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ABSTRACT 

Within the last decade several new methods for prognostics 

have been developed and an overall understanding of the 

various issues involved in predictions for health management 

has significantly improved. However, it appears that there is 

still a lack of consensus on how prognostics is defined and 

what constitutes good performance for prognostics. This 

paper first differentiates prognostics from other prediction 

approaches before highlighting key attributes of performance 

for prediction methods. Then it argues that it is important to 

understand what factors affect the performance of a 

prognostic approach. Factors such as the application and end 

use of a prognostic output, the various methods to make 

predictions, purpose of performance evaluation, etc. are 

discussed. This paper presents a comprehensive view of 

various such aspects that dictate or should dictate what 

performance evaluation must be as far as prognostics is 

concerned. It is also discussed what should be used as 

baseline to assess performance and how to interpret 

commonly used comparisons of algorithm predictions to 

observed failure times. The primary goal of this paper is to 

present some arguments of how these issues can be addressed 

and to stimulate a discussion about meaningful evaluation of 

prognostic performance. These discussions are followed by a 

brief description of prognostics metrics proposed recently, 

their applicability, and limitations. This paper does not intend 

to suggest any metrics in particular rather highlights 

important aspects that must be covered by any performance 

evaluation method for prognostics. 

1. INTRODUCTION 

The demand for engineering systems with sophisticated 

functionality, high safety levels, low environmental footprint, 

and other requirements is accompanied by increasing cost to 

build and operate these systems. Besides increased 

manufacturing cost, it is the mitigation of operational 

disruptions caused when hardware or software break down 

that are driving up life-cycle cost and affecting operational 

availability. The malfunction of just a small part can seriously 

degrade the utility of a large portion of a complex system – 

or cause it to seize performing its primary function altogether. 

To counteract that, operators and manufacturers are 

increasingly looking towards system health management as a 

mechanism to actively deal with changing performance 

characteristics of individual components. This is 

accomplished by assessing the state of health of the system 

components, estimating their remaining useful life, and by 

initiating mitigating action that will either prevent the 

breakdown, minimize downtime, avoid unscheduled 

maintenance, or result in similar results that minimize life-

cycle cost of the system. At the core of system health 

management is Prognostics, the method by which remaining 

useful life of a component (or system) is estimated. The 

ability to predict future events, conditional on anticipated 

usage and environmental conditions, is the Achilles heel of 

System Health Management. It is therefore not surprising that 

considerable attention has been given to this technology in 

the last few years. Indeed, the term “prognostics” has been 

used by various practitioners in any context that has a 

predictive element, not all of which actually result in 

estimation of remaining life. In the first part of this paper, the 

different instantiations of life prediction are reviewed in the 

context of methods that are based on fleet-level and unit-

based life prediction and the term “Prognostics” is clarified. 

An indispensable element in maturing prognostics is the 

ability to measure the performance of a prognostic algorithm. 

Traditional metrics that are, for example, used for diagnostics 

do not capture the unique characteristics of prognostics. Since 

the discipline is still young, new metrics are emerging that 

each measure specific features of prognostics. The second 
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part of this paper explores the most important metrics that 

have emerged. The paper also discusses general 

considerations when evaluating Prognostics. While assessing 

and ranking one method over another, it is important to pick 

metrics that evaluate the same components and do not, for 

example, penalize one algorithm (but not another) for poor 

quality of external inputs (such as noisy or missing data, 

inadequate domain models, etc.). Furthermore, the metrics 

should consider evaluating various aspects of a prediction 

that are useful towards decision making, such as time to 

prediction or confidence in prediction. Finally it is important 

to consider what the performance is being measured against. 

In online applications where it may not be possible to know 

the ground truth, it is difficult to measure accuracy aspects of 

performance because the failure has not yet happened (and 

hopefully will not happen when human life or costly assets 

are at stake) (Engel, Gilmartin, Bongort, & Hess, 2000). 

However, even in offline cases where ground truth is 

established through prior experiments, it may not be the 

plausible course of action to compare the predictions against 

one outcome (realization) of an, otherwise stochastic, process 

in light of several sources of uncertainties.  

The paper concludes with a discussion of the path ahead for 

Prognostics. Specifically, the following issues are considered 

in detail:  

 What does prediction performance mean in different 

application contexts?  

 What are different components of algorithms that need 

to be evaluated and compared in prognostics 

applications? 

 What are various assessment approaches that are 

currently used and how to interpret the results? 

 What are lacking issues that need to be considered? 

2. CONSIDERATIONS IN PERFORMANCE EVALUATION 

2.1. Attributes of Prediction Performance – Correctness, 

Timeliness, and Confidence 

The essence of a meaningful prediction lies in three key 

attributes that are important to achieve regardless of the 

prediction method used. These key attributes are – 

correctness (accuracy and precision), timeliness, and 

confidence in a prediction. It should be noted that attributes 

as defined here are not metrics themselves but a set of 

properties that define performance of a prediction algorithm. 

Suitable metrics can be defined to measure and quantify these 

attributes as discussed in latter sections. 

Correctness: By definition performance evaluation refers to 

the notion of assessing correctness of a system output with 

respect to its desired specification. Prediction outputs are 

generally understood to be in the form of probability density 

functions due to inherent uncertainties involved. Hence the 

notion of correctness translates into accuracy and precision 

of the predicted distributions. Accuracy is a measure of 

deviation of a prediction output from measured, observed, or 

inferred ground truth. Specifically the prediction accuracy is 

a quantitative measure of error between the predicted end-of-

life and the observed end-of-life of the monitored 

component/system. Several metrics can be used to define 

prediction accuracy such as but not limited to those listed in 

(Saxena, Celaya, Balaban, Goebel, Saha, Saha, & 

Schwabacher, 2008). Precision on the other hand is a measure 

of spread of a distribution. By definition (precision = 

[standard deviation]-1) narrower distributions are considered 

more precise. When estimating a single point, ideal precision 

would be infinite if accuracy is 100%. However, it must be 

kept in mind that higher precision (or narrower distribution) 

is not always better. More than a decade ago Engel et al. 

(2000) explained the paradox in prognostics - “The more 

precise the remaining life estimate, the less probability that 

this estimate will be correct”. Furthermore, it was analytically 

shown by (Sankararaman & Goebel, 2013) that the end-of-

life point (or the RUL) is stochastic by nature.  Therefore, a 

prognostics algorithm should estimate a probability 

distribution function and not just the observed single instance 

of a failure. However, the ideal value for precision of a 

predicted distribution would be to match the precision of 

ground truth distribution. In other words, arbitrarily narrow 

distributions could lead to risky decisions, just as arbitrarily 

wide distributions lead to larger ambiguity (or less 

confidence) in a prediction. 

Timeliness:  This refers to the time aspects related to 

availability and usability of predictions. It measures how 

quickly a prediction algorithm produces its outputs, in 

comparison to the failure effects that they are mitigating.  

Prediction Horizon: The measure of how early, before the 

actual failure event, a prediction system produces a correct 

(w.r.t. specifications) prediction of end-of-life to be able to 

implement an actionable decision and response as part of the 

health management activity. For prognostics it is measured as 

Prognostic Horizon or Prognostic Distance at the time a 

prediction is made (Johnson, Gormley, Kessler, Mott, 

Patterson-Hine, Reichard, & Scandura Jr, 2011; Saxena, 

Celaya, Saha, Saha, & Goebel, 2010). 

Prediction Response Time: The measure of how quickly the 

prognostic function produces a correct output, from a given 

set of system measurements. It includes the time it takes for 

an algorithm to converge to a reasonable performance level. 

 

Figure 1. Correctness and timeliness attributes of prediction 

performance. 
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Confidence: It is a measure of trust (or conversely, the 

measure of uncertainty) in a prediction method’s output. It is 

generally viewed in several related but different contexts. In 

predicting end-of-life for a unit confidence is expressed as 

probability of failure at any given time computed from a 

given failure-time distribution. From a decision making point 

of view is it is expressed through precision of the predicted 

distribution, i.e. more precise distributions lead to higher 

confidence and less ambiguity for decision making (Engel et 

al., 2000). Similarly confidence is also associated to the 

notion of risk of failure with respect to the time an action is 

taken. In the broader context of validation confidence is 

expressed as trust in a prediction method based on stability of 

predictions over time through sensitivity and robustness 

measures (Guan, Jha, Liu, Saxena, Celaya, & Goebel, 2010; 

Johnson et al., 2011). These measures are evaluated with 

respect to factors that directly affect predictions such as data 

quality (amount of data, sampling rates, noise levels, etc.), 

model quality (granularity of models, correctness, 

adaptability, etc.), accuracy of priors, etc.  

The three performance attributes as described above are the 

most important ones from prognostics point of view. There 

are several metrics that can be used to assess each of these 

attributes, however, the important message here is that 

prognostic performance evaluation must account for all three 

of these and which specific metrics are used depends on 

several other factors as discussed in further sections. 

2.2. Type of Prediction Method 

Within the Health Management (HM) community there are 

several different interpretations of what is meant by the term 

prognostics. Although all interpretations involve some type 

of predictions about system’s health the basis for such 

predictions is very different. This paper acknowledges the 

significance of all prediction methods but at the same time 

considers Prognostics strictly as condition based prediction 

methods. It is argued that depending on the type of prediction 

method and the data used to make these predictions the 

metrics to evaluate prediction performance should be slightly 

different. As discussed above in Section 2.1, at its core 

prediction performance is characterized by three attributes 

namely, Correctness, Timeliness, and Confidence, although 

the specific metrics that measure these could differ from each 

other in different cases. 

A classification of various prediction methods was proposed 

in (Coble Jamie Baalis, 2010). While the author tried to 

classify these methods into well-defined categories, there is 

often a fuzzy boundary where a method may fall into one 

category or the other. Furthermore, it can be observed that in 

that classification one method follows naturally from another 

as one moves from predictions based on information from a 

fleet towards using information from a single specific unit. A 

brief definition for each is provided here for readability, but 

a more detailed description and some examples can be found 

in (Coble Jamie Baalis, 2010).  

 

Type-I or Reliability-based Prediction methods predict 

component failure time based on statistical models fit to lab 

testing data or historical failure data. These methods are not 

considered prognostic methods in a strict sense but are the 

basis for much of how the assets have been maintained 

traditionally. Predictions are expressed in terms of Mean-Life 

metrics such as Mean Time Between Failures (MTBF) and 

many other variations expressing observed failure rates 

(Saxena & Roemer, 2013). Theoretically speaking it is 

possible to make life predictions for a specific unit through 

models used in these methods and assess correctness based 

on actual end of life, the performance is likely to be within 

expectations only when predictions for a large number of 

similar units is aggregated. Therefore, aggregate error and 

precision based metrics are generally used. Notions of 

timeliness do not quite apply here as predictions can be made 

at any time as they are based on historical data already 

processed to build models. Furthermore, since these models 

are static and do not get updated with time, the prediction of 

end-of-life does not change irrespective of when in time that 

prediction is made. Therefore there is no notion of 

performance tracking as in prognostics. Confidence is usually 

expressed as probability of failure at any given time 

computed from failure-time distribution. These metrics are 

generally useful for operators, maintainers, designers, and 

policy regulators for gauging and optimizing operational 

performance at the fleet level. The key shortcoming of this 

approach is that it cannot take into account the effects of 

operational conditions that have a significant bearing on 

actual component life.  

 

Type-II or Damage Accumulation-based Prediction - These 

models estimate the lifetime of an average component 

operating under a given set of usage conditions (stressors). 

The output of these models is a distribution of failure times 

due to stochastic nature of operating conditions. These 

models however do not rely on condition monitoring data to 

estimate the state of a specific system and the predictions are 

based on population models of failure of such systems. For 

performance evaluation, correctness can be measured using 

any of the accuracy and precision metrics drawing 

comparisons from the actual ground truth for a specific unit. 

Although predictions here tend to be more accurate than for 

Type-I methods, algorithms are best evaluated by 

aggregating performance from several units as they are still 

based on population models. However unlike Type-I 

methods, notions of timeliness become relevant here as 

predictions must be updated regularly to account for changes 

due to recent operational conditions. Therefore, most metrics 

for Type-III methods may be applicable with slight 

modifications to aggregate performance from several units. 

Confidence is generally expressed as probability of failure 

and precision based metrics, although concepts of robustness 

to data quality may be applicable. 
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Type-III or Condition-based Prediction or Prognostics – 

Prognostics is the prediction of remaining useful life of a 

specific component or system based on its usage history 

inferred from monitoring data and expected future load 

profile. Prognostics generally utilizes a degradation model 

that predicts the future states based on inputs about current 

system state and expected load levels (stressors) on the 

system. These domain specific models are generally 

adaptable and can be developed based on physics of failure 

or can be learned from run-to-failure data through data-driven 

methods. Since the predictions are made specifically for a 

given unit correctness is measured for that individual unit and 

aggregation over multiple units is not required. Due to the 

notion of runtime adaptation or learning, it is important to 

track the response time and consequently the prediction 

horizon every time a prediction is generated. Similarly the 

concept of online performance measurements is most 

relevant in these scenarios. Confidence is expressed through 

expressing uncertainties properly and computing probability 

of failure within acceptable error bounds.  

 

Type-IV or Data Analytics-based Prediction or Predictive 

Analytics - Predictive analytics is a term that has surfaced 

recently and is often being used interchangeably with 

prognostics in the PHM contexts. While it does involve 

making predictions based on information gleaned from past 

usage history data, the nature of predictions itself is not 

exactly the same as that in prognostics. A key difference 

being prognostics generates a prediction over a continuous 

space and therefore provides exact values of RUL over a set 

of real values in ℝ . Predictive analytics is more suited 

towards making discretized predictions that may not be a real 

number but a range over ℝ or a qualitative set, such as [low, 

medium, high]. It is different from reliability based prediction 

in that here the predictions are based on trends observed in a 

multidimensional space that includes observations from a 

verity of non-homogenous and often unstructured data such 

as time sequences of complex operational patterns, sensor 

data, operator observations, environmental factors, 

geographical features, etc. just to name a few. Here the key 

problem to deal with is to mine information from large 

datasets and identify complex patterns that have been shown 

to lead towards anomalies of failures through collected 

history data. The approaches are mostly based on a data-

driven (data-mining and machine learning) methods and are 

employed in situations where modeling the system behavior 

and its interaction with the external environment including 

human operators is often too complex to model. Correctness 

in such cases is measured through metrics used in pattern 

classification literature such as error rates (false positives and 

false negatives), Confidence in a prediction is expressed 

through similarity ranking metrics, or probability of failure 

occurring. 

2.3. Purpose of Performance Evaluation 

Relevance of a prediction is truly defined by the purpose it 

serves towards meeting overall system goals. In one 

application performance assessment could be used to 

optimize system operations at run-time, in another it could be 

used to optimize logistics chain to improve maintenance and 

repair efficiencies over a longer time horizon. Actions based 

on predictions range from fully autonomous to human 

controlled. Therefore, while it is important to measure 

prediction performance at the algorithmic level to assess 

technical quality (accuracy, uncertainty handling, 

performance improvement over time, convergence, etc.), 

from a practitioner’s perspective it is equally important to 

design metrics that measure effectiveness of predictions 

towards improving system performance. A classification of 

metrics was proposed based on their relevance to various 

PHM stakeholders, which showed that not all metrics are 

relevant to all practitioners (Goebel Kai, Saxena, Saha, Saha, 

& Celaya, 2011). Similarly, following hierarchy can be 

observed in performance metrics depending on the scope of 

the system within which prediction performance is measured 

defining the overall goal of performance evaluation.  

Table 1. Hierarchy of prediction performance metrics based 

on scope and function. 

System Scope Goal Metrics 

Core algorithm 

level (software 

and logic) 

Improve 

prediction 

algorithm 

performance 

Algorithm performance 

metrics assessed during 

development 

Implementation 

level (software 

and hardware) 

Efficient 

design of 

PHM system 

Computational performance 

metrics during system 

design 

System level 

with prognostics 

outside the 

decision loop 

Logistics 

planning 
PHM effectiveness metrics 

at system/fleet level 

assessed over long periods 

System level 

with prognostics 

in decision loop 

Operational 

planning 
PHM effectiveness metrics 

at decision control loop 

level assessed both at long 

and short terms 

2.4. Sources of Errors in Prognostics 

Irrespective of the overall approach taken (data-driven, 

model based or any combination thereof) any prognostic 

(condition based prediction) method consists of several 

components each of which must together perform well to 

achieve good prediction performance. As described in 

(Roychoudhury, Saxena, Celaya, & Goebel, 2013) a general 

prognostics method can be thought of being composed of at 

least four independent elements (data sources, domain 

models, implementation aspects, and a core prediction 

algorithm), each of which contributes to the overall 
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prediction performance. For instance, given a choice of a 

particular algorithm, the performance will additionally 

depend on the quality of sensors (location, resolution, 

sampling rates, signal-to-noise ratio, etc.), method of signal 

processing (information loss, feature extraction, etc.), quality 

of degradation model, and the ability to accurately estimate 

future load profile.  

Generally speaking a core prognostic algorithm itself consists 

of steps like state estimation, state propagation, future load 

and uncertainty estimation, failure threshold determination, 

etc. Therefore, a performance evaluation method must be 

cognizant of which factors are being evaluated so the 

performance can be attributed to the right elements and not 

necessarily generalized to the prognostic algorithm. For 

reference, some examples of core algorithms and 

corresponding sources of errors are described below.  

- Model based filtering algorithm for prediction generally 

consists of state estimation step followed by state 

propagation for prediction of RUL. Degradation models 

are developed based on domain knowledge about the 

physics of failures. Magnitude of errors in models 

therefore depend on quality of domain expertise. While 

state propagation step is the only true predictive element 

in these algorithm, overall performance is also affected 

by quality of state estimation and the estimation of future 

loading on the system. 

- Data-driven algorithms that were compared by (Goebel 

K., Saha, & Saxena, 2008) used a common preprocessing 

step to eliminate variability due to data preprocessing 

and uncertainties in state estimation while comparing 

prediction performance of several regression algorithms. 

Here the degradation models are learnt from available 

run-to-failure data and hence errors in models here 

depend on quality of information available from data and 

the choice of data models or mappings that describe 

relationships between sensor observations and system 

states, and operational conditions and fault growth rates. 

- Other pure data-driven approaches used such as in 

PHM08 challenge used a variety of preprocessing steps. 

See for instance the methods used by (Coble J. B. & 

Hines, 2008; Wang & Lee, 2009). These approaches 

bypass an explicit state-estimation step and make 

predictions purely based on similarity computations. 

Here errors depend on choice of variables used for 

computing similarity, similarity measure itself, and the 

vector length to compute similarity, for example. 

While it is arguable which factors should be included as part 

of prognostic algorithm and which as external to the 

algorithm, from a PHM system level viewpoint performance 

of the following must be evaluated at a minimum (1) 

correctness of state estimator (2) correctness of assumed 

future loading, operating, and environmental conditions; and 

(3) correctness of degradation (or fault propagation) model. 

A more detailed discussion on this is provided in Section 3. 

Furthermore, in an operational context, performance of a 

prognostic method can only be evaluated through overall 

effectiveness observed together with the decision making 

control loop. For example, whether the overall failure rates 

have gone down due to implementing of a prognostics 

algorithm, or whether a system was able to optimize its 

operation to maintain safety and maximize mission goals 

based on prognostics. It is important to determine which 

factors should be included in performance assessment, which 

accordingly guides the choice of specific metrics. For 

example, from an operational view point one is interested in 

the performance of overall prognostics and health 

management (PHM) system, but at the low level the interest 

lies in identifying which algorithm performs better given the 

same set of inputs (measurement data quality, domain 

models, implementation hardware, etc.), which is the focus 

of this paper. 

2.5. Offline vs. Online Performance 

Offline performance measurement generally refers to testing 

prediction ability of an algorithm on a dataset where failure 

time is precisely known as that event has already taken place. 

Performance is assessed based on how well a predicted 

estimate matches the true outcome. This, however, has 

limited usefulness and does not fully help when an algorithm 

is implemented on a real system. It is often desirable to track 

prediction performance to ensure that appropriate and timely 

decisions can be taken to benefit from advanced warnings 

from predictions. Therefore, online metrics are designed to 

track algorithm performance in real-time and predict 

system’s RUL while the actual EOL will not be known until 

it actually fails or may never be known if a repair action is 

executed based on predicted impending failure. In the 

absence of availability of true failure time it becomes 

challenging to assess how well an algorithm is predicting at 

runtime and most offline performance evaluation metrics are 

of little or no use. While, this is still an area of active research 

some attempts have been made. For instance, two main 

approaches have been suggested. A short term fixed-k step 

ahead state prediction is generated in addition to RUL 

predictions. These short term predictions can then be 

evaluated for correctness with only a k-step delay and not 

having to wait until the failure time. Consistently good values 

or convergence of the correctness metrics is taken as a 

measure of confidence in RUL prediction performance. 

Similarly, other metrics such as stability (less fluctuations 

from one prediction to the next) of short term predictions can 

be used to improve confidence and usability in a decision 

making loop. 
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3. WHAT SHOULD BE MEASURED? 

Several metrics have been developed and currently used for 

assessing prognostic performance that also account for 

uncertainties in predictions. It is, however, rarely discussed 

how distributions of predicted RUL are to be interpreted, 

what they should be compared to for correctness, or how to 

actually make such comparisons. While the role of 

uncertainties in RUL predictions was discussed in (Celaya, 

Saxena, & Goebel, 2012; Sankararaman & Goebel, 2013) this 

section sheds some light on the contribution of uncertainties 

in RUL predictions to unravel the details of what 

comparisons are mathematically meaningful, and how to 

correctly interpret various types of comparisons within a 

performance evaluation task. 

Existing methods for performance assessment can be broadly 

classified as being applicable to two types of situations: (1) 

where the RUL of a component/system is stochastically 

predicted using a prognostic algorithm, and the ground truth 

end-of-life (that is measured after failure) is compared 

against the algorithm prediction; and (2) where the RUL of a 

component/system is stochastically predicted using a 

prognostic algorithm, and this prediction is compared against 

an ensemble of end-of-life realizations available by running 

multiple nominally identical components to failure; 

sometimes, historical run-to-failure data sets are readily 

available in the literature for this purpose.  

While the former requires the comparison of a probability 

distribution to a point value, the latter requires verifying 

whether the run-to-failure times are samples of the predicted 

probability distribution. Sometimes, in the latter case, the 

different run-to-failure times may be used to construct a 

probability distribution, and therefore, it is necessary to 

measure the extent of agreement between the run-to-failure 

probability distribution and the RUL distribution predicted 

by the prognostic algorithm. This section explores the 

scientific philosophy behind these two approaches for 

performance evaluation, and investigates the interpretation 

and relevance of such comparison. 

To begin with, it is necessary to understand why the 

prediction of a prognostic algorithm is uncertain. 

Sankararaman and Goebel (2013) explain that, in condition-

based prognostics, all the uncertainty needs to be interpreted 

subjectively. In other words, the uncertainty is simply 

reflective of the analyst’s knowledge and not related to true 

randomness. For example, the component/system is at a 

particular state at any time instant. Since this state cannot be 

estimated accurately, it is represented using a probability 

distribution. Similarly, though future loading conditions are 

expressed using probability distribution(s), only one 

realization (based on that probability distribution) would 

actually occur during the course of operation of the 

component/system. Similarly, the degradation model also 

predicts how the health deteriorates; though this model may 

be uncertain, this uncertainty is not related to physical 

randomness. A prognostic algorithm aims at processing all of 

these sources of uncertainty (state, loading conditions, and 

degradation model), and quantifies their combined effect by 

computing the uncertainty in the RUL. Thus, the uncertainty 

estimated by the prognostic algorithm is not (and should not 

be) related to true randomness, and is purely subjective in 

nature. 

This raises the question: What is related to physical 

randomness? True randomness occurs while running multiple 

nominally identical components to failure. The material 

properties of these components exhibit true variability. The 

initial state of these components exhibits true variability. The 

loading conditions that these components are subjected to 

experience true variability. Therefore, the RUL distribution 

estimated by running multiple components to failure exhibits 

true variability. It is not really meaningful to compare this 

probability distribution against the probability distribution 

predicted by the prognostic algorithm, since the former 

reflects the presence of true variability (in properties and 

loading conditions) across multiple nominally identical 

components/systems, whereas the latter focuses on predicting 

the RUL of one particular component/system. This implies 

that comparing the stochastic prediction of a prognostic 

algorithm to historical run-to-failure data sets does not 

necessarily help in evaluating the performance of the 

algorithm, since the sources and interpretation of uncertainty 

underlying these two statistical distributions are completely 

different.  

In other words, if prognostic algorithms are meant for 

condition-based RUL assessment, then they should predict 

the RUL of only the intended component/system, and hence, 

it is necessary to rely on the ground truth end-of-life of that 

particular component/system in order to evaluate algorithm 

performance. 

The prediction of a prognostic algorithm depends on four 

factors: 

1. Choice of degradation model and associated uncertainty 

2. State estimate and associated uncertainty, at time of 

prediction 

3. Assumed future loading conditions and associated 

uncertainty 

4. Procedure by which the algorithm processes all the 

above three uncertainties, in order to compute the 

uncertainty in the RUL.  

The first three of these four factors need to be both accurate 

and precise, in order to achieve the best possible 

performance, from the perspective of the prognostic 

algorithm. The fourth factor needs to be mathematically and 

statistically exact, without making any approximations 

and/or assumptions regarding the probability distribution 

type and parameters of the RUL.  

Note that, at present, it is not possible to verify whether the 

first three factors accurate or check whether the predicted 
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uncertainty in the RUL is truly reflective of the combined 

effect of the different sources of uncertainty. It is necessary 

to directly evaluate the prediction of the prognostic algorithm 

by directly comparing against the ground truth RUL. The rest 

of this section explores how this goal can be accomplished, 

by analyzing what quantities can be measured, in order to 

evaluate prognostic algorithm performance. 

3.1. Ideal, Hypothetical Scenario 

Consider an engineering component/system and a particular 

time-instant at which the RUL needs to be predicted using a 

prognostic algorithm. The algorithm, first, estimates the state, 

in terms of a probability distribution. Assume that a 

degradation model is readily available. Further, the 

uncertainty regarding the future loading conditions is also 

assumed to be available. 

Imagine a hypothetical scenario wherein it is possible to run 

the same component/system to failure multiple times. From 

one run to another, the properties of the component/system 

do not change because the same system is being used, and the 

initial state is also invariant. However, the loading 

experienced in each run is different from another run. It is 

unreasonable to assume that the prognostic algorithm would 

possess knowledge regarding the statistics of the actual future 

loading conditions; therefore, the assumed loading statistics 

may or may not be identical to the actual loading statistics. 

(This, in fact, is the major challenge in prognostics in 

comparison with several other disciplines, because future 

loading conditions need to be anticipated accurately, in order 

to predict failure.) 

It is possible to test whether the observed run-to-failure times 

are actually realizations of the probability distribution 

predicted by the algorithm using statistical methods, and such 

a test will be indicative of the prognostic algorithm 

performance. Note that the prognostic algorithm is likely to 

overestimate the uncertainty because (1) while the true state 

estimate is point-valued, the algorithm only estimates a 

probability distribution; and (2) the degradation model adds 

additional uncertainty. However, (1) if these two factors are 

infinitely accurate and precise; (2) if the algorithm assumes 

loading conditions that are exactly similar to those observed 

in reality; and (3) if the algorithm accurately processes the 

different sources of uncertainty, then the probability 

distribution predicted by the algorithm will be exactly 

identical to the probability distribution of the observed run-

to-failure times. 

Note that this evaluation jointly evaluates all of the 

aforementioned four factors, i.e., even if one factor were not 

accurate/correct, this would be reflected as a difference 

between the probability distributions corresponding to 

prediction and observation. However, as it can be seen from 

the description of the scenario, such evaluation is only 

hypothetical because it is not possible to fail the same 

component multiple times, while starting from the same time-

instant. Therefore, it is necessary to investigate other 

evaluation measures that are useful in practice. 

3.2. Post End-of-Life: Point-Valued Evaluation 

As mentioned at the beginning of this section, the most 

commonly preferred method of evaluation is to wait until the 

end-of-life is reached, and compare the actual run-to-failure 

time against the algorithm prediction. The accuracy and 

precision of the prediction can be estimated easily. However, 

such comparison is not only unfair, but, sometimes, it may 

lead to incorrect conclusions. 

Unfairness: From the time of prediction until the time of 

failure, the algorithm assumes some uncertainty regarding the 

future loading and usage conditions. However, the observed 

ground truth is reflective of only one loading/usage condition, 

thereby implying that similar quantities are not compared. 

Concluding poor performance for a good algorithm: The 

aforementioned unfairness can sometimes lead to concluding 

that a good algorithm is poor. Consider the case where an 

algorithm is provided future loading conditions that are 

completely different from the actual loading conditions. The 

algorithm may process the provided information accurately 

and compute the RUL. However, this prediction may be 

completely different from the observed RUL. This difference 

needs to be attributed only to the incorrectly assumed loading 

conditions and it is not reasonable to penalize the prognostic 

algorithm in this context. 

Concluding good performance of a poor algorithm: Suppose 

that the prediction of the algorithm is extremely accurate and 

precise, with respect to the observed ground truth. Then, it 

cannot be inferred that the algorithm is performing well. For 

instance, if the true damage (expressed in terms of the states) 

had been overestimated, and if the degradation model depicts 

a slower degradation rate than reality, then, ground-truth-

based evaluation may suggest that the algorithm is indeed 

performing well. It is generally understood that a good 

prognostic algorithm needs to accurately estimate the state, 

and if the state estimation is not accurate, then the algorithm 

needs to be penalized. Clearly in this case, the algorithm is 

not penalized. 

3.3. Post End-of-Life: Informed Evaluation 

It is possible to eliminate the effect of not knowing the 

loading condition in advance, by waiting until failure. The 

actual loading/usage condition experienced by the 

component/system can be observed, and the prediction 

algorithm can be provided with this information. Therefore, 

the algorithm prediction can be “informed” with the actual 

loading condition, and the informed-prediction can be 

computed easily. Note that, at the time of prediction, this 

information would not be available to the algorithm. 

Therefore, this procedure is only to evaluate the algorithm 

performance, after eliminating the effect of unknown future 
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loading conditions. All the other information provided to the 

algorithm need to be reflective of the information available 

to the algorithm at the time of prediction. 

Similar to the traditional ground-truth-based evaluation, the 

informed prediction of the algorithm can be compared against 

the observed ground truth. Note that the former is uncertain 

because of uncertainty in the state estimate and the 

degradation model. The precision and accuracy of the 

prediction can be computed. It can be easily seen that this 

evaluation is stricter than the evaluation in Section 3.2, and 

this performance evaluation needs to be meet requirements. 

However, whether this evaluation is sufficient, is unclear at 

present. This is because, just as in Section 3.2, overestimate 

damage and underestimated degradation rates may 

compensate each other and lead to higher accuracy and 

precision.  

3.4. Pre End-of-Life Evaluation 

While the above described measures of evaluation focus on 

characterizing the effects of state estimates, future loading 

conditions, and degradation model, it is also necessary to 

check whether the algorithm is accurately processing the 

different sources of uncertainty. This is not related to 

accurately predicting the RUL, but is directly associated to 

the mathematical treatment of the various sources of 

uncertainty.  

Some algorithms may average the effect of the different 

sources of uncertainty on the RUL, and arbitrarily calculate 

the variance of RUL using approximations and assumptions 

(Celaya et al., 2012). It is important not to underestimate or 

overestimate the underlying uncertainty and accurately 

calculate the probability distribution of RUL. The ideal 

approach to perform such calculation is the use of Monte 

Carlo simulation with a large number of samples; though this 

requires high computational power, this method can be used 

to check the performance of other algorithms that are suitable 

for online prediction. In other words, the probability 

distributions obtained using the specific algorithm and Monte 

Carlo simulation can be compared and any discrepancy can 

be quantified, in order to evaluate the performance of the 

algorithm, from the perspective of integrating the different 

sources of uncertainty.  

3.5. Summary 

The search of prognostic performance evaluation measures 

raises several important questions and concerns. There are 

four important critical factors that control the performance of 

prognostic algorithm, and it is not practically possible to 

individually evaluate the goodness of these factors. While 

testing the performance against observed ground truth seems 

to be the most widely used method, it is not only unfair but 

may lead to incorrect conclusions. The informed-prediction 

method eliminates the uncertainty regarding the future 

loading conditions, and quantifies the combined effect of 

state uncertainty and degradation model uncertainty on the 

RUL prediction. The fourth factor, i.e., whether all the 

sources of uncertainty are being processed and integrated 

accurately, can be verified by comparing the algorithm 

prediction against rigorous Monte Carlo simulation. 

An important challenge is the inability to check whether the 

loading conditions assumed by the algorithm are reflective of 

what is expected in reality. Is it reasonable to penalize the 

algorithm for poor performance? Another issue is the ability 

to identify whether the adverse effect of two (or more) 

incorrectly estimated quantities jointly cancel out one 

another, and deceivingly suggest that the prediction is highly 

accurate and precise. Further research is necessary to address 

these issues and improve the state of the art techniques for 

prognostic performance evaluation.  

4. STATE-OF-THE-ART ON PROGNOSTICS METRICS 

Several performance metrics were proposed earlier that 

evaluate key attributes (correctness, timeliness, and 

confidence) of prognostic performance as described in 

Section 2.1). Specifically following four metrics were 

suggested –  

Prediction horizon – quantifies how early a prediction 

algorithm can make reasonable predictions to allow 

maximum advance warning before an impending failure. 

Alpha-lambda accuracy – specifies whether an algorithm’s 

prediction error is within desired accuracy bounds (specified 

by α) at any given time (specified by λ). 

Relative accuracy – quantifies the prediction error 

normalized by remaining component life at any given time. 

Convergence – tracks the rate of improvement in prognostic 

algorithm’s performance as time progresses. 

As described in (Saxena et al., 2010) these metrics convey 

how prognostic performance evolves with time as end-of-life 

time approaches closer. These metrics also acknowledged 

that prognostics must account for uncertainties and that any 

prediction method should include a representation of 

uncertainties through abstractions such as, for instance, the 

probability distributions. These metrics are parameterized 

through several parameters α (accuracy modifier), β 

(confidence modifier), and λ (time window modifier), which 

must be derived as specifications for prognostics based on 

high level requirements. In their latter publications authors 

described and illustrated through an example how such a 

flowdown can be carried out to derive numerical 

specifications for these parameters (Saxena, Roychoudhury, 

Celaya, Saha, Saha, & Goebel, 2012). There have been other 

recent efforts that acknowledge the need to evaluate 

performance under uncertainty. Generally speaking 

individual efforts are driven by respective application needs, 

however, it appears that many research articles have been 

developing metrics without explicitly discussing the 
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interpretation of the quantities being compared, therefore 

largely ignoring the issues such as those discussed in Section 

3. 

In (Leao Bruno P, Gomes, & Yoneyama, 2011; Leao Bruno 

P. & Yoneyama, 2013) a Probability Integral Transform 

(PIT) based method is presented that evaluates whether an 

algorithm processes uncertainties adequately by comparing 

the statistics of predicted RUL distributions to a ground truth 

distribution obtained from several run-to-failure datasets. 

The advantage of this method is in that it allows comparisons 

of arbitrary (parametric or non-parametric) distribution types 

obtained from field data or experimentation to address the 

scenario described in Section 3.1. Since the statistical 

significance of the analysis depends on the number of run-to-

failure test cases available, limits on values can be computed 

for a desired significance level to assert whether a particular 

algorithm processes the uncertainty (as observed through 

several examples) correctly in a statistical sense. Authors also 

proposed some graphical visualizations to express confidence 

bounds in such assertions. As a limitation, availability of 

statistically sufficient ground truth data and validity of 

aggregating the field data into a single histogram is always 

questionable for such approaches to work properly. As 

presented in some of the earlier works from the authors 

(Saxena et al., 2008; Saxena, Celaya, Saha, Saha, & Goebel, 

2009b; Saxena et al., 2010)  there has been a general tendency 

towards computing an aggregate metric score over 

performance of several units under test. However, in the 

context of condition based prognostics, where users are 

concerned with prognostic performance of an algorithm on 

specific use case, applying aggregation or averaging metrics 

may not be valid due to effects of different operational and 

loading conditions on the usage life of units included in a 

historical dataset.  

Next, the various metrics proposed based on PIT do not 

address the timeliness attributes of performance as discussed 

in Section 2.1. In fact, unfortunately, it is still very common 

to find metrics that disregard the timeliness aspect of 

prognostic performance. In (Sharp, 2013) several averaging 

metrics are presented that can be considered an improvement 

over traditional error or variance based metrics, but suffer 

from same limitations that it is not technically correct to 

average predictions made at different times. Although, by 

means of a user defined weighting function this limitation is 

somewhat alleviated, but choosing an appropriate weighting 

function is another subjective proposition that makes these 

metrics non-standardized and difficult to implement. Metrics 

such as Weighted Error Bias (WEB), Weighted Prediction 

Spread (WPS), Confidence Interval Coverage (CIC), 

Confidence Convergence Horizon (CCH), and a weighted 

sum total of all to create a Total Score Metric (TSM) may not 

be as simple or intuitive as authors intended them to be.  

While most of the above metrics were proposed primarily for 

offline evaluation of prognostic performance, there have been 

other works that tackle specific challenges. Much of the 

recent literature either focuses on incorporating uncertainties 

or attempts to develop methods for online performance 

evaluation. Some of the recently published methods are 

summarized in Table 2. The aspect of online performance 

evaluation is mostly addressed by assessing performance on 

short term predictions of the system state (not necessarily the 

end-of-life). Correctness and consistency of these predictions 

over time is used to assert confidence in long term RUL 

predictions, where there cannot be an explicit evaluation of 

correctness and timeliness in the absence of end-of-life 

ground truth. Short term correctness is measured through 

usual accuracy and precision metrics, and consistency is 

generally measured by variance between successive 

predictions. There is no denying the fact that these are still 

conceptual challenges in evaluating prognostic performance 

and the research community continues to work towards 

finding a robust solution. 

ACKNOWLEDGEMENT 

The funding for this work was provided by the NASA 

System-wide Safety and Assurance Technologies (SSAT) 

Project. 

REFERENCES 

Celaya, J., Saxena, A., & Goebel, K. (2012). Uncertainty 

Representation and Interpretation in Model-based 

Prognostics Algorithms Based on Kalman Filter 

Estimation. Paper presented at the Annual Conference of 

the Prognostics and Health Management Society 

(PHM12), Minneapolis, MN. 

Coble, J. B. (2010). Merging Data Sources to Predict 

Remaining Useful Life – An Automated Method to 

Identify Prognostic Parameters. PhD Dissertation, The 

University of Tennessee, Knoxville.    

Coble, J. B., & Hines, J. W. (2008). Prognostic Algorithm 

Categorization with PHM Challenge Application. Paper 

presented at the 1st International Conference on 

Prognostics and Health Management (PHM08), Denver, 

CO. 

Engel, S. J., Gilmartin, B. J., Bongort, K., & Hess, A. (2000). 

Prognostics, the Real Issues Involved with Predicting 

Life Remaining. Paper presented at the IEEE Aerospace 

Conference, Big Sky, MT. 

Goebel, K., Saha, B., & Saxena, A. (2008). A Comparison of 

Three Data-Driven Techniques for Prognostics. Paper 

presented at the 62nd Meeting of the Society For 

Machinery Failure Prevention Technology (MFPT), 

Virginia Beach, VA.  

Goebel, K., Saxena, A., Saha, S., Saha, B., & Celaya, J. 

(2011). Prognostic Performance Metrics. Machine 

Learning and Knowledge Discovery for Engineering 

Systems Health Management, 147.  

Guan, X., Jha, R., Liu, Y., Saxena, A., Celaya, J., & Goebel, 

K. (2010). Comparison of Two Probabilistic Fatigue 



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

10 

Damage Assessment Approaches Using Prognostic 

Performance Metrics. International Journal of 

Prognostics and Health Management, 2(1)(5), 11.  

Johnson, S. B., Gormley, T., Kessler, S., Mott, C., Patterson-

Hine, A., Reichard, K., & Scandura Jr, P. (2011). System 

health management: with aerospace applications: John 

Wiley & Sons. 

Leao, B. P., Gomes, J. P., & Yoneyama, T. (2011). 

Improvements on the offline performance evaluation of 

fault prognostics methods. Paper presented at the 

Aerospace Conference, 2011 IEEE. 

Leao, B. P., & Yoneyama, T. (2013). Performance Metrics in 

the Perspective of Prognosis Uncertainty. Paper 

presented at the Annual Conference of the Prognostics 

and Health Management Society (PHM13), New 

Orleans, LA. 

Liu, S., & Sun, B. (2012). A Novel method for online 

prognostics performance evaluation. Paper presented at 

the Prognostics and System Health Management (PHM), 

2012 IEEE Conference on. 

Olivares, B. E., Muñoz, M. A. C., & Orchard, M. E. (2013). 

Particle-Filtering-Based Prognosis Framework for 

Energy Storage Devices With a Statistical 

Characterization of State-of-Health Regeneration 

Phenomena. IEEE Transactions on Instrumentation and 

Measurement, 62(2), 13.  

Orchard, M. E., Tang, L., Goebel, K., & Vachtsevanos, G. 

(2009). A Novel RSPF Approach to Prediction of High-

Risk, Low-Probability Failure Events. Paper presented at 

the Annual Conference of the Prognostics and Health 

Management Society (PHM09), San Diego, CA.  

Roychoudhury, I., Saxena, A., Celaya, J. R., & Goebel, K. 

(2013). Distilling the Verification Process for 

Prognostics Algorithms. Paper presented at the Annual 

Conference of the Prognostics and Health Management 

Society (PHM13), New Orleans, LA. 

Sankararaman, S., & Goebel, K. (2013, October 2013). Why 

is the Remaining Useful Life Prediction Uncertain? 

Paper presented at the Annual Conference of the 

Prognostics and Health Management Society, New 

Orleans, LA. 

Saxena, A., Celaya, J., Balaban, E., Goebel, K., Saha, B., 

Saha, S., & Schwabacher, M. (2008). Metrics for 

Evaluating Performance of Prognostics Techniques. 

Paper presented at the 1st International Conference on 

Prognostics and Health Management (PHM08), Denver, 

CO.  

Saxena, A., Celaya, J., Saha, B., Saha, S., & Goebel, K. 

(2009a). Evaluating Algorithmic Performance Metrics 

Tailored for Prognostics. Paper presented at the IEEE 

Aerospace Conference, Big Sky, MT.  

Saxena, A., Celaya, J., Saha, B., Saha, S., & Goebel, K. 

(2009b). On Applying the Prognostics Performance 

Metrics. Paper presented at the Annual Conference of the 

Prognostics and Health Management Society (PHM09) 

San Diego, CA.  

Saxena, A., Celaya, J., Saha, B., Saha, S., & Goebel, K. 

(2010). Metrics for Offline Evaluation of Prognostic 

Performance. International Journal of Prognostics and 

Health Management, 1(1), 21.  

Saxena, A., & Roemer, M. (2013). IVHM Assessment 

Metrics: SAE International. 

Saxena, A., Roychoudhury, I., Celaya, J., Saha, B., Saha, S., 

& Goebel, K. (2012). Requirement Flowdown for 

Prognostics Health Management. Paper presented at the 

AIAA Infotech@Aerospace, Garden Grove, CA. 

Sharp, M. E. (2013). Simple Metrics for Evaluating and 

Conveying Prognostic Model Performance To Users 

With Varied Backgrounds. Paper presented at the Annual 

Conference of the Prognostics and Health Management 

Society (PHM13), New Orleans, LA. 

Vachtsevanos, G., Lewis, F. L., Roemer, M., Hess, A., & Wu, 

B. (2006). Intelligent Fault Diagnosis and Prognosis for 

Engineering Systems (1st ed.). Hoboken, New Jersey: 

John Wiley & Sons, Inc. 

Wang, T., & Lee, J. (2009). On Performance Evaluation of 

Prognostics Algorithms. Paper presented at the 

Machinery Failure Prevention Technology, Dayton, OH.  

 

BIOGRAPHIES  

Abhinav Saxena is a Research Scientist with SGT Inc. at the 

Prognostics Center of Excellence of NASA Ames Research 

Center, Moffett Field CA. His research focus lies in 

developing and evaluating prognostic algorithms for 

engineering systems using soft computing techniques. He has 

co-authored more than seventy technical papers including 

several book chapters on topics related to PHM. He is also a 

member of the SAE’s HM-1 committee on Integrated Vehicle 

Health Management Systems and IEEE working group for 

standards on prognostics. Dr. Saxena is the editor-in-chief of 

International Journal of PHM and has led technical program 

committees in several PHM conferences. He is also a SGT 

technical fellow for prognostics. He has a PhD in Electrical 

and Computer Engineering from Georgia Institute of 

Technology, Atlanta. He earned his B.Tech in 2001 from 

Indian Institute of Technology (IIT) Delhi, and MS Degree in 

2003 from Georgia Tech. He has been a GM manufacturing 

scholar and is also a member of several professional societies 

for PHM including PHM Society, SAE, IEEE, AIAA, and 

ASME 

 

Shankar Sankararaman received his B.S. degree in Civil 

Engineering from the Indian Institute of Technology, Madras 

in India in 2007 and later, obtained his Ph.D. in Civil 

Engineering from Vanderbilt University, Nashville, 

Tennessee, U.S.A. in 2012. His research focuses on the 

various aspects of uncertainty quantification, integration, and 

management in different types of aerospace, mechanical, and 

civil engineering systems. His research interests include 

probabilistic methods, risk and reliability analysis, Bayesian 

networks, system health monitoring, diagnosis and 



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

11 

prognosis, decision-making under uncertainty, treatment of 

epistemic uncertainty, and multidisciplinary analysis. He is a 

member of the Non-Deterministic Approaches (NDA) 

technical committee at the American Institute of Aeronautics, 

the Probabilistic Methods Technical Committee (PMC) at the 

American Society of Civil Engineers (ASCE), and the 

Prognostics and Health Management (PHM) Society. 

Currently, Shankar is a researcher at NASA Ames Research 

Center, Moffett Field, CA, where he develops algorithms for 

uncertainty assessment and management in the context of 

system health monitoring, prognostics, and decision-making. 

 

Kai Goebel is the Deputy Area Lead for Discovery and 

Systems Health at NASA Ames where he also directs the 

Prognostics Center of Excellence. After receiving the Ph.D. 

from the University of California at Berkeley in 1996, Dr. 

Goebel worked at General Electric’s Corporate Research 

Center in Niskayuna, NY from 1997 to 2006 as a senior 

research scientist before joining NASA. He has carried out 

applied research in the areas of artificial intelligence, soft 

computing, and information fusion and his interest lies in 

advancing these techniques for real time monitoring, 

diagnostics, and prognostics. He holds 17 patents and has 

published more than 250 papers in the area of systems health 

management. 

 

 

Table 2. Recently published metrics in prognostics literature. 

Metric Description Formula 

Online Performance Evaluation 

RUL Online Precision 

Index (RUL-OPI) 

(Orchard, Tang, 

Goebel, & 

Vachtsevanos, 2009) 

RUL-OPI quantifies and tracks the precision of predicted 

RUL distributions by quantifying the length of 

95%confidence bounds (CI(i)) normalized by the 

predicted RUL (r(i)) at any given time instant. An 

algorithm with a high index (close to 1) is preferred, which 

indicates high precision or narrow confidence bounds. 

 

   sup CI(i) inf CI(i)

r(i)
I i e

 
  
   

Dynamic Standard 

Deviation (DStd) 

(Olivares, Muñoz, & 

Orchard, 2013) 

DStd quantifies the stability of predictions within a time 

window (Δ). Variance between individual predictions 

made within the time window is computed. The metric is 

normalized to a range [0,1] using the logistic function φ 

for easy comparisons.  

  1: j
j

DStd Var E EOL | y


 
  

 

 

Critical-α  Performance 

Measure  

(Olivares et al., 2013) 

Looking from the perspective of actionable decision 

making, this measure computes the critical percentile (α) 

of an RUL distribution that would define a Just-In-Time-

Point (JITP) for that application. JITP must always occur 

before actual failure, and hence the value of this metric 

lies in interval (0,0.5] and should be maximized to avoid 

unnecessary conservatism in decision making. 

 crit % pred

pred

arg max JITP (k ) EOL ;

k [1,EOL]

 

 






 

Accuracy and 

Precision over fixed 

horizon  

(Liu & Sun, 2012) 

The accuracy metric (Ac) computes the probability mass 

of the predicted RUL within the acceptable α bounds and 

compares them to actual states realized at the end of the 

short horizon window.  

Similarly the precision (Pr) metric compares the spread 

(based on confidence intervals (CI)) of the predicted (P) 

probability density function to the true pdf (T) at the end 

of one horizon window. It is however not clear how the 

true pdf is obtained for comparison, where one would 

expect only a point observation from an actual event. 

p

T P
T P

T

P T
T P max

max T

P max

Ac (c)dc or (c)

CI CI
1 if CI CI

CI
CI CI

Pr 1 if CI CI CI
CI CI

if CI CI
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Metrics Dealing with Uncertainty in Predictions 

β-criterion (Saxena et 

al., 2010; Saxena et al., 

2012) 

β-criterion specifies desired level of overlap between 

predicted RUL PDF and the acceptable error bounds (α-, 

α+) around observed EOL.  

Further extensions to β-criterion were proposed to bound 

probabilities of early (β-) and late (β+) predictions that are 

guided by higher level system requirements. 

These criteria apply to situations described in Section 3.2. 

 

*EoL 

EoL ground truth

EoL

Predicted point 

estimate of EoL










 ][EoL

Total probability 

of EoL within α-bounds

Total probability 

of EoL occurring 

later than α+ bound 

resulting in failure

Total probability of 

EoL occurring earlier 

than α- bound resulting 

in early repair or 

missed opportunity


Predicted 

EoL probability 

distribution

α- : Acceptable 

limit for early 

predictions 

α+: Acceptable limit 

for late predictions
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Probability Integral 

Transform (PIT) and 

PIT based metrics  

(Leao Bruno P. & 

Yoneyama, 2013) 

PIT allows to assess how well a predicted distribution 

match the variability in the actual process. Ground truth 

RUL values from several run-to-failure datasets are 

transformed into corresponding PIT values using the 

cumulative distribution functions for the predicted RULs. 

Closer the transformed values lie to a uniform distribution 

U(0,1) better the predicted distribution represents the 

observed process. 

To check this resemblance a graphical prognostic 

performance plot (PPP) was suggested with a quantitative 

measure prognostic quality index (q). Further, a 

significance level of the result can be determined based on 

hypothesis testing. Other such measures are also possible. 

𝑃𝐼𝑇: 𝑧𝑖 = 𝐹(𝑥𝑖) s.t. 

𝐹(𝑥) =  ∫ 𝜋(𝜉)𝑑𝜉
𝑥

−∞
= 𝑃(𝑋 ≤ 𝑥) and  

𝑍 = 𝐹(𝑋) ~𝑈(0,1) 

 

𝑞 = 1 −
2

𝑀
∑ |𝑎𝑏𝑠𝑗 − 𝑜𝑟𝑑𝑗|𝑀

𝑗=1  to quantify 

deviation from the reference U(0,1) 

 

 

Table 3. Classification of prediction methods and description of metrics typically used for performance evaluation. 

Prediction 

Method 
Prediction Model Applicability Accuracy Timeliness Confidence 

Type I 
Reliability analysis 

based predictions 

Population-based 

statistics data from 

(mostly controlled) 

experiments or usage 

history data 

Predict mean life 

of a component. 

Correctness of 

predictions is 

meaningful for a 

fleet in general, 

and not for an 

individual unit 

Mean-life metrics such as MTBF, MTBR, 

etc. can be predicted and then compared 

to observations from actual field data. 

These, errors in predictions can be used 

as a metric of accuracy. Otherwise, if 

maintenance actions based on these 

metrics are effective, then any observed 

change in mean-life estimates can be 

interpreted as a measure of effectiveness 

(accuracy, timeliness) of such predictions. 

Probability of success 

metrics such as RxCy 

specifying x% 

reliability with y% 

confidence. E.g. 

R96C90 is a popular 

metric in automotive 

industry 

Type II 
Damage 

accumulation model 

based predictions 

Unit specific load 

history data + 

population based 

Damage 

accumulation model 

Predict remaining 

life of an 

individual unit 

based on 

population model 

Metrics like alpha-

lambda accuracy and 

relative accuracy 

quantify correctness 

of prognostic 

algorithms (Saxena et 

al., 2010) 

Prediction 

horizon, and 

lambda, the time 

window 

modifier, based 

metrics assess 

timeliness 

aspects of 

prognostics 

β-criterion (Saxena, 

Celaya, Saha, Saha, & 

Goebel, 2009a) 

assesses confidence  in 

prediction correctness, 

Robustness (Guan et 

al., 2010) and 

sensitivity metrics 

(Vachtsevanos, Lewis, 

Roemer, Hess, & Wu, 

2006) assess 

confidence via offline 

analysis 

Type III 
Condition based 

predictions - 

Prognostics 

Unit specific 

degradation model 

(data-driven or 

physics based), load 

history, and 

condition monitoring 

data.  

Predictions 

customized for 

individual unit by 

learning specific 

individual 

behavior 

Type IV 

Data Analytics 

based predictions – 

Predictive analytics 

Rich set of data from 

multiple units in a 

variety of operating 

conditions + 

analytical data model 

for pattern matching 

Predictions for 

individual unit 

based on rich 

operational history 

data 

Classification error 

rate metrics (such as 

false positives, false 

negatives), aggregate 

error metrics (such as 

MAPE, MSE, MAD, 

etc) to evaluate 

predictions on 

multiple units. 

Timeliness may 

be expressed by 

length of history 

sequence 

considered for 

accurate 

predictions. 

Similarity scores 

between two high 

dimensional history 

vectors establish 

confidence. Similarity 

metrics such as 

precision and recall are 

often employed 

Algo 1

Algo 2


