ is a set of updatable model parameters and un de-
notes the set of input parameters to the system at time n. If
yn = [y1n , y2n ] =

[
ρ̂n, D̂n

]
are the measurements of the

system output xn, then the following measurement function
is added to the discrete state-space model to account for the
measurement error wn ∈ R2:

y1n = ρ̂n = x1n + w1n (18a)

y2n = D̂n = x2n + w2n (18b)

We use the Principle of Maximum Information Entropy (Beck,
2010) to choose vn and wn as i.i.d. Gaussian variables, vn ∼
N (0,

[
σv1n , σv2n

]
I2), wn ∼ N (0,

[
σw1n

, σw2n

]
I2), being[

σv1n , σv2n
]

and
[
σw1n

, σw2n

]
the standard deviations of vn

and wn respectively, and I2 the identity matrix of order 2,
so they can be readily sampled. For this example, we adopt
σw1n

= 10−2 and σw1n
= 10−6, assuming as known. The

model parameters θ are selected among the complete set of
parameters that defines the ensemble based on the modified
Paris’ law through a global sensitivity analysis based on vari-

ances and following the methodology proposed by (Saltelli et
al., 2008). As result, the ply properties {Ex, Ey, h} together
with the modified Paris’ law fitting parameter {α} emerged as
influential parameters in terms of model output uncertainty.
Moreover, the set of updatable model parameters θ was com-
pleted by adding the error terms to the last choice, i.e., θ =
{α,Ex, Ey, h, σv, σw}. The rest mechanical and geometri-
cal parameters act as static non-updatable input parameters,
hence they can be readily fixed at any point within their range
of variation, (e.g. the mean value) without significantly influ-
encing the output uncertainty.

5.3. Dataset

The performance of the proposed algorithm is investigated
using SHM data obtained from a set of run-to-failure fatigue
experiments. Both stiffness data and NDE measurements of
internal damage, such as micro-crack density and delami-
nation area, were periodically measured during the fatigue
test (Saxena et al., 2011) (although we will only focus here
on predicting matrix-micro cracks). Torayca T700G uni-di-
rectional carbon-prepreg material was used for 15.24 cm×
25.4 cm coupons with notched dogbone geometry and stack-
ing sequence defined by [02/904]s. The nominal values of the
laminate ply properties are given in Table 1, along with their
statistical description.

The tests were conducted under load-controlled tension cyclic
loading, with a maximum applied load of 31.13 KN, fre-
quency f = 5 Hz, and a stress ratio R = 0.14 (defined as
the relation between the minimum and maximum stress for
each cycle). Lamb wave signals were periodically recorded
using a PZT sensor network to estimate internal micro-crack
density. The mapping between PZT raw data and micro-
crack density was done following the methodology proposed
in (Larrosa & Chang, 2012). Additionally, periodic X-rays
were taken to visualize and characterize subsurface damage
features, in particular, the micro-crack damage pattern. More
details about these tests are reported in the Composite dataset,
NASA Ames Prognostics Data Repository (Saxena et al., 2008)
(damage data used in this example correspond to laminate
L1S19). A summary of the measurements of matrix micro-
cracks used in this study is provided in Table 2.

5.4. Results

For predicting the estimate end of life (EOL) of the laminate,
we are interested in computing the time when the damage
grows beyond a predefined damage threshold. In this study,
a threshold value of ρ = 424 cracks per meter is considered,
hence b = 424. A total amount of N = 100 particles trajec-
tories are employed for Algorithm 1 which are further used
as initialization samples for Algorithm 3. The results of Al-
gorithm 3 are presented for three different simulation levels
(m = 3) in Figure 3a, by using P0 = 0.2 and M = 2.4 · 104
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Table 1. Prior information and nominal values of main parameters used in calculations. Classical laminate theory may be used
from these parameters to obtain the values of the remaining parameters attributable to the laminate configuration.

Type Parameter Nominal value Units COV (%) Prior PDF
Mechanical Ex 127.55 GPa 10 LN

Ey 8.41 GPa 10 LN
Gxy 6.20 GPa 10 LN
Gm
d0

1 · 105 GPa/m 50 LN
νxy 0.31 – 10 LN
Gyz 2.82 GPa 10 LN
h 1.5 · 10−4 m 10 LN

Fitting α 1.80 – 20 LN
A 1 · 10−4 – 20 LN

Errors σv1n 4 # cracks
m·cycle – U(0.5, 8)

σv2n 0.01 # cracks
m·cycle – U(0.001, 0.02)

Table 2. Experimental sequence of damage for cross-ply [02/904]s Torayca T700 CFRP laminate taken from the Composite
dataset, NASA Ames Prognostics Data Repository (Saxena et al., 2008). The data are presented for micro-cracks density (ρn
corresponding to specimen L1S19 in the dataset.)

Fatigue cycles, n 101 102 103 104 2·104 3·104 4·104 5·104 6·104 7·104 8·104 9·104 105

ρn [# cracks/m] 98.2 111.0 117.4 208.5 269.6 305.0 355.5 396.4 402.3 402.1 407.0 418.5 424.5
Dn 0.954 0.939 0.930 0.924 0.902 0.899 0.888 0.881 0.896 0.872 0.877 0.885 0.880

samples per simulation level. The results shown in Figure 3
are satisfactory in the sense that our algorithm has the abil-
ity to estimate the EOL with high precision with a moderate
computational cost.

Figure 3b shows the EOL estimate by a histogram representa-
tion. The estimate is calculated by using the set ofM samples
from the latest subset (F3), which contributes in obtaining a
higher quality of the estimate, as it is shown below.

6. DISCUSSION

To evaluate the computational improvement and accuracy that
can be achieved using PFP-SubSim, the algorithm is com-
pared with a standard PF-based prognostics algorithm in terms
of efficiency in obtaining the EOL estimate. To this end, we
examine the quality of an estimator based on samples from
the different competing algorithms separately. Before pro-
ceeding with the analysis, we briefly review here general is-
sues about quality of estimators.

Let g(zn) > b, n > k, n, k ∈ N represents the fault indica-
tor of our system, such that P (zt ∈ Z|g(zt) > b) = ϑ, where
ϑ is strictly higher than 0. By definition of TEOL, the next
equation also holds: P (zn ∈ Z|TEOL(zn) = 1) = ϑ, (see
Section4). We want to obtain an estimator ϑ̂ from ϑ.

Suppose now that, starting at time n > k, NT2 samples of the
joint state-parameter {z(v)

n }NT2
v=1 are drawn from a state tran-

sition evolution model as in Eq. (1a) (or specifically Eq. (17),
when the last two cited damage features in composites, are
considered). By definition, {z(v)

n } are Markov chain samples

of multi-step ahead predictions which are distributed with
equally probability among N particle trajectories. The start-
ing points of those trajectories are the latest N updated parti-

cles at time k, i.e.
{(

z
(i)
k

)
, ω

(i)
k

}N
i=1

, obtained using Algo-

rithm 1, resulting in N independent Markov chains of fixed 4

length Ns. Hence Ns = NT2/N .

It is straightforward that an unbiased estimator for ϑ can be
readily obtained by simulatingN i.i.d. trajectories of the pro-
cess using Algorithm 2 and further compute the ratio of par-
ticles that reach the threshold b, as follows:

ϑ ≈ ϑ̂ =
1

NT2

N∑

i=1

Ns∑

q=1

T
(i,q)
EOL (19)

where T (i,q)
EOL is the value of the TEOL function evaluated at

sample q of the ith Markov chain, i.e., T (i,q)
EOL = TEOL(z

(i)
q ).

The coefficient of variation (c.o.v.) of the last estimator is
given in Eq. (20) (the proof that Eq. (20) is the c.o.v. of ϑ̂ is
given in the Appendix).

δϑ̂ =

√
(1− ϑ)

ϑNT2
[1 + γ] (20)

In the last equation, γ is the autocorrelation factor, which is
related with the level of correlation between the samples of
any of the N Markov chains (see the Appendix).
4Only for this comparative exercise, Algorithm 2 is run using an “ad hoc”
time threshold as stopping rule, instead of using a stopping rule based on
exceedance of the particle trajectory over specified thresholds, as usual.
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Figure 3. Prognostics results for predicting matrix micro-cracks density from cycle n = 4 · 104 using the modified Paris’
law model. (a): PFP-SubSim output using M = 2.4 · 104 samples per simulation level. Each subset is defined by samples
(circles) in the joint state-parameter space Z, where the latest intermediate predictive samples are marked in dark purple
circles. (b): Histogram representation of the estimated EOL at cycle n = 4 · 104. The green triangle represents the time (in
cycles) when matrix micro-cracks density will reach the final threshold b = 424 [#cracks · m−1], which was reported in
(Saxena et al., 2008) (laminate L1S19), and also shown in Table 2.

On the other hand, when Algorithm 3 is used for prognos-
tics, an unbiased estimator from ϑ can be readily obtained
as ϑ̂ = (P0)m, where m is the total number simulation lev-
els employed by the algorithm to reach the required thresh-
old. The c.o.v. of ϑ̂ can be calculated as (see Zuev et al. for a
detailed demonstration):

δϑ̂ =

√(
log(γ)

log(P0)

)2
(1− P0)

P0NT3
[1 + γ] (21)

where NT3 is the total amount of evaluations employed by
Algorithm 3.

Our objective for this comparative exercise is to demonstrate
that Algorithm 3 is able to obtain the same, or better, qual-
ity of an EOL estimate but employing less model evaluations
than Algorithm 2. For simplicity but no loss of generality, let
us adopt a configuration in which both algorithms give sam-
ples with equal (or similar) level of correlation between them,
hence γ is equal for both algorithms. It is reasonable to hy-
pothesize that there exist a configuration for NT2 and NT3

in which both algorithms give the same quality for the EOL
estimate. Then the next equation holds:

(1− P0)(log ϑ)2ϑNT2

(1− ϑ)(logP0)2P0NT3
= 1 (22)

which is the result of dividing Eq. (21) by Eq. (20). From last
equation, it is easy to obtain an expression for the number of
samples NT2 required for Algorithm 2 to obtain an estimate
of EOL with the same level of accuracy as that obtained using
Algorithm 3, provided that a total amount ofNT3 samples are
employed:

NT2 = NT3
(1− ϑ)P0

(1− P0)ϑ

(
logP 2

0

log ϑ2

)2

︸ ︷︷ ︸
�1

(23)

Observe that the factor that multiplies NT3 is always greater
than unity, since by definition, P0 > ϑ. In rare-event prob-
lems (like asymptotic processes with conservative thresholds),
P0 � ϑ, hence the last cited factor is fairly greater that 1,
which demonstrates the high efficiency of our algorithm for
prognostics of asymptotic processes.

As a numerical proof of the last postulate, the same exercise
of prognostics for fatigue degradation is reproduced here al-
though, in this case, by using the standard PF-based algo-
rithm (Algorithm 2). The same total number of model eval-
uations as in Algorithm 3 is adopted, i.e. NT2 = NT3 =
3×2.4 ·104 = 7.2 ·104, which are equally distributed among
N = 100 particle trajectories. The results reveal that only
231 particles among a total amount of 7.2 ·104 particles reach
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the threshold, in contrast to 2383 particles scrutinized when
PFP-SubSim was employed. Since these particles serve to de-
fine the EOL sample size, a poorer EOL estimate is obtained
when using Algorithm 2 and only a better estimate may be
obtained by employing more simulations, which necessarily
increases the computational cost. These results suggest that
high efficiency can be gained by employing the PFP-SubSim
algorithm for prognostics of asymptotic processes.

7. CONCLUSION

A new algorithm for PF-based prognostics has been presented
in this paper. The algorithm combines the prognostics princi-
ples with the Subset Simulation method to achieve efficiency
for simulating asymptotic processes. We demonstrate the com-
putational efficiency and accuracy that can be gained with the
novel algorithm in a case study about predicting the saturation
of matrix micro-cracks due to fatigue damage in composites,
that illustrate some of the challenges in a real-world appli-
cation of the algorithm. The main conclusions of this work
are:

• PFP-SubSim gets efficiency by adaptively simulating sam-
ples over a nested sequence of subsets until the final prog-
nostic threshold is reached. The sequence of subset are
adopted in an automated manner, which avoids tedious
preliminary calibrations.

• For the case study considered, PFP-SubSim outperforms
the standard PF-based prognostic algorithm, typically used
by the prognostic community. It is demonstrated that PFP-
SubSim is able to obtain the same quality of an EOL es-
timator by employing significant less evaluations.

• More research effort is required to formally explore the
optimal calibration aspects of the algorithm using a vari-
ety of examples of application.

ACKNOWLEDGMENT

The two first authors would like to thank the Ministry of Ed-
ucation of Spain for the FPU grants AP2009- 4641, AP2009-
2390, the European Union for project GGI3000IDIB and the
Prognostics Center of Excellence at NASA Ames Research
Center, which kindly hosted them during the course of this
work. They would also like to thank Prof. James L. Beck
from California Institute of Technology for the valuable guid-
ance through Subset Simulation method. Authors would also
like to thank the Structures and Composites lab at Stanford
University for experimental data and NASA ARMD/AvSafe
project SSAT, which provided partial support for this work.

NOMENCLATURE AND BASIC RELATIONS

The next are nomenclature description and basic relations to
help understand the case study presented here (Section 5.1).

h Ply thickness

h90 [90n]-sublaminate half-thickness
hφ [φnφ

2
]-sublaminate thickness

λ Ply thickness ratio λ = hφ/h90

l̄ Average dimensionless half spacing of cracks, l̄ = l
h90

E90
x Undamaged x-direction [90n] sublaminate modulus

Ex,0 Undamaged x-direction laminate Young’s modulus
E∗x Damaged x-direction laminate Young’s modulus
E

(φ)
x Longitudinal Young’s modulus

E
(φ)
y Transverse Young’s modulus

ν
(φ)
xy In-plane Poisson ratio
σx Maximum applied stress

The function a in Eq. (12) can is expressed as a function of
the laminate and ply properties listed above as:

a =
Eyh90

Exhφ


1− ν(φ)

xy

ν(φ)
xy h90

E
(φ)
y

+
νxyhφ
Ey

h90

E
(φ)
y

+
hφ
Ex


 1− νxyν(φ)

xy

1− ν2
xy

Ey
Ex

(24)
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APPENDIX

Let T (i,q)
EOL be the threshold function as defined in Section 2.1

and applied for the qth sample in the ith Markov chain, i.e.
T

(i,q)
EOL = TEOL

(
z(i,q)

)
, i = 1, . . . , N , q = 1, . . . Ns. Ob-

serve that T (i,q)
EOL is a Bernoulli random variable of parameter

ϑ. It is straightforward to obtain an unbiased estimator for ϑ
by simulating N i.i.d. trajectories of the process and further
compute the ratio of particles that reach the threshold b, as
follows:

ϑ ≈ ϑ̂ =
1

NT2

N∑

i=1

Ns∑

q=1

T
(i,q)
EOL (25)

where T (i,q)
EOL is the qth Bernoulli trial at trajectory i. The vari-

ance of ϑ̂ can be calculated as:

Var
[
ϑ̂
]

= E
[
ϑ̂− ϑ

]2
= E

[
1

NT2

N∑

i=1

Ns∑

q=1

(
T

(i,q)
EOL − ϑ

)
]2

1

NT2

N∑

i=1

E

[
Ns∑

q=1

(T
(i,q)
EOL − ϑ)

]2

︸ ︷︷ ︸
(∗)

(26)
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Note that (*) can be evaluated by means of the autocovari-
ances of the stationary sequence T (i,q)

EOL, q = 1, . . . , Ns, as:

E

[
Ns∑

q=1

(T
(i,q)
EOL − ϑ)

]2

=

Ns∑

q,l=1

ϕ(i)(l) (27)

where ϕ(i)(l) is the autocovariance of the ith chain at lag l
from q, i.e., ϕ(i)(l) = E

[
T

(i,q)
EOL)T

(i,q+l)
EOL )

]
−ϑ2, l = 1, . . . , Ns.

In the last equation, it is assumed that each trajectory is prob-
abilistically equivalent, which is motivated by the use of PF
with sequential importance resampling (SIR), as in Algorithm
1. Therefore, we will use the term ϕ(l) with independence of
the chain index i.

Next, we evaluate Eq. (27):

Ns∑

q,l=1

ϕ(l) = Nsϕ(0) + 2

Ns−1∑

l=1

(Ns − q)ϕ(l) (28)

and substitute Eq. (28) into Eq. (26):

Var
[
ϑ̂
]

=
ϕ(0)

NT2




1 + 2

Ns−1∑

l=1

(
Ns − l
Ns

)
ϕ(l)

ϕ(0)
︸ ︷︷ ︸

γ




(29)

Note thatϕ(0) is the variance of any ith Markov chain T (i,q)
EOL),

which is compounded by Bernoulli trials of parameter ϑ, hence
ϕ(0) = Var

[
T

(i,q)
EOL

]
= ϑ(1 − ϑ), q = 1, . . . , Ns. Equation

(29) can be expressed in a simplified manner, as:

Var
[
ϑ̂
]

=
ϑ(1− ϑ)

NT2
[1 + γ] (30)

where γ is a correlation factor who penalizes the quality of
the estimator when highly correlated samples for the Markov
chains are employed. Note that, in model-based prognostics,
the value of γ is directly related with the efficiency of the ar-
tificial dynamics in drawing samples in Θ although it is not
explicitly reflected here, since each Bernoulli trial is previ-
ously sampled from p(θt|θt−1) (see Algorithm 2). An study
of the influence of the γ is out of the scope of this work.

Finally, the c.o.v. of ϑ̂, δϑ̂, is expressed as shown bellow:

δϑ̂ =

√
(1− ϑ)

ϑNT2
[1 + γ] (31)
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