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ABSTRACT 

The Semiconductor Industry (SI) is facing the challenge of 

high-mix low-volume production due to increasing diversity 

in customer demands. This has increased unscheduled 

equipment breakdowns followed by delays in diagnosis and 

ineffective maintenance actions that reduce the production 

capacities. At present, these challenges are addressed with 

mathematical approaches to optimize maintenance actions 

and their times of intervention. However, few studies take 

into account the ineffectiveness of maintenance actions, 

which is the key source for subsequent breakdowns. Hence, 

in this paper, we present a methodology to detect poorly 

executed maintenance actions and predict their 

consequences on the product quality and/or equipment as 

the feedback for technicians. It is based on the definition of 

maintenance objectives and criteria by experts to capture 

information on the extent to which the objective is fulfilled. 

Data collected from maintenance actions is then used to 

formulate Bayesian Network (BN) to model the causality 

between defined criteria and effectiveness of maintenance 

actions. This is further used in the respective FMECA 

defined for each equipment, to unify the maintenance 

knowledge. The key advantages from the proposed 

approach are (i) dynamic FMECA with unified and updated 

maintenance knowledge and (ii) real time feedback for 

technicians on poor maintenance actions.  

1. INTRODUCTION:  

The SI is characterized by fastest change in smallest period 

of time and has become a 300+ B$ industry in less than 60 

years (Stamford, 2012; Dale, 2012). The demand in SI is 

mainly driven by end-user markets (Ballhaus, Pagella, and 

Vogel, 2009); hence, increasing diversity in customer 

demands with short product life cycles has resulted into a 

high-mix low-volume production. It increases unscheduled 

equipment breakdowns followed by delays in diagnosis and 

ineffective maintenance actions that reduce production 

capacities. This fact is shown in Figure 1, where 

unscheduled equipment breakdown is plotted against 

product mix using data collected from a world reputed 

semiconductor manufacturer for 2013. The blue curve 

represents number of different products whereas red curve is 

unscheduled equipment breakdown duration, in second.  It 

can be seen that the variation of product mix has an 

important impact on production capacities; therefore, it is 

necessary to reduce variability of unscheduled breakdowns 

due to this fluctuation. 

 

Figure 1. Product mix vs unscheduled breakdown 

This complexity is treated in literature with mathematical 

approaches to optimize maintenance actions and their times 

of intervention. Vassilis and Christo (2013) used a Bayesian 
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classifier to recommend problem types based on historical 

case associated to specific event using sensor data. Multi-

agent based approaches are also used in maintenance to 

dynamically schedule the actions (Aissani, Beldjilali, and 

Trentesaux, 2009). Weber and Jouffe (2006); Weild, 

Madsen, and Israelson (2009); Yang and Lee (2012); and 

Efthymiou, Papakostas, Mourtzis, and Ghyryssolouris 

(2012) present an application of Bayesian network for 

dynamic condition monitoring and diagnostic in order to 

support condition based maintenance (CBM) in the complex 

SI and aircraft industries. However, none of these above 

approaches take into account the effectiveness of the 

maintenance actions performed by technicians that serve as 

key source for variability in production capacities. Medina-

Oliva and Weber (2013) proposed probabilistic relational 

model (PRM) with key performance indicators (KPIs) to 

monitor and report human effectiveness against 

maintenance strategies. The proposed approach, in this 

article, is different as we predict consequences of poorly 

executed maintenance actions as feedback to technicians, on 

product quality and equipment.  

In this paper, we introduce the notion of defined criteria for 

maintenance functions based on equipment and maintenance 

types by experts. These are updated in failure mode effect 

and criticality analysis (FMECA) followed by maintenance 

checklists. The responses collected from technicians, while 

executing maintenance actions, serve as the knowledge base 

to model the consequences due to ineffective actions. This 

proposed methodology is implemented in dielectric (DIEL) 

workshop at the world reputed semiconductor manufacturer. 

The data is used to develop Bayesian network (BN) with an 

unsupervised learning that models causality between criteria 

and effectiveness of maintenance actions. The key benefits 

of the proposed approach are (i) dynamic FMECA to unify 

the maintenance knowledge and (ii) real time feedback to 

technicians on poorly executed maintenance actions. It also 

helps to renew experts' knowledge on equipment against 

increasing unscheduled due to fluctuations in product mix. 

This approach is not limited to SI and can be applied to any 

production line facing the challenges of reduced production 

capacities due to unscheduled equipment breakdowns. 

This paper is divided in 3 sections. Section 2 presents a 

literature review on existing approaches and methods. The 

proposed methodology based on BN, case study and results 

are presented in section3. We conclude this article with the 

discussion and perspectives in section 4. 

2. LITERATURE REVIEW 

The review has been performed across three axes: (i) 

maintenance strategies, (ii) maintenance actions predictions 

and (iii) approaches to take into account the human factor 

during maintenance in the SI and complex production lines. 

2.1. Design and Manufacturing Operations in SI 

The design and manufacturing process of integrated circuit 

(IC) chip is presented in Figure 2 (Shahzad, Hubac, Siadat, 

and Tollenaere, 2011). In this process, customers request 

new products that go through a complex design using CAD 

tools and design libraries (reusable blocks of circuits). These 

are simulated to assess their compliance with technology 

specifications. Upon validation, design moves to the mask 

preparation step. These masks are glass plates with an 

opaque layer of chrome carrying target chip layout. They 

transfer product layout on silicon wafer through repetitive 

sequence of deposition, lithography, etching and polishing 

steps. The next step is called frontend manufacturing where 

thousands of transistors are fabricated on the silicon surface 

along with a network of interconnected wires to form an IC 

chip. The silicon wafers are then tested, cut, packaged and 

shipped to customers a.k.a. backend process. This complex 

manufacturing process consists of approximately 200+ 

operations, 1100+ steps and 8 weeks of processing time,. 

The cost of a production facility in SI with 600 production 

and metrology equipments is around 3.5 billion US dollars 

(Shahzad, Tollenaere, Hubac, and Siadat, 2011). The 

production capacity of a SI production line is measured in 

wafers manufactured per week. The case study performed in 

this paper is completed in 12 inches wafer production 

facility.  

 

Figure 2. Design and manufacturing process for an IC chip 

2.2. Maintenance Strategies 

In the SI environment, maintenance is a key issue to keep 

such a high level of production and control capacity. The 

common maintenance practices in the manufacturing 

domain are corrective (run to failure), preventive (time and 

usage based) and predictive maintenances (Mili, Bassetto, 

Siadat, and Tollenaere, 2009). The corrective maintenance 

strategy is not suitable for the semiconductor manufacturing 

because it destabilize the production system; however, till 

now, the SI has relied on preventive maintenance (PM) as 

an alternative maintenance strategy to optimize capacities 

while ensuring product quality. The key disadvantages of 

PM are over and under maintenance. It decreases capacities 

due to maintenance when equipment is still in good health 
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and adds additional costs due to delayed maintenance. 

Besides these strategies, a new strategy known as predictive 

maintenance (PdM) is proposed, where maintenance actions 

are triggered depending on the condition of the equipment 

and in anticipation (prediction) of potential failure before 

they occur. This strategy has evolved in two forms as (i) 

non-predictive condition based maintenance (CBM) and (ii) 

predictive CBM. The non-predictive CBM is similar to the 

PM strategy but with the difference that maintenance 

decisions are taken based on surpassing thresholds on the 

key parameters used to monitor the health of equipment, 

instead of time based or usage based approach (Susto, 

Pampuri, Schirru, and Beghi, 2012); (Krishnamurthy, Adler, 

Buonadonna, Chhabra, Flanigan, Kushalnagar, Nachman, 

and Yarvis, 2005). The predictive CBM is far superior to 

PM and non-predictive CBM. It is because the maintenance 

actions are based on continuously monitoring equipment 

health followed by failure predictions and pre-failure 

interventions. 

At present, unscheduled breakdowns are addressed with the 

mathematical approaches to optimize maintenance actions 

and their intervention time. Vassilis et al. (2013) employed 

Bayesian classifier to recommend problem types based on 

historical cases associated to specific event with sensor data. 

Weber and Jouffe (2006); Weild et al. (2009); Yang and Lee 

(2012); Efthymiou et al. (2012); and Bouaziz, Zamai, and 

Hubac (2012) used BN for dynamic condition monitoring 

and diagnostic to support condition based maintenance 

(CBM) in complex (e.g. SI and aircraft) industries. Mili et 

al. (2009) implemented dynamic FMECA based method to 

unify maintenance actions and prevent risks with qualitative 

information. Hubac and Zamai (2013) presented dynamic 

adjustment of maintenance policies based on CBM strategy 

approach allow to dynamically control and quantify 

equipment reliability in high mix flow industry. This shows 

that CBM is the dominant maintenance strategy being used 

to optimize maintenance actions. The mathematical and BN 

approaches are also found to be used for modeling purposes. 

However, none of these approaches take into account the 

effectiveness of maintenance actions that has emerged as a 

source of variability in dynamic environment like SI.  

2.3. Maintenance Actions Predictions 

In the past, it was very difficult to predict equipment failures 

due to the unavailability of fault detection and classification 

(FDC) and maintenance data; however, today its availability 

with artificial intelligence (AI) techniques has enabled the 

failure prediction. There are several PdM based 

maintenance approaches proposed in recent papers for the 

SI e.g. classification methods (Baly & Hajj, 2012), filtering 

and prediction approaches (Susto, Beghi, and DeLuca, 

2011); (Schirru, Pampuri, and DeNicolao, 2010) and 

regression methods (Hsieh, Cheng, Huang, Wang, and 

Wang, 2013); (Susto, Pampurin, Schirru, and Beghi, 2012). 

An innovative approach, integrated failure prediction 

(Susto, McLoone, Pagano, Schirru, Pampuri, and Beghi, 

2013), is presented with the hypothesis that the data 

collected is based on full maintenance cycle runs in 

compliance with runs to failure policy. Here, the objective is 

to capture the evolution of failures from initial safe 

conditions. However, this approach does not take into 

account the influence of parent-child relation between 

different equipment modules and suggest to model failure 

evolution for each module. It is also adapted from support 

vector machine (SVM) technique, a very well know 

classification method in machine learning (ML). Not all the 

equipment monitoring parameters are relevant in predicting 

a specific failure; hence, different approaches are used for 

the combination of relevant parameters e.g. discriminated 

analysis to get linear combination of parameters (Gertsbakh, 

1977). Similarly, a linear combination function of 

parameters with the maximum contribution to the tool 

condition can also be found with principal component 

analysis (PCA) or singular value decomposition (Stamatis, 

Mathioudakis, and Papailiou, 1992). The predictive CBM 

needs accurate model for equipment failure predictions. The 

most commonly used techniques are AI and ML based 

predictive CBM with different types of data; however, none 

of them use effectiveness of maintenance actions as criteria 

for prediction. 

2.4. Human Factor in Maintenance 

This paper highlights the importance of such factors to 

implement an effective predictive maintenance process. 

There are few studies that use effectiveness of actions in the 

equipment maintenance. Trucco, Cagno, Ruggeri, and 

Grande (2007) focus more on risk analysis associated to 

human and organizational factors and in their study used a 

fault tree analysis (FTA) with BN model. In this framework, 

Léger, Weber, Levrat, Duval, Farret, and Iung (2009) also 

proposed a methodology to integrate operator and human 

actions for probabilistic risk assessment. Medina-Oliva et al. 

(2013) takes into account the notion of human effectiveness. 

They propose a probabilistic relational model (PRM) to 

integrate maintenance system interactions with enabling 

system, and impact of maintenance strategies and human 

effectiveness on production line performance. 

Our approach is different as we focus on detecting poorly 

executed maintenance actions and predicting their 

consequences on the product quality and equipment, as 

feedback to technicians. It provides an opportunity for 

continuous improvement. This approach also offers dynamic 

unification of maintenance knowledge as well as a source to 

renew knowledge of maintenance experts. The BN is taken 

as the target modeling method due to its structural ability for 

causality. This study is based on hypothesis that ineffective 

maintenance actions is one of the reason for decreasing 

unscheduled equipment breakdowns in the SI, challenged 

with high-mix low-volume production. The next section will 

detail our proposal approach. 
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3. PROPOSED METHODOLOGY 

The proposed 3-step methodology is presented in Figure 3 

below. In this methodology, step-1 corresponds to the 

criteria and consequence definition for maintenance actions, 

depending on the effectiveness of human by maintenance 

experts. The checklists for the target equipment and 

maintenance type are modified to capture information on the 

extent to which the associated objectives are fulfilled. The 

initial BN between maintenance functions, objectives, 

criteria, failure modes, effects and causes is developed using 

experts' knowledge from FMECA. Moreover, updated 

checklists are deployed on the production line to capture 

qualitative and quantitative information as evidence to 

evaluate the believed causality by experts. The BN is then 

learned from this collected data with supervised learning in 

step-2. This is compared with the knowledge based BN and 

any structural changes found are fed to step-1 for knowledge 

unification and renewal in the FMECA. The learned BN is 

continuously updated with the new evidence collected from 

the production line and is fully capable to detect and notify 

not only the effect of product mix, but also feedback to the 

technicians as potential consequences. 

  
Figure 3. Proposed three-step methodology 

3.1. Including Human Factors with Proposed Extension 

in FMECA (Step-1) 

The FMEA approach was initially conceived by US military 

(MIL-18372) to find failure modes of system components, 

evaluate effects and propose counter measures. The formal 

description of FMEA is given by the New York Academy of 

Sciences (Coutinho, 1964). This was further extended as the 

FMECA by NASA to ensure desired reliability of the space 

systems (Jordan, 1972). There are different diversifications 

of this approach (Reifer, 1979) as software failure mode and 

effects analysis (SWFMEA), design FMEA, process FMEA 

and system or concept FMEA etc. The traditional 5-step 

FMECA process is presented in Figure 4, below. 

 

Figure 4. Proposed FMECA with objectives and criteria 

It starts with clear description of the scope e.g. maintenance 

type (preventive maintenance) followed by important 

functions identification for further analysis (step-1) by 

experts. The potential failure modes, effects and causes are 

listed along with occurrences, severity and detection (step-

2). We propose the inclusion of objectives and criteria 

definition for each identified function and inclusion of 

criteria levels while calculating risk priority number (RPN). 

The severity, occurrence and detection are multiplied 

followed by division with criteria level for RPN (step-3). It 

is because RPN decreases if a criterion linked to the defined 

objectives is fulfilled at highest criteria level, a.k.a. 

objective fulfillment index (OFI). The RPN is assigned with 

threshold that triggers the priority to select failure modes for 

operational fixes (step4). The results are finally evaluated 

and reviewed (step-5). This 5-step process is repeated until 

RPN number falls below the threshold. 

The proposed approach is implemented and tested in one of 

the eight workshops (dielectric DIEL) in SI production line. 

In this production area, a thin film of electrical insulation is 

deposited on the wafers. These layers serve to insulate 

different zones with transistors and interconnections. This 

deposition is completed with chemical vapor deposition 

(CVD) process using plasma technology at temperature < 

400°C to avoid structural changes in previous layers. This 

workshop is one of the critical workshops in SI production 

line and is often turn into bottleneck with reduced 

production capacities and increasing unscheduled equipment 

breakdowns. Hence, the role of effective maintenance 

actions becomes critical. The DIEL equipments use multiple 

recipes and chemical gases due to high-mix low-volume 

production that destabilizes the equipment. The FMECA 

analysis is done on all equipment by experts for each type of 
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Figure 5. FMECA analysis on PM procedure to clean process chamber 

 

maintenance. In this case study, we have selected PM-

FMECA in DIEL workshop to clean process chamber, for 

the purpose of demonstration. Each FMECA is then 

translated into checklist that comprises a sequence of 

maintenance actions. The key functions in this PM are 

equipment and personal security, ventilation of the process 

chamber, dismantling foreline, leak test with helium etc. We 

present FMECA analysis for PM procedure to clean process 

chamber (Figure 5). In this analyses, we presented only 

three functions (i) personal and equipment security (Figure 

5a), (ii) HE (helium) purge (Figure 5b) and (iii) process 

chamber ventilation due to space limitations (Figure 5c). 

However, the severity, occurrence and detection values have 

been changed due to confidentiality.  

The objectives (functions), criteria definition and criteria 

levels are the columns added in addition to traditional 

FMECA columns, by the experts. The defined criteria levels 

(1 to 3) are the objective fulfillment indices (OFI) which are 

judged and responded by technicians during PM. The 

normalized RPN*
1
is computed with and without OFI that 

clearly reflects the decrease in the associated risk due to 

human actions effectiveness (Figure 6). In this figure, 

failure modes are plotted along x-axis and normalized RPN* 

on y-axis for confidentiality reason. The three functions in 

FMECA analysis are associated to an objective, whereas 

each objective is linked with multiple fulfillment criteria 

and levels to capture the effectiveness of maintenance 

actions. The criteria are defined at chamber or equipment 

levels, where applicable. It can be observed that, for the PM 

procedure under discussion, detection is already optimized 

with strong preventive controls where risk values, range 

from 1-2 and 1-4, respectively, for functions 2 and 3 (see 

Figure 6).  

However, these are quite high for function 1. It is because, 

this function depends on the effectiveness of maintenance 

actions performed by technicians. The proposed approach 

enables us to reduce the risk associated with human factor 

for all maintenance action in a given maintenance 

                                                           
* The RPN values are normalized for confidentiality purposes. 

(a) 

(b) 

(c) 
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procedure. The benchmarked target RPN* with OFI are 

modest, whereas effective RPN* with OFI actually achieved 

in the case study are highly significant and result in 

optimizing the production capacities due to unscheduled 

equipment breakdowns (see section 4). 

 

Figure 6. Comparison of normalized RPN* and RPN*/OFI 

FMECA is very effective in collecting experts' knowledge 

and risk quantification; however, its static nature cannot 

predict in real time the failure modes and their effects on the 

equipment and products. For this reason, Bayesian network 

modeling approach is selected as the target method due to 

its inherent abilities to model causal relations between 

variables from FMECA (Garcia & Gilbert, 2011). The 

effectiveness of FMECA structure to build causal nets like 

Bayesian network is also demonstrated by (Lee, 2001) and 

(Weber, Suhner, and Iung, 2001). The BN is an artificial 

intelligence (AI) technique for probabilistic reasoning under 

uncertainty (Kjærulff & Madsen, 2006); (Jensen and 

Nielsen, 2007); (Pourret, Naïm, and Marcot, 2008). 

Bayesian networks are institutive approach for modeling 

human like decision-making problem with probabilistic 

reasoning under uncertainty. The Bayesian network (graph) 

comprises of the nodes (random variables) and directed 

edges (links, arcs) between nodes. The directed edges 

represent the influence of nodes in the network.  

The conditional probabilities computed from the input data 

corresponds to the quantitative part of the Bayesian model. 

The structure of the Bayesian network (graph) is the 

qualitative model that represents causal dependence and 

inter-dependence between variables. The name “Bayesian” 

is conceived from Mr. Thomas Bayes’ surname (Peter, 

2012), who proposed formulae to compute conditional 

probabilities (a.k.a. Bayes theorem) (equation 3.1). The 

formalism is read as probability of an event A knowing the 

evidence on the occurrence of event C and is also referred as 

“Bayes condition”. 

  
)(

)()|(

)(

),(
)|(

CP

APACP

CP

CAP
CAP   3.1 

In the BN, prior probabilities are provided in the absence of 

evidence, whereas conditional probabilities are dynamically 

updated with new information as input to a network, a.k.a. a 

posteriori probabilities. For n variables, 2n-1 joint 

probabilities result in huge numbers; however, resulting 

Bayesian network encodes knowledge so that key and less 

important information is easily identified (Pearl, 2000). The 

Bayesian network is developed with minimum computations 

and is easy to understand (Kjærulff & Madsen, 2006). It is 

an efficient method, because of inherent assumption of 

interdependence about variables; hence, it requires expert 

intervention for the definition of the structure (directed 

edges). 

The advantages of using Bayesian network is its inherent 

ability to deduce the inter-causal reasoning (Kjærulff & 

Madsen, 2006). The Bayesian network is gaining popularity 

due to its graphical structure with probabilistic networks to 

express causal interactions and direct/indirect relations. The 

notion of causality empowers Bayesian network with the 

human like reasoning under uncertainty. The ability of the 

Bayesian networks to handle causal independence, results in 

efficient inference even with large number of variables. 

They have superiority over rule based systems (RBS) due to 

their capabilities for deductive, abductive and inter causal 

reasoning. The Bayesian network is an interesting choice for 

statistical modeling due to its efficient learning and 

inference algorithms (Zou & Bhanu, 2005). 

 

Figure 7. Experts' knowledge based BN model 

Initial BN model is developed based on experts' knowledge 

from FMECA file. The data collected to build initial BN, 

presented in Figure 7, are three principle PM objectives, the 

criteria to fill each objective, failure modes and their effects 

on equipment and products. As per proposed methodology 

(Figure 2), this static knowledge based BN structure will be 

compared with the learned BN model using data collected 

from the production line maintenance operations. The expert 

knowledge based BN model is divided into four classes of 

nodes with different colors as maintenance objectives (red), 

criteria (orange), failure modes (green) and effects 

(SandyBrown). It is based on the a priori probabilities which 

are computed from severity, occurrence and detection 

values, and the prior from experts. In this BN model, solid 

nodes are discrete variables whereas dotted nodes e.g. 
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chamber temperature, SCCM (see figure 6-b) and pressure 

are continuous variables which are discretized. The 

direction of the associations is drawn as per knowledge from 

FMECA. This BN is implemented using Bayesialab 5.0 and 

for demonstration purposes the chamber pressure node is set 

as the target variable for interactive inference, as presented 

in Figure 8. This figure contains an example to exploit the 

experts knowledge modeled as a static BN model. 

The Figure 8a predicts potential failure modes for a given 

set of values for objective and criteria nodes. It shows that, 

in the presence of backstreaming, pressure <7.5 Torrs, 

temperature <80, and SCCM between 1500 and 2001, the 

likely failure modes are cold chamber, backstreaming error 

and RF errors. Similarly, figure 8b presents that, for the 

same criteria and objective settings, likely effects are 

defectivity, abort and high deposition rate. The experts can 

interactively change the probabilities to analyze the 

knowledge discovery by this static BN model. Moreover, 

this model is based on initial experts judgment and do not 

take into account the effect of changing equipment 

behaviors due to changing high-mix of products. In next 

section, we learn this BN from the data collected across the 

production line in DIEL workshop. 

 
(a) 

 
(b) 

 

Figure 8. Experts' knowledge based BN model 

3.2. BN Model for Effectiveness of Maintenance Actions 

and Analyses Results (Step-2) 

The PM checklist modified form the revised FMECA 

(Figure 6). It is approved and deployed on the production 

line as a pilot case study for four months prior. In this 

period, revised PM checklist is executed 223 times on 15 

equipments in the DIEL workshop. The historic data of 

maintenance checklist executions, equipment states and 

parameters such as RF, pressure and chamber temperature, 

and product measurements like defectivity and deposition 

rate are collected to learn new model. In order to learn new 

BN structure using these data, three unsupervised learning 

algorithms (EQ, Taboo and Taboo order) were used working 

on a set of heuristics to reduce the search space. The 

objective function used in these algorithms is the minimum 

description length (MDL). It takes into account 

"correlation" plus structural complexity of the causal 

network and establishes "automatic significance thresholds" 

(Rissanen, 1978); (Bouckaert, 1993). These algorithms 

result not only in the network, but also in the associated 

conditional probabilities. The MDL score is used as a 

criteria to select the lowest score network.  

The equivalence class (EQ) is an efficient algorithm for 

structural learning as it significantly reduces search space. It 

is based on the assumption that two BN structures are said 

to be equivalent if the set of distributions that can be 

represented with one of those structures are identical to the 

set of distributions that can be represented with the other 

(Chickering, 2002); (Munteanu & Bendou, 2001). The 

Taboo search algorithm is useful in refining the network 

based on a given structure; hence, it gives better results 

when initial structure is developed with experts’ knowledge 

or using some other unsupervised learning algorithm. This 

algorithm also has the capability to learn network from 

scratch but in this case, it is less efficient than EQ. 

Therefore, we use it in combination with EQ where EQ 

provides an initial structure followed by Taboo to improve it 

based on the MDL score. Taboo order (Teyssier & Koller, 

2005) is an exhaustive search algorithm that offers more 

accurate results, but takes more time than simple Taboo 

search. This method searches the space in the order of 

Bayesian network nodes by choosing parents of a node 

between nodes appearing before it, in the considered order. 

The learned network serves as a reference network and is 

cross validated using 50 randomly generated datasets, based 

on the distribution of responses collected through survey 

from employees with added noise. As a result, we retain the 

network with best fit. The threshold in our case is 75%. The 

learned BN along with its contingency fit are presented in 

Figures 9a and 9b. The learned BN using unsupervised 

learning in Bayesialab is presented below in Figure 9. The 

dataset is divided into randomly selected 75 and 25% rows 

for learning and testing. The contingency fit is observed to 
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be 77 and 72%, respectively. The threshold of 75% is used 

as a criteria to accept the model. 

 
             (a) 

 
          (b) 

Figure 9. BN learned from Data using unsupervised learning 

3.3. Knowledge Discovery: (Step-3) 

The structural difference in experts' knowledge (Figure 7) 

and learned (Figure 9a) BN models is presented below in 

Figure 10. The learned BN model shows new knowledge as 

new arcs from potential failures to causes. It must be noticed 

that the checklist flow execution error/failure in the BN 

model learned from production line data results in chamber 

and equipment contaminations.  The plasma and backstream 

error are found to be correlated with defectivity. It is 

important to note that while learning BN model from data, 

certain arcs were forbidden. e.g. arcs from criteria, failure 

modes and effects are not allowed to loopback towards 

objectives. Similarly, the arcs from failure modes and 

effects towards criteria are also not allowed. The color of 

each node in this new BN model corresponds to its 

respective class (objectives, criteria, failure modes, effects). 

 

Figure 10. Structural difference in BN models and 

knowledge discovery 

 

(a) 

 

(b) 

Figure 11. Learned BN model for knowledge exploitation 

and feedback to technicians 
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The newly learned BN model based on data collected from 

production line is set to similar test settings as presented in 

Figures 8a and 8b, above. Figure 11a predicts plasma error, 

backstreaming, cold chamber, MFC and RFC failures 

against backstreaming and cold chamber as identified by 

static BN model for the same objective and criteria settings. 

Figure 11b predicts defectivity, abort, flow setpoint issue 

and high deposition rate as potential effects against abort, 

defectivity, and high deposition rate. The new knowledge 

generated from this learned BN models (Figure 10) serves 

dual purpose as it provides continuous renewal of experts' 

knowledge and updates FMECA. This BN model also 

generates feedback with predictions on likely failure modes 

and effects based on the level of fulfillment of defined 

criteria. 

4. CONCLUSIONS, DISCUSSION AND PERSPECTIVES 

The new BN model was deployed on the production line to 

provide feedback to technicians during maintenance, on 

potential failure modes and effects, if the expected criteria 

level is not reached. The data collected on failure 

occurrence and normalized RPN* upon subsequent 

deployment of this methodology, over a four months 

experiment, is presented in Figures 12a and 12b. RPN* has 

greatly decreased because the said BN model has improved 

not only detection, but also reduced failing actions 

occurrences by providing feedback to technicians. 

 (a) 

 
(b) 

 Figure 12. Impact of proposed BN based methodology on 

risk and failure occurrences 

The proposed methodology demonstrates that effectiveness 

of maintenance actions by technicians has a strong impact 

on the subsequent risk, failure occurrences and ultimately on 

the equipment unscheduled breakdowns. This study has also 

concluded that providing feedback to maintenance personals 

on the consequences of their actions improves failure 

occurrences that have direct impact on the production 

capacities. It also highlights the need to renew experts’ 

knowledge with high-mix low-volume impacting the 

equipment behaviors. 

There remain some open ended issues e.g. what is the 

learning time or excursion frequency, before the BN model 

predictions and structural changes are used to renew experts 

and FMECA knowledge? Similarly, it should be interesting 

to introduce a multi-agent based technology to share the 

knowledge, captured through BN model on one equipment, 

for other similar equipments in the same workshop. We still 

need to find an answer that the proposed BN model should 

be developed at an equipment level or one generic model for 

all the equipments in a production line would be efficient. 

These questions are presently investigated by the authors. 
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