
Robust Passive Fault Tolerant Control Applied to Jet Engine Equipment  

Y. SOUAMI1, N. MECHBAL2, and S. ECOUTIN3 

1, 2, Process and Engineering in Mechanics and Materials Laboratory (PIMM) CNRS-UMR 8006  

Arts et Métiers ParisTech, 151 Boulevard de l’Hôpital,  Paris, 75013, France 
yani.souami@ensam.eu  

nazih.mechbal@ensam.eu 
1, 3, Snecma, Rond-point René Ravau, 77550 Réau, France 

    stephane.ecoutin@snecma.fr 
 

ABSTRACT 

In order to minimize the occurrence of unexpected costly 
flight failures modern aircraft engines industry focuses 
especially on increasing product’s availability. In this work, 

we propose to monitor the health of a Variable Stator Vane 
(VSV), subsystem controlling the amount of airflow through 
the High Pressure Compressor (HPC), allowing optimum 
compressor performance. This control of airflow prevents 
the engine from stalling. The proposed methodology is 
based on an original approach for real time on-board Passive 
Fault Tolerant Control (PFTC). The objective of the 
proposed PFTC is to provide acceptable performance and 
preserve stability when faults occur. The method relies on 
the design of a specific Robust Virtual Sensor in a Linear 
Parameter Variable (LPV) polytopic framework. The 
robustness to model uncertainties is ensured by a Neural 
Extended Kalman Filter (NEKF) accommodating, in real 
time, the model prediction. In the proposed methodology, an 
off-line closed-loop identification scheme is first used to 
elaborate a multi local linear state space models, after that a 
multi-model observer based on Linear Matrix Inequalities 
(LMI) optimization is used to build the virtual sensor. The 
NEKF is added to circumvent online model accuracy 
problems.   The efficiency and limit of the approach are 
shown and discussed through simulations on a complete 
numerical engine test bench. 

1. INTRODUCTION 

Over the past decades, dependability has gradually become 
one of the key challenges for the aeronautical industry. The 
concept of dependability was introduced in the mid-80s by 
Laprie. (1985). According to his concept, dependability 

encompasses two features: threats and means. In 
aeronautics, threats are events that can affect dependability, 
such as faults and failures. Means are ways to increase  
dependability, namely removal, prevention, tolerance and 
forecasting. 
During the last 30 years, System Health Monitoring (SHM) 
has emerged and has been extensively developed in order to 
improve the system dependability. SHM gives the system 
the capability to prevent, detect, diagnosis, respond to, and 
recover from conditions that may interfere with the nominal 
system operation. In this work, we are interested in 
developing SHM for a key subsystem of the aircraft 
engines, namely the Variable Stator Vane (VSV).  
The purpose of the VSV system is to control the amount of 
airflow through the High Pressure Compressor to provide 
the optimum compressor performance. The control of 
airflow is aimed to prevent the engine from stalling. The 
actuators work in pairs as part of a closed-loop electro-
hydraulic system to constantly adjust the position of the first 
stages of the VSV. The off-line closed loop VSV actuation 
composed of a servovalve, a cylinder and a LVDT (Linear 
Variable Differential Transformer) sensor. The LVDT is 
connected to the controller through harnesses which are 
subject to vibrations. Consequently, this can engender 
sensor failures and jeopardize the availability of the VSV 
position, thereby threatening the stability and degrading the 
performance of the jet engine. 
In the current economic context, a material redundancy is 
used to ensure the availability of measures. This solution no 
longer profitable, therefore, we would like to implement an 
original architecture control by replacing the material 
redundancy by an analytical one, but in our context this is 
not straight. For this, we propose a Fault Tolerant Control 
approach aiming to simplify the complexity of the control 
architecture by reducing the material redundancy while 
maintaining the reliability, dependability and performance 
of the nominal operation. 
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2. PROBLEM  STATEMENT 

Fault Tolerant Control (FTC) attends to be an integral part 
of any SHM applications. FTC has the following 
characteristics: (i) the ability to accommodate automatically 
faults in components, actuators and sensors, (ii) the ability 
to keep the overall system stable and acceptable 
performance in the case of failure. An FTC system is a 
control system able to accommodate automatically for 
system failures. Hence the main task to be tackled in 
achieving fault-tolerance is the design of a controller with a 
suitable structure to maintain the overall system stability 
and acceptable performance. FTC may be called upon to 
improve the system reliability, maintainability and 
survivability. FTC systems have appeared since the early 
1980s. Nowadays, FTC has gained in popularity among 
industrial and academic researchers. Several survey paper 
and books have appeared (Patton 1997), (Blanke, 
Staroswiecki et al. 2001), (Zhang et al 2008). Generally 
speaking, FTC systems can be classified in two types: 
passive (PFTCS) and active (AFTCS). 
The passive methods, or reliable control, aim to achieve the 
insensitivity to some specific anticipated faults by making 
the system robust with respect to them. The controller is 
fixed and requires neither Fault Detection nor Diagnosis 
schemes (FDD) nor controller reconfiguration. In this 
approach, often fault-tolerance is achieved by considering 
faults as uncertainties that the controller can deal with. 
Hence, we assume that the faults occur in a predefined 
subset, and the controller should be designed to optimize the 
worst fault performed (Liao et al. 2002; Yang et al. 2010)). 
In the aeronautical context, PFTC is increasingly introduced 
in control architectures  et al. 2012; Richter et al. 2011) in 
order to optimize the Time Between Overhaul (TBO) and 
consequently, to reduce the Delays and Cancellations 
(D&C) which have a significant economic impact. 
It is important to highlight that our PFTC approach is 
applied to control a closed-loop actuation Variable Stator 
Vane which returns a servo-actuator position. The physical 
non-linear equations describing the operation of the servo-
actuator VSV depend on non-measurable variables. 
Moreover, the complexity of these equations makes them 
non-embeddable for a real time computation of a VSV 
position. 
In this paper, a real time on-board PFTC approach is 
proposed to control closed-loop actuation in spite of faulty 
sensor. The main purpose of the PFTC approach is to ensure 
availability of a feedback signal, while maintaining the 
performance of the nominal operation (De Oca et al 2010) 
without retuning on-line the parameters of the controller. 
The reconfiguration bloc contains a virtual sensor that 
estimates in real time the system’s perturbations and 

compensates them.  
In an industrial process, especially jet engine industry, the 
parameters of the controller are tuned off-line for the 
nominal operation. Changing them on-board with the 

occurrence of the fault is not allowed, this is why the PFTC 
approach is chosen in expense of the Active Fault Tolerant 
Control (AFTC) approach (Stubberud 2006), where the 
parameters of the controller are re-tuned in real time in 
order to adapt the controller. 
Several approaches have been proposed to deal with PFTC 
in case of occurrence of partial sensor failure, which means 
that the sensor is available but provides a wrong feedback 
signal to the controller (De Oca 2010; De Oca et al. 2012; 
Richter et al. 2011). In this paper, we propose a new 
approach of PFTC for a total sensor failure, where total loss 
of feedback VSV position signal occurs, and this for a 
nonlinear system approximated by a multi-model system. In 
case of a total loss of the sensor, we ensure the availability 
of the feedback VSV position signal by a Multi-Input Multi-
Output (MIMO) estimation of lost signal. At this stage, we 
consider the inaccuracy of the MIMO estimation as a sensor 
fault, which is compensated by the virtual sensor bloc 
reconfiguration. 
The multi-model representation allows transforming non-
linear sub-systems in a set of linear sub-systems in which 
theories of linear systems are applicable, while guaranteeing 
the stability of the overall system during the transition from 
an operating point to another one.  
In order to construct our multi-model, we propose an off-
line closed-loop identification that will be performed at 
several points of interest covering the entire operating 
domain. This is a specific method for system, such as a jet 
engine, that cannot be disconnected from the controller for 
economic and safety raisons. The purpose of this stage is to 
obtain a local linear state representation applicable for an 
operating point of the servo-actuator VSV. 
In this paper, we propose two kinds of identifications. The 
first identification Single-Input Single-Output (SISO) aims 
to bring out the state space representation of VSV behavior.  
The second one MIMO aims to get MIMO state space 
representation using a heterogeneous state vector, which is a 
concatenation of VSV position and other variable 
geometry’s measures affecting the VSV position.  
These two states space representations are used for the 
synthesis of a multi-model observer based on LMIs 
optimization. The observer built with the MIMO state space 
representation allows getting a MIMO VSV position 
estimation, which is used as an input signal for the virtual 
sensor. The second observer built with the SISO state space 
representation aims to estimate the sensor fault through the 
virtual sensor.  
The LPV system receives a great interest in the nonlinear 
modelling literature (Bezzaoucha, et al. 2013, De Oca 2010, 
De Oca et al. 2012, Richter, et al. 2011, Bezzaoucha 2013). 
Indeed, the LPV framework can be seen as a “middle 

ground” between linear and non-linear dynamics. It 
concerns linear dynamical systems state-space 
representations of which depend on exogenous non-
stationary parameters. LPV model consists of an indexed 
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collection of linear systems, in which the indexing 
parameter is exogenous, i.e. independent of the state. 
On the other hand, the LPV framework allows us to 
extrapolate the identification from multitude local linear 
sub-systems, to the overall non-linear system. Thereby, 
from a mapping of the identified linear local sub-systems for 
several operation points we obtain one identified overall 
system describing the behavior of the servo-actuator for all 
operating phases. . 
Moreover, sub-systems identified from simulations on a 
complete numerical engine test bench are subject to 
uncertainties. This could degrades the accuracy of the 
estimator used in the virtual sensor, and consequently, can 
jeopardize the stability of the overall system VSV. To 
circumvent this problem, we propose a Neural Extended 
Kalman Filter, which compensates the lack of information 
given by the state-space representation resulting from the 
experimental identification. We find in the literature some 
works (Kramer et al.2008, Owen et al. 2003, Stubberud 
(2006), Lobbia et al. 1995) dealing with the robust 
estimation using NEKF. Otherwise, NEKF is used to adapt 
in real-time the prediction model of the reference input 
signal.  
This paper is structured as follows: First, we present VSV 
system and a closed-loop identification method of the VSV. 
After a synthesis of an observer for a LPV multi-model 
system is proposed. These results are used for the PFTC 
approach trough the virtual sensor, and finally, the 
robustness is addressed through the NEKF (Figure 1). 
 

 

Figure 1: Architecture of a Robust PFTC applied to VSV 
actuation 

 

3. DESCRIPTION OF THE SERVO-ACTUATOR 

3.1. Physical description of the VSV 

Before identifying the servo-actuator VSV, it is necessary to 
bring the physical equation describing the behaviour of the 
VSV, so that we could determine the order of the system. 
The VSV system comprises a servovalve and a cylinder 
(Figure 2). A servovalve is a device aiming to transform the 
electric energy to hydraulic one. It is a control interface 
between the control and the cylinder that provide a suitable 
fuel flow to the cylinder. 
The specifications of the closed-loop servo-actuator VSV 
impose to choose a three stages architecture, made of two 
stages servovalve called pilot stage, and a distribution slide. 
A command current drives the two stages servovalve, 
providing a fuel flow and a difference of pressure. These are 
used to actuate the slide distributor which the position is 
controlled through a spring by a feedback force.  
A servovalve comprises a static part and a dynamic part. 
According to Tafraouti (2006), the dynamic part is 
represented by a second-order system. And the static part is 
non-linear function depending on non-measurable variables.  
The static part of the servovalve depends on its differential 
pressure, which is constant for a given operating point. 
Thus, we assume that non-linear equation describing the 
static part of the servovalve is a constant. Consequently, we 
model the behaviour of the servovalve in a given operating 
point by a second order system. 
 The servo-actuator comprises a servovalve and a cylinder 
which can be modelled according to (Tafraouti 2006) by a 
first order system. Thereby we model the servo-actuator 
VSV by a third order system. 
 

 

Figure 2: Control architecture of the VSV system 

3.2. Identification 

In this section, the off-line MIMO and SISO identification 
are presented 
In a jet engine, there are variables geometries, which may 
affect each other's. We would like to exploit the correlation 
between these variable geometries to build a multi-model 
observer. In this work, we bring out the coupling between a 
VSV position and another variable geometry.  
After an influence study, we selected a VBV position 
(Variable Bleed Valve) ( Figure 3) reflecting the opening of 
a valve to remove the excess of the air between the Low and 
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High compressor, which can be the origin of stalling and 
thus a serious damage of the Low compressor blades. 
 

 

Figure 3: VSV and VBV equipment 

 

Consider the MIMO state space representation: 
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respectively the VSV and the VBV position 
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) is the MIMO control current,       and      are 

respectively  the VSV and the VBV control current. 
 
The off-line MIMO identification (1) allows to bring out the 
matrix     ,      ,      ,      , using the Prediction 
error Method Algorithm. 
On the other hand, we use the same method to identify the 
non-linear behavioral equations of the VSV and VBV by a 
third order system. This identification aims to obtain, for 
each operation point, a SISO state space representation, 
used is LPV Takagi-Sugeno framework. 

4. ROBUST PASSIVE TOLERANT CONTROL 

4.1. Multi-model observer 

We brought out in the previous section the necessity to use 
LPV framework to identify the overall non-linear VSV 
system.  
In this work, we introduce a Takagi-Sugeno formalism 
which is an interpolation of local linear subsystem using a 
convex transformation (Bezzaoucha et al. 2013, Bezzaoucha  
2013). Several articles (Akhenak et al. 2007, Marx et al. 

2013, Bezzaoucha 2013) deals with Takagi-Sugeno 
formalism and use it to: (i) model and design diagnostic 
strategy, (i) develop control’s laws, (iii) study the stability 
of  non-linear systems. 
We brought out in the previous section local identified 
subsystems for each operating point. We use a Takagi-
Sugeno formalism to write the overall non-system 
describing the behaviour of the VSV for a set of operating 
point. 
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(2) 

 
where:  ( )      is the overall system state vector, 
 ( )      is the overall system output and  ( )      in 
the control input, with   number of subsystems 
The overall non-linear system is an aggregation of the local 
linear subsystems by a weighting sum. Thereby, the 
linearity is transferred from the subsystems to the weighting 
functions.    ( ( ))         , satisfying the convex sum 
property. 
The purpose of the Takagi-Sugeno formalism is to use the 
linear framework for the synthesis of the observer and study 
the stability and extrapolate to the overall non-linear system 
using the convex sum. The weighting functions   ( ( )) 
depend on a decision variable  ( ). In our application,  ( ) 
is measurable and allows us to determine the operating point 
In this paper, we propose to use the LPV framework to 
bring out the transition between the sub-systems. 
The parameters of the matrix (           ) of sub-systems 
vary according to a function  ( ) dependent on time. 
Thus, we obtain Takagi-Sugeno formalism with time 
varying parameters, which guarantee a smooth transfer from 
a subsystem to another. This representation has not only the 
advantage to be mathematically equivalent to the overall 
non-linear system, but also to be easier to handle.  
 

{
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(3) 

 
Instead of having an observer and a controller for each 
subsystem, the LPV Takagi-Sugeno representation defined 
in Eq. (3) allows to build a common strategy of observation 
valid for the overall nonlinear system.  
The stability analysis and the observer synthesis are based 
on Lyapunov theory by minimising   -gain under LMI 
constraint  
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Let us find   a common observer gain for all subsystems 
such as  ̂( )   ( ) 
Let define the error estimation  ( )   ̂( )   ( ) written 
in the Takagi-Sugeno formalism:  
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The gain of the multi-model observer    is found such as 
 ̇( ) is stabilized 
Let define a Lyapunov function: 
 
Theorem: A system is stable, if there is a positive 
Lyapunov function such as  ̇( )   . 
 ( )    ( )  ( ) (6) 

with           a positive symmetric matrix. 
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with: 

 
Knowing that    ( ( ))   . 
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In order to linearize Eq.(9), we define      . Thereby, we 
obtain   LMIs 
 

{
          

     
  

 
            

   

 

 
(10) 

 
Finally, we obtain the multi-model          
We use this method to synthetize the two observers 
introduced above. 

4.2. Virtual sensor 

In this subsection, we propose a PFTC strategy based on 
virtual sensor (Figure 4). This contains a multi-model LPV 
observer based on LMIs constrains, aiming to estimate in 
real time, faults of a VSV estimation based on MIMO 
identification. 
Moreover, virtual sensor contains a bloc reconfiguration 
which is used to compensate the faults estimated the multi-
model LPV observer. (De Oca 2010, De Oca et al. 2012, 
Nazari et al. 2013, Richter et al. 2011) propose a PFTC for 
LPV system. 
In this paper, we propose an original method of 
reconfiguration without on-line re-tuning the parameters of 
the controller.  
In general, PFTC approach supposes that the measure is 
available. Here in this work, we treat a case of a complete 
loss of the VSV sensor. Up to our knowledge (De Oca  
2010, De Oca et al. 2012), the PFTC has not been used for 
thiscase. We ensure the availability of the input signal of the 
virtual sensor through MIMO VSV estimation.  
This MIMO VSV estimation has the inconvenient to be 
inaccurate in the transient phases. This can have a negative 
effect for the stability of the overall VSV system. That is 
why we use a virtual sensor to estimate and compensate 
these inaccuracies that we consider as sensor fault.  
We consider a following subsystem with a faulty sensor for 
a given operating point: 
 

{

 ̇( )    ( ( )) ( )    ( ( )) ( )

 ( )     
( ( )) ( )    ( ( )) ( )
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With     output subsystem matrix including the fault 

The virtual sensor applied to the polytopic LPV system can 
be written as following: 
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with   ( ) the state vector of the virtual sensor state space 
and    the multi-model observer gain 
de Oca and Puig (2010) brings out a reconfigurabilty 
condition: 

    (  ( ( )))       (
  ( ( ))

 ( ( ))
) (13) 

Consider the coefficient of  reconfigurabilty P: 

{
 
 

 
 ∑  ( ( ))   

 

   

    ( ( ))                 

 
 
(8) 
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(  ( ( ))  ( ( ))

 
)
  

 (14) 

Thereby, we obtain the output corrective matrix and output 
signal. 
  ( ( ))   ( ( ))     ( ( ))  ( ( )) (15) 

  ( ( ))    ( ( ))  ( ( )) (16) 

and thereby, we obtain the corrected output signal 

  ( )    ( ( ))  ( )  ( ( )) (17) 

 

Figure 4: PFTC diagram 

 

4.3. Robustness-Neural Extended Kalman Filter 

Kalman filter has received a great attention in aeronautical 
industry. In this paper, we propose a robust observer for 
inaccurate state space representation using a Neural 
Extended Kalman Filter. 
Neural Extended Kalman Filter (Kramer et al. 2008, 
Stubberud 2006, Stubberud et al. 1995) is a robust and 
adaptive state estimator, with an approximate knowledge of 
the state space representation, or the physical equations 
describing the behaviour of the system. 
This robust estimation method is often used for the complex 
system where a simplification is imposed as an 
embeddability constraint. This simplification may 
jeopardises the precision of the estimation and consequently 
affects all applications using the estimation ,like synthesis 
of observer for diagnostic or reconfiguration, control 
laws…etc. 
In this paper, we propose to use an adaptive robust method, 
which consist of setting in real time, the parameter of the 
state-space representation in order to guarantee the 
robustness of estimation against the inaccuracy engendered 
by the identified model equations (Figure 5). 
Consider a non-linear state space representation: 
 

{

      (     )    

    (     )    

 (18) 

 
where:   and   are nonlinear functions,    and    are 
respectively the  noise process and the measure noise. 
Let remind the extended Kalman filter: 

{
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  (19) 

We assume that the measure and process noises are 
Gaussian. 
where: 

       state of the system 
       output of the system 
  Kalman gain 
  Covariance matrix of the measured noise 
  Covariance matrix of the process noise 
  Covariance matrix of state estimation error 
  Prediction function of the state 
  Output function 

 
In our case, the function    is non-linear and embeddable. 
Thus, we approximate it by an off-line closed loop 
identification   , which is added to an on board learned 
neural  network  (Kramer et al. 2008, Stubberud 2006, 
Lobbia et al. 1995) 
 

 (     )   (     )     (        ) (20) 
 
We assume that the function   is linear and we note: 

  
  

  ̂     
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We define a new state vector, which a concatenation of state 
vector of the system and the adjustable parameters of the 

neural network and we note   
  (    )
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According to the Eq. (22) the matrix   is adjusted in real 
time by the partial differential of the neural network on the 
state vector.  

 

Figure 5: Robust PFTC diagram 

5. SIMULATION RESULTS 

We use a jet engine simulator to simulate a flight scenario 
defined by a set of operation points. For this, we apply a 
flight maneuverer equivalent to what imposes the pilot 
through the control yoke during a flight. Indeed, each 
control yoke position determines target value of a fuel 
quantity which induces high pressure compressor's speed 
and thus low pressure compressor's speed and a certain 
configuration of variables geometries such as VSV position. 
Consider a flight maneuverer in which we include a VSV 
sensor failure. 
In Figure 7, we simulate a maneuver with a faulty VSV 
sensor shown in Figure 6. 
 

 

Figure 6 : Effect of the intermittent contacts on VSV sensor 

 

Figure 7 : Control of the VSV position using a faulty sensor 
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Figure 8: Control of the VSV position in the nominal 
operation and with a PFTC  

 

Figure 7, shows the effect of a periodic random switch in 
the electric input of the VSV sensor, which provide 
intermittent contact of the VSV sensor feedback signal. This 
kind of failure is the most probable to occur during a flight, 
and it may jeopardize the stability of the close-loop VSV 
actuation, and consequently engender irreversible damage in 
high pressure compressor. 
In the Figure 8, we simulate the same maneuver, but we 
replace the faulty sensor by the model using a Robust 
Passive fault Tolerant Control approach. 
We use a PFTC approach as soon as sensor failure is 
detected. Figure 8 shows the control of VSV actuation using 
an analytical VSV model as feedback signal, with a PFTC 
approach described below. 
We notice in the Figure 8, oscillations. These are due to the 
inaccuracies of the analytical VSV model feedback signal. 
Indeed, the controller is tuned for the nominal operation, 
and it is not designed to reject model inaccuracies. 
Consequently, we tune controller off-line taking into 
account these model inaccuracies, not only in order to reject 
oscillations but also to reach performance requirements 
imposed in the specifications. Once tuned off-line, 
controller is unchanged on-line during the operation, 
respecting thereby the constraints which led us to choose the 
PFTC approach instead of the AFTC approach. 

 

Figure 9: Control of the VSV position in the nominal 
operation and with a PFTC approach with new controller 

Figure 9 shows the control of the VSV position using the 
PFTC with the new adjusted controller rejecting thereby the 
oscillations engendered by the analytical VSV model 
inaccuracies.  

To test the robustness of the PFTC approach using the 
NEKF, we add uncertainties to the SISO identified state 
space matrix: 

{
 
 

 
 
                    

                    

                    

 
 

(25) 

where,   ,    are additive uncertainties modeled by 
Gaussian noise. 

We replace the identified matrix in PFTC algorithm by the 
matrix defined in Eq.(25). 

 

Figure 10: Control of the VSV with uncertain state space 
matrix-Robust PFTC 
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Figure 10 shows the rejection of state space matrix 
uncertainties using NEFK. Indeed, in spite of adding 
uncertainties to state space matrix, we obtain an analytical   
VSV model with an acceptable accuracy. 

6. CONCLUSION 

In this present paper, a Robust Passive Fault Tolerant 
Control approach was proposed in a LPV framework using 
LPV Takagi-Sugeno formalism. This approach is applied to 
jet engine equipment, a Variable Stator Vane actuation 
which is subject to sensor failure on-board. That may 
jeopardize the stability of the closed-loop actuation, 
affecting thereby the performance and the operability of the 
jet engine. 

The work proposed in this paper, allows guaranteeing the 
availability of the feedback information to VSV position, 
with acceptable performance and operability of the jet 
engine, in spite of the inaccurate  VSV model. 

In a jet engine, there are several systems of closed-loop 
actuation with sensors subject to failure. We will propose in 
a future paper an extension of the work for the VBV 
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