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ABSTRACT

Battery powered electric vehicles (EVs) have emerged as a
promising solution for reducing the consumption of fossil fu-
els in modern transportation systems. Unfortunately the bat-
tery pack has a low energy storage capacity, which causes the
driving range of the EV to become very limited. It is there-
fore essential to properly characterize the different driving
situations of the vehicle in order to better predict the driving
load along the road ahead and to better estimate the remain-
ing driving range (RDR). However, this prediction cannot be
achieved straightforward due to sources of uncertainty intro-
duced by the randomness of the driving environment. In this
paper a novel approach for characterizing driving situations
and for predicting the driving load of an EV is presented. The
prediction of the driving load occurs in a model-based fash-
ion, where the model input variables are modeled as discrete-
time Markov processes. An approach for estimating the tran-
sition probabilities between Markov states in the presence of
sparse driving data is introduced. Furthermore, to capture the
changes in the driving environment a Bayes-based methodol-
ogy for recursively updating the established transition proba-
bilities is presented. The validity of the proposed approach is
illustrated through simulation and by a series of experimental
case studies.

1. INTRODUCTION

In modern times, the use of battery powered electric vehicles
(EVs) has grown due to they offer a promising solution for re-
ducing the consumption of fossil fuels. However, the limited
energy storage capacity of the battery pack causes the driving
range of the EV to become very limited. A proper charac-
terization of driving situations is therefore essential in order
to better predict the driving load, i.e., the electrical power
demanded to propel the EV along the road ahead. Such a
prediction can be used, for example, by an advanced driver
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assistance system (ADAS) to estimate the RDR of the EV
in a more accurate manner. However, this prediction cannot
be achieved straightforward due to many sources of uncer-
tainty introduced by the randomness of the driving environ-
ment. Key affecting factors such as the road profile, the driv-
ing style or the traffic conditions are highly uncertain and are
usually difficult to predict.

To the best of our knowledge, few studies have addressed the
problem of predicting the driving load in EVs. (Wang, Xu, Li,
& Xu, 2007) combine cascade neural networks with a node-
decoupled extended Kalman filter to forecast the driving load.
In this work the authors define five load levels by fuzzy logic
and, instead of predicting an entire sequence of loads, the
load level is forecast. In (Yang, Huang, Tan, & He, 2008) the
driving load of a hybrid electric vehicle (HEV) is predicted
by using the discrete cosine transform (DCT) together with
support vector machines (SVM). Similar to the approach pre-
viously mentioned, the authors classifie the driving load into
five predefined levels. The forecasting task deals with the de-
cision about the next load level. An approach that predicts the
battery power requirements for EVs in real time by combin-
ing road information from a static map with historical driving
data is introduced by (Kim, Lee, & Shin, 2013).

The drawback with the aforementioned approaches is that
none of them treat the driving load in a stochastic manner. As
it has been shown in (Oliva, Weihrauch, & Bertram, 2013),
estimating the RDR of an EV requires characterizing the un-
certainty introduced by driving environment. Because of this,
this contribution deals with a novel approach for character-
izing driving situations and with an algorithm for predicting
the driving load of an EV. The prediction of the driving load
takes place under a model-based approach. A model of the
powertrain of an EV is used to compute the electrical power
demand of the electric motor as response to the road proper-
ties, the vehicle speed and the acceleration, which in this pa-
per constitute the input variables of the model. The evolution
of the input variables in time is first modeled as a homoge-
neous discrete-time Markov process. An offline approach for
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estimating the transition probabilities between states in the
presence of sparse data is introduced. This allows completely
characterizing the uncertainty in the transition probabilities of
the Markov state space even if information about some tran-
sitions between states is unavailable. However, relying solely
on the Markov transition models identified offline for predict-
ing the driving load usually does not adequately describe the
most recent driving situation. For this reason we also present
a Bayes-based methodology for updating the transition prob-
abilities as new information about the driving situation be-
comes available.

The remainder of this paper is organized as follows: Section
2 deals with the physical model of an EV used to compute the
driving load. In section 3 the characterization of driving situ-
ations is discussed and two offline methods for estimating the
transition probabilities between Markov states are introduced.
Section 4 explains the steps needed for updating the transition
probabilities on receipt of new information about the driving
situation. In section 5 the algorithm used for predicting the
driving load is described. Section 6 presents the simulation
and experimental results used for validating the proposed ap-
proach. Finally, section 7 concludes the findings of this work
and provides an outlook on our future work.

2. DRIVING LOAD MODELING IN EVS

As it was already mentioned, the prediction of the driving
load is carried out in a model-based fashion. From a physi-
cal point of view, the driving load can be either modeled by a
forward-facing or by a backward-facing approach (Guzzella
& Sciarretta, 2005). In the forward-facing approach the EV is
controlled to follow a desired speed. This approach considers
the physical properties of each component of the powertrain
and the dynamic interaction between them. The drawback
with this modeling approach is the high computational burden
required to solve the set of differential equations presented
in the model. This paper employs the backward-facing ap-
proach, for modeling the driving load of the EV. The backward-
facing approach is computationally efficient since it assumes
that the EV moves exactly with an imposed speed. The model
calculates the forces acting on the wheels and processes them
backwards through the powertrain. The computation of the
power demand depends only on algebraic equations, decreas-
ing in this manner the computational effort of the model.
Fig. 1 depicts the structure of the model used to compute the
driving load. As it is explained in the following two sections,
the input u is given by the speed v and acceleration a of the
vehicle and by the inclination (slope) θ of the road. The out-
put y of the model is the electrical power demanded by the
electric motor, denoted here as Pele.

The following section explains the model in detail. We omit
expressing the variables of the model as time dependent, since
this model is described by a set of algebraic equations.

Fx Tw

ωw

Tm

ωm

DrivelineTiresChassis Electric motor

y

u

u = [ v a θ ]T

y = Pele

Figure 1. Structure of the backward-facing approach for mod-
eling the driving load of an EV.

2.1. Backward-facing Approach

An electric vehicle is composed by many components which,
for simplification purposes, can be considered to move uni-
formly. As shown in Fig. 2, the force Fx required to propel
the vehicle forward can be computed by

Fx = Fair + Fg + Fr + Fi, (1)

where:

• Fair = 1
2ρaircwAv

2 is the aerodynamic drag force,
• Fg = mg sin (θ) is the hill climbing force,
• Fr = mgKr is the rolling resistance and
• Fi = ma is the force needed to accelerate/decelerate the

vehicle.

The parameter ρair is the density of air, cw is the aerodynamic
drag coefficient, A and m are the frontal area and the mass of
the vehicle, g is the gravitational acceleration and Kr is the
rolling resistance coefficient.

v

Fair

Fi, Fg

mg

1
2
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1
2
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Figure 2. Forces acting during the motion of an EV.

The mechanical power Pmec demanded by the electric motor
is easily calculated by means of a polynomial power require-
ment model as follows:

Pmec = Fxv =
1

2
ρaircwAv

3 +mg sin (θ) v +

+mgKrv +mav. (2)

As suggested by (Guzzella & Sciarretta, 2005), the relation-
ship between the mechanical and the electrical power demand
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of an electric motor can be computed, with a certain degree
of accuracy, by employing a stationary map of the electric
motor’s efficiency as a function of the rotor’s rotational speed
and the torque demand

Pele =
Pmec

ηm (ωm, Tm)
, Pmec > 0. (3)

In Eq. (3) the electric motor’s efficiency is represented by
ηm , ωm = vid

rtire
is the rotational speed of the rotor and

Tm = Fxrtire
id

is the torque demand of the motor. Here rtire
and id are the tire’s radius and the gear ratio of the driveline
respectively.

One important feature of modern EVs is that certain amount
of the kinetic and the potential energy can be recovered by
means of the regenerative braking system. During braking
maneuvers the electric motor is operated as a generator, pro-
viding in this manner an extra braking torque to the wheels.
The recovered energy can then be used to supply power either
to the powertrain or to the auxiliary accessories. The amount
of braking torque depends on the operation strategy of the
braking system. The operation strategy optimizes the distri-
bution of braking torque between the mechanical and the re-
generative brakes in such a way, that the maximum electrical
power is generated. The electrical power generated is com-
puted by

Pele = Pmecηm (ωm,−Tm) kvx , Pmec < 0. (4)

Since the generated power depends on ωm, it would be a dif-
ficult task to supply power to the power bus at low speeds.
Because of this the parameter kvx is used to limit the usage
of the electric motor in generator mode according to Eq. (5),
so that the mechanical brakes are applied at very low speeds
and at high speeds the vehicle is braked mostly by the electric
motor.

kvx =


0 vx ≤ 3.5 m/s
vx−3.5

5 3.5 < vx < 8 m/s
0.9 vx ≥ 8 m/s

(5)

The efficiency map ηm is usually well defined just for the
motor mode (upper quadrant of Fig. 3). In order to extend the
map to the generator mode, the power losses are mirrored as
follows

ηm (ωm,−Tm) = 2− 1

ηm (ωm, Tm)
. (6)

Even though the computed efficiency map obtained by apply-
ing Eq. (6) slightly differs from the data that can be obtained
by measuring the efficiency of the electric motor working as
generator, it offers a practical and accurate solution for mod-
eling the electric motor also in generator mode.
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Figure 3. Efficiency map of an electric motor.

2.2. Factors Affecting the Prediction of the Driving Load

To properly predict the driving load under a model-based ap-
proach it is necessary to analyze the dynamics of each of the
parameters of Eq. (2) and to determine the source of informa-
tion needed to acquire them, in order to differentiate between
time invariant and time variant model parameters, from now
on referred as constants and input variables, respectively. On
the one hand, input variables are characterized by their high
dynamic and are usually easily measurable. On the other
hand, the constants, as the term suggests, rarely change or
change very slowly. Table 1 summarizes the dynamics and
presents the sources of information required to acquire each
of the parameters involved in the computation of Pmec.

Parameter Dynamics Source of information
a
(
m/s2

)
Very high Driver, road, traffic

v (m/s) High Driver, road, traffic
m (kg) Nearly constant Vehicle design
g
(
m/s2

)
Nearly constant Altitude

Kr High Road
θ (◦) High Road
ρair

(
kg/m3) Low Altitude

cw Nearly constant Vehicle design
A

(
m2

)
Nearly constant Vehicle design

Table 1. Dynamics and sources of information required for
the acquisition of the parameters affecting the prediction of
the driving load.

The parameters g and ρair, even though they can be easily
determined, depend on the altitude and rarely change dur-
ing a trip. Also m, cw and A can be easily acquired. They
don’t change since they depend on the vehicle design. The
friction coefficient Kr, despite its high dynamics, cannot be
measured, and therefore it has to be either assumed or esti-
mated. For this reason we consider it as a constant parameter
under the assumption that the road conditions do not change
drastically during a trip.

The slope θ changes rapidly according to the road type and
can be easily acquired either by integrating a GPS into the EV
or by using a navigation system with a preloaded static GIS
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(Geographic Information System). The speed v and the accel-
eration a depend on many factors that are difficult to predict
and that exhibit some degree of randomness. To these factors
belong the road type, the traffic conditions or the driver ag-
gressiveness, just to name a few. Hence v and a change very
dynamically and have to be treated as time variant.

The parameters v, a and θ are considered in this work as the
model input variables, since they meet the requirements pre-
viously mentioned. Accordingly, the input vector, used here
to denote a driving situation, is given by

u =
[
v a θ

]T
. (7)

The characterization of the input variables is explained in de-
tail in the following section.

3. DRIVING SITUATION CHARACTERIZATION

By assuming that the input vector u =
[
v a θ

]T
evolve

in time following a discrete-time stochastic process {uk} and
that it can take on values in a countable set U , called the state
space, then its behavior can be successfully modeled as a first
order Markov chain, under the assumption that it satisfies the
so called Markov property. This property states that, the fu-
ture state uk+1 depends only on the current state uk and not
on all previous states u0,u2, . . . ,uk−1. In other words, for
all {uk, k ≥ 0}

πi,j = p (uk+1 = j|uk = i,uk−1, . . . ,u0)

= p (uk+1 = j|uk = i) , (8)

where πi,j is known as conditional transition probability and
k denotes the discrete time step. All transition probabilities
between states are grouped in a transition probability matrix
Φ of the form

Φ =


π1,1 π1,2 · · · π1,m

π2,1 π2,2 · · · π2,m

...
...

. . .
...

πm,1 πm,2 · · · πm,m

 . (9)

Then, Eq. (8) can be expressed as

πi,j = Φ (uk+1 = j|uk = i) , (10)

where πi,j is the ijth element of Φ. Since the elements j
of Φ represent the transition probabilities to all other states
from i, each row satisfies the condition

∑m
j=1 πi,j = 1 for

all j ∈ U . Eq. (10) is said to be time homogeneous since
πi,j is independent of k. To better estimate the transition
probabilities of Eq. (10) the input state space is splitted up
into uk =

[
uvak uθk

]T
, where uvak =

[
vk ak

]
and

uθk = θk represent parts of the input state space given by
the tuple (v, a) and by the slope θ, respectively. As shown
in (Oliva et al., 2013), two transition probability matrices,

namely Φva and Φθ can be used to store all the information
regarding the transition probabilities of the input variables.
The following section introduces the methodology used in
the estimation of the transition probabilities of both transition
probability matrices (TPMs).

3.1. Characterization of Φva

In the presented approach, the structure of Φva differs slightly
from that of Φ as it was introduced by Eq. (9). The states of
the Markov chain are composed by vs ∈ V and by ai ∈ A,
where V and A represent the state space of the speed and
acceleration of the EV. The definition of the conditional tran-
sition probability given by Eq. (10) is reformulated for this
matrix as

πvsai,j = Φvsa (ak+1 = j|ak = i, vk = s) , (11)

where πvsai,j describes the probability of accelerating at rate aj
over the next time step given that the EV accelerates with ai
at given speed vs in the current time step. The structure of
Φva, with Φvsa ∈ RM×M and vs ∈ RN, is shown in Fig. (4).

i

v1 vsv2 · · · · · · · · · vN

Φvsa =


πvsa1,1 πvsa1,2 · · · πvsa1,M

πvsa2,1 πvsa2,2 · · · πvsa2,M
...

...
. . .

...
πvsaM,1 πvsam,2 · · · πvsaM,M



s

j

Figure 4. Structure of Φva.

The purpose of modeling uvak as a homogeneous Markov pro-
cess is to describe the stationary distribution of speed and ac-
celeration. In this work the transition probabilities of Φva are
estimated from historical driving data. Both a and v have to
first be discretized. Accordingly, the state space is discretized
as A = {amin, . . . ,−2ares,−ares, 0, ares, 2ares, . . . , amax}
and by V = {0, vres,2vres, . . . , vmax}, where vres = 1 km/h,
vmax = 140 km/h, ares = 0.2 m/s2, amin = −3 m/s2 and
amax = 3 m/s2. The resolutions vres and ares offer a good
trade-off between computational effort and accuracy.

3.1.1. Estimating the Stationary Distribution of Φva

In this work we use the maximum likelihood estimation (MLE)
scheme (T. C. Lee, Judge, & Zellner, 1970) for estimating the
time-invariant transition probabilities of Φva. A transition
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probability πvsai,j is computed by

πvsai,j =
ni,j
ni

, (12)

where ni,j represents the number of times the EV changes its
acceleration from ai to aj and ni is the total number of times
the EV accelerates with ai at given speed vs. This approach is
very practical since the estimation can by achieved by simply
counting the number of times a change in the acceleration
occurs.

3.1.2. Approximating Φva for unavailable data

As it will be shown in section 5, the construction of the Markov
chain for ak may lead to speed states vs, computed by Eq. (29),
where Φvsa → {0}, i.e., where no information about the dis-
tribution of the acceleration in the next time step is available.
This is caused due to the sparsity of the historical driving data
used for estimating the transition probabilities.

This issue can be sorted out by finding a suitable probability
distribution function of the form f (ak+1|ak = i, vk = s) that
can be employed for all Φvsa → {0}. The shape of such a
function can be better understood by analyzing the distribu-
tion of ak+1 at different (vk, ak). One strong candidate for
choosing f is the Beta distribution (Johannesson, Asbogard,
& Egardt, 2007). Fig. 5 shows the Beta function fitted over
different distributions of ak+1.

ak+1 [m/s2]
0.1 0.5 0.9 -0.1 0.5 0.8 0.4 0.9 1.3

ak+1 [m/s2] ak+1 [m/s2]

2 km/h, 0.3 m/s2 32 km/h, 0.3 m/s2 8 km/h, 0.6 m/s2

Figure 5. Fitted Beta function over the distribution of ak+1 at
different (vk, ak).

The Beta density function is a versatile function which is usu-
ally employed for modeling different shapes of probability
distributions, as shown in Fig. 6. The probability density
function (PDF) of the generalized Beta distribution is given
by

f (x|α, β, bL, bU ) =
(x− bL)

α−1
(bU − x)

β−1

(bU − bL)
α+β−1

, (13)

where α and β are the shape parameters of the Beta distribu-
tion and [bL, bU ] define the interval for which Eq. (13) is de-
fined. The fact that the Beta PDF is defined just over a given
interval can be exploited in that no accelerations beyond the
admissible values, dictated by the performance of the EV, can
be reached. Furthermore, bL and bU can be conveniently cho-

sen to force any ak+1, drawn from a Beta distribution given
by Eq. (13), to lie within the bounds of the state space of
Φvsa, i.e., ak+1 ∈ A.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

α = 2, β = 5 α = 5, β = 1.5 α = 4, β =10

Figure 6. Different shapes of the Beta distribution on the in-
terval with bL = 0 and bU = 1.

The first two moments of ak+1, namely the expected value
and the variance, are given by

E [ak+1|α, β, bL, bU ] = bL + (bU − bL)
α

α+ β
(14)

and

V ar [ak+1|α, β, bL, bU ] =
(bU − bL)

2
αβ

(α+ β)
2

(α+ β + 1)
, (15)

respectively. The function f can be reformulated in such a
way that the parameters of the Beta distribution depend on the
Markov states and that the PDF is defined only over the state
space of a, i.e., f (ak+1|α (ak, vk) , β (ak, vk) , amin, amax).
The task is then to estimate both α and β for the entire state
space. To this aim we combine the Markov states of v and a
and define a two-dimensional state space denoted by

S = {a ∈ R, v ∈ R : A,V} . (16)

From the historical driving data we acquired all samples of
ak+1 and store them in the correspondent state of S accord-
ing to the values of vk and ak. The purpose of the afore-
mentioned step is to sort the historical data in such manner
that both E [ak+1] and V ar [ak+1] can be calculated with ba-
sic statistical operations from the available samples of ak+1.
Since the sparsity of the driving data causes E [ak+1] and
V ar [ak+1] to be defined pointwise over S, it is necessary
to identify a function g (a, v) and a function h (a, v) that de-
scribe how E [ak+1] and V ar [ak+1] vary throughout S, in
order to completely parametrize the state space. This is ac-
complished by means of an approximation by bivariate ten-
sor product B-Splines with a predefined sequence of knots
(Johannesson, 2005). The sequence of knots is set denser
where more information is available in order to better capture
the behavior of the most important regions of S. The splines
describing the variation of E [ak+1] and V ar [ak+1], namely
the functions g (a, v) and h (a, v), over S are presented in
Fig. 7 and in Fig. 8, respectively.
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Figure 7. Function g (a, v) representing the variation of
E [ak+1] over S.
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Figure 8. Function h (a, v) representing the variation of
V ar [ak+1] over S.

Having identifiedE [ak+1] and V ar [ak+1] for the entire state
space, the parameters α (a, v) , β (a, v) are estimated by mo-
ment matching, i.e., by evaluating g (a, v) and h (a, v) for
each state on S and by equating the result to the theoretical
moments given by Eq. (14) and Eq. (15) (Abourizk, Halpin,
& Wilson, 1994). Solving the obtained equation system for
α (a, v) and β (a, v) leads to

α (a, v) =
− (bL − µ)

bL − bU
− (bL − µ)

2
(bU − µ)

σ2 (bL − bU )
, (17)

β (a, v) =
(bU − µ)

bL − bU
+

(bL − µ) (bU − µ)
2

σ2 (bL − bU )
(18)

where µ = E [ak+1], σ2 = V ar [ak+1], bL = amin and
bU = amax.

3.2. Characterization of Φθ

The transition probability matrix for the slope is given by

Φθ =


πθ1,1 πθ1,2 . . . πθ1,h
πθ2,1 πθ2,2 . . . πθ2,h

...
...

. . .
...

πθh,1 πθh,2 . . . πθh,h

 . (19)

The estimation of the transition probabilities of Φθ occurs
similarly as shown in section 3.1.1 by applying the MLE to
real road height profiles.

The state space of the Markov chain for the slope is given
by Θ = {θmin, . . . ,−2θres,−θres, 0, θres, 2θres, . . . , θmax},
where θmin = −10◦,θmax = 10◦ and the resolution of the
discretezation is θres = 0.5◦.

4. ADAPTATION OF THE TRANSITION PROBABILITIES

Characterizing the driving situation relying solely on histor-
ical data provides a good estimation of how the EV moves
in the long term. However, the way a driver behaves might
change depending on the traffic situation, the time of the day,
the mood or the road condition. Because of this, a more
proper prediction scheme requires predicting the driving load
under an adaptive framework. This is achieved by updating
the transition probabilities of Φva and Φθ as new information
about the driving situation becomes available. This allows to
capture the non-homogeneity of the Markov process, which
might be introduced by changes in the driver behavior, the
traffic situation or the driving scenario. To this aim we em-
ploy a Bayesian posterior probability approach to update the
established transition probabilities between Markov states.

4.1. Bayes Inference for Markov Chains

The Bayes’ theorem estimates the posterior probability dis-
tribution of a parameter ψ by relating a likelihood function
obtained from a set of observations x and an assumed prior
probability distribution of the parameter. The update is com-
puted by

p (ψ|x) =
L (ψ|x) p (ψ)∫

Ψ
L (ψ|x) p (ψ) dψ

, (20)

where L (ψ|x) is the likelihood of the observed data, p (ψ) is
the prior probability distribution of ψ, p (ψ|x) is the posterior
probability distribution and Ψ represents the parameter space.
The factor

∫
Ψ
L (ψ|x) p (ψ) dψ is a normalization factor of

p (ψ|x). Eq. (20) can be expressed in terms of a normalized
likelihood as follows

p (ψ|x) ∝ L (ψ|x) p (ψ) . (21)

As formulated in Eq. (21), applying the Bayes’ theorem for
updating a transition probability πi,j , either of Φva or of Φθ,
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requires a likelihood function for the new observed informa-
tion and an assumption about prior distribution of πi,j on
each row of the correspondent TPM. The forthcoming ex-
planation deals with the theoretical foundations for updat-
ing any transition probability πi,j belonging to the mixture
πi = [πi,1, πi,2, . . . πi,j , . . . , πi,m], i.e., to the ith row of Φ
in Eq. (9). The application of this method for updating Φva

or Φθ succeeds in a similar fashion.

4.1.1. Likelihood Function

Let the random variable q, representing a transition between
two Markov states, to follow a multinomial distribution. The
probability distribution of q can be parametrized by a vector
πi, where πi,j = p (qi → qj) = p (qi,j) is the probability of
a transition from state i to state j, as it was already stated by
Eq. (10). Then, the likelihood of a sequence of new transi-
tions Q = {q1, q2, ..., qn} is given by

L (πi|Q) =

n∏
j=1

π
βi,j

i,j , (22)

where βi,j is the number of times a transition qi → qj occurs
in Q. For the sake of convenience we express βi,j =

∑
δi,j ,

where δi,j = 1 if qi → qj occurs and δi,j = 0, otherwise.

4.1.2. Prior Distribution

In the context of Markov chains, the task of the prior is to
specify an assumption about the probability distribution of the
ith row πi of Φ. Accordingly, it is necessary to find as many
prior distributions as the number of Markov states. Updating
the transition probabilities under a Bayesian approach works
with any kind of prior. However, since we consider the arbi-
trary set of new transitions Q to be multinomial distributed,
it is mathematically convenient to use a conjugate prior. The
use conjugate priors offers the advantage that the posterior
distribution has the same functional form of the prior. The
conjugate prior of the multinomial distribution is the Dirich-
let distribution (Strelioff, Crutchfield, & Hübler, 2007). Thus,
assuming the transition probabilities of a row from Φ to be
Dirichlet distributed leads to

p (πi|αi,1, αi,2, ..., αi,m) =
Γ
(∑m

j=1 αi,j

)
∏m
j=1 Γ (αi,j)

m∏
j=1

π
αi,j−1
i,j ,

(23)
where the hyperparameter αi,j can be understood as a vir-
tual count of occurrences of qi → qj before considering new
observations. Large values of αi,j reflect strong prior knowl-
edge about the distributions of the transition probabilities and
small values of correspond to ignorance. The parameter m
stands for the number of hyperparameters that parametrize
Eq. (23).

The choice of the Dirichlet distribution as the prior is a fairly

intuitive way to explain the meaning of the transition prob-
abilities in Φ. A transition probability πi,j as defined by
Eq. (10), can be understood as the first moment of the Dirich-
let distribution evaluated for πi,j . That is,

E [πi,j ] = πi,j =
αi,j
α0

, (24)

where α0 =
∑
i

αi is the total number of occurrences of

a transition starting from state i. The Dirichlet distribution
satisfies the unit simplex requirement

∑
E [πi,j ] = 1 and

0 ≤ E [πi,j ] ≤ 1 complying in this way with the properties
of a row πi in Φ. Furthermore, the uncertainty of a transition
probability can be computed by the second moment

V ar [πi,j ] =
αi,j (α0 − αi,j)
α0

2 (α0 + 1)
. (25)

In our approach the parameters of the Dirichlet prior distri-
bution are obtained from the offline estimation through MLE
of section 3.1.1. In the absence of prior knowledge about
the hyperparameters of Eq. (23), i.e., if Φ → {0} a com-
mon approach is to assume all probabilities to be equal. This
can be achieved by setting all αi,j = 1, which results in a
uniform prior distribution with an expectation value given by
E [πi,j ] = 1/M , where M represents the size of the state
space.

4.1.3. Posterior Distribution

Having a multinomial likelihood and a Dirichlet prior, the
posterior distribution of πi after observing a new sequence of
transitions Q can be found in a closed form by exploiting the
conjugate property of the Dirichlet distribution and the multi-
nomial distribution. Accordingly, the posterior is computed
by

p (πi|Q, α) ∝ L (πi|Q) p (πi|α) =

m∏
j=1

π
αi,j+βi,j−1
i,j .

(26)
The posterior is computed on receipt of new observations.
Considering the fact that in our system just one transition can
occur per time step, we can set βi,j = δi,j . Accordingly,
the set of hyperparameter αi can be recursively updated by
setting αi,k+1 = αi,k + 1 if qi → qj or αi,k+1 = αi,k,
otherwise. By employing this Bayesian scheme the updated
meanE [πi,j ]k+1 and variance V ar [πi,j ]k+1 of each element
in πi can be computed with the help of Eq. (24) and Eq. (25).
As it can be seen, the posterior computed by Eq. (26) keeps
the information regarding all transitions occurred up to time
step k.

Thus, depending on the values of the hyperparameters, many
new observations might be needed in order to converge with
the new Markov process. This is inconvenient in our applica-
tion, since a slow adaptation of transition probabilities would

7
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cause the characterization of the most up to date driving sit-
uation to fail. Because of this, it would be desirable to find a
recursion for both E [πi,j ]k and V ar [πi,j ]k without needing
to deal with any prior knowledge about the hyperparameters
and that can be carried such that the influence of older tran-
sitions in the computation of the posterior is progressively
faded while keeping the underlying idea of an a Bayesian up-
date.

The aforementioned recursion is achieved by means of the
discounted mean-variance estimator shown in (Bertuccelli &
How, 2008) such that

E [πi,j ]k+1 = E [πi,j ]k +
V ar [πi,j ]k

(
δi,j − E [πi,j ]k

)
λkE [πi,j ]k

(
1− E [πi,j ]k

) ,
(27)

and

Var [πi,j ]k+1 =
Var [πi,j ]k E [πi,j ]k+1

(
1− E [πi,j ]k+1

)
λkE [πi,j ]k

(
1− E [πi,j ]k

)
+ Var [πi,j ]k

,

(28)
where λk < 1 is a factor used to scale the variance at each
iteration, which makes the estimation to be more responsive
to new observations. (Bertuccelli & How, 2008) shows that
convergence to the true moments is achieved if limk→∞ λk =
1. We thus consider using in this work a decaying factor λk =
1− λ

k , where 0 < λ < 1 and k denotes the time step.

5. DRIVING LOAD PREDICTION

The prediction of the driving load proceeds as presented in
Algorithm 1. At every time step measurements of the input
space, i.e., uk =

[
vk ak θk

]T
are acquired and pro-

cessed in order to determine the indices s, i and h, which are
used to allocate the measurements in the correspondent posi-
tion of the Markov state space.

First, the information about the speed and the acceleration is
updated. To this aim the index s determines the transition
probability matrix Φvsa to be updated. The index i is used
to find the row within the matrix, which contains the infor-
mation about the last observed transition. Having located the
row containing the transition of interest, all transition prob-
abilities πvsai,j ∈ πvsai are simultaneously updated by means
of Eqs. (27) and (28), ensuring in this way that the entire row
sums up to one. Analogous, the index h is used to determine
the row of Φθ to be updated. The update of the slope informa-
tion succeeds similarly to the procedure previously presented.

At every prediction time kp the driving load is predicted for a
given horizon length hl. A prediction consists of synthetically
generating one profile for the speed/acceleration and one for
the slope via Markov chains. The generated profiles are then
processed by the EV model in order to compute the driving
load.

The generation of the speed/acceleration profile starts by ran-
domly drawing from πvsai a sample aj for the next state ak+1

according to the current values of speed vk and acceleration
ak. To this aim the inverse transformation method is em-
ployed, since πvsai represents a discrete probability distribu-
tion. If no information about the distribution of ak+1 is avail-
able, i.e., if πvsai → {0}, then aj is randomly sampled from
Beta (α (vs, ai) , β (vs, ai) , amin, amax), whereα (vs, ai) and
β (vs, ai) are given by Eq. (17) and Eq. (18), respectively.
This step ensures a complete generation of the profile regard-
less of the lack of information about the distribuiton of ak+1.

Algorithm 1 Driving Load Prediction

Require: Φva,Φα,uk,Ω,∆t, hl
Ensure:

{
Pele,kp , Pele,kp+1, ..., Pele,kp+hl

}
Initialize:
Determine the indices s, i and h for the current speed, ac-
celeration and slope.
vs ← vk, ai ← ak, θh ← θk
Update Φvsa and Φθ . Use Eqs. (27) and (28) to:
Compute E

[
πvsai,j

]
and V ar

[
πvsai,j

]
for all πvsai,j ∈ πvsai

Compute E
[
πθi,j
]

and V ar
[
πθi,j
]

for all πθi,j ∈ πθi
if k = kp then

for l = 1 to hl do
Randomly draw aj for the next state according to:
if πvsai → {0} then
Beta (α (vs, ai) , β (vs, ai) , amin, amax)

else
Φvsa (ak+1 = aj |ak = ai, vk = vs)

end if
ak+1 ← aj
Compute vk+1 . Use Eq. (29)
uvak+1 ← [ vk+1 ak+1 ]
Randomly draw θj for the next state according to:
Φθ (θk+1 = θj |θk = θh)
uθk+1 ← θj
Set the input for the next time step
uk+1 ←

[
uvak+1 uθk+1

]T
Compute the power demand for the current time step
Pele,k = f (uk,Ω) . Use Eqs. (2), (3) and (4)
k ← k + 1

end for
end if

Contrary to other methods for generating synthetic driving
profiles (T. Lee & Filipi, 2011), our approach compute the
value of the speed in the next speed instead of randomly sam-
ple it. Here vk+1 is given by

vk+1 = vk + ak∆t, (29)

where ∆t denotes the time step size used in the generation
of the profile. Our approach is efficient, since computing
Eq. (29) for obtaining the speed is more efficient than sam-
pling it from any discrete distribution. After obtaining the
values of ak+1 and vk+1, the next step is to draw a sample θj
for the next time step according to the value of θk.

8
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Having predicted uk+1 =
[
vk+1 ak+1 θk+1

]T
the elec-

trical power demand is computed by means of Eqs. (2), (3)
and (4). To this aim the set Ω containing the parameters of
the EV model is needed. This procedure is repeated itera-
tively until the desired horizon length hl of the prediction is
reached.

6. RESULTS AND DISCUSSIONS

This section first introduces the experimental system used for
validating the prediction of the driving load. Afterwards, the
assumption regarding the Markovianity of the input variables
is validated through simulation. Finally, a series of experi-
mental case studies used to illustrate the applicability of our
approach in different driving situations is presented.

6.1. Experimental Setup

The EV used as experimental platform for gathering the data
and for testing the proposed approach is propelled by a 80 kW
and 280 Nm synchronous electric motor mounted in the front
axle and is powered by a 24 KWh Li-ion battery pack rated to
deliver up to 90 kW. The vehicle is equipped with a GPS used
to gather information about the speed and the acceleration of
the vehicle and the height profile of the road. A system for
measuring the voltage and the current of the motor is also
integrated. A data acquisition system is used to synchronize
the information delivered by these two systems.

EV Model Parameters
Parameter Value

A 2.29 m2

cw 0.28
m 1520 kg
Kr 0.7

Tm,max 280 Nm
Pele,max 80 kW
rtire 0.3 m
ρair 1.226 kg/m3

g 9.81 m/s2

Table 2. Parameters used for computing the driving load.

Table 2 shows the constant parameters used to compute the
driving load. It is worth noting that both m and Kr have to
be identified from real data, since they depend on the cargo
weight (given by the driver) and on the road condition, re-
spectively. In this work both parameters are identified offline
by fitting, in the least-square sense, the measured power con-
sumption for a given trip with to power demand computed by
the model for the same trip.

6.2. Validating the Markov Assumption

In this work a set historical drive cycles together with a set of
height profiles is employed. This information is used for es-
timating the transition probabilities of Φva and Φθ by MLE.
Then, Φva is approximated with the methodology presented

in section 3.1.2 for those regions with unavailable data. Due
to the wide spectrum of driving situations covered by the cho-
sen driving data, the estimated TPMs offer a proper starting
point for predicting the driving load under different driving
scenarios.

To validate the assumption about the Markovianity of the in-
put variables a set of synthetic profiles is generated as shown
in Algorithm 1, with the only difference being that the update
step is skipped. This allows us to model the input variables as
a homogeneous Markov process, which suffices at this stage
of the validation. The simulated profiles are then compared
with the data used for training the TMPs in order to see if the
distribution of the synthetic input variables correspond to that
of the original data. In this work we compute the probability
distribution of the data by means of kernel density estimation.
As it can be seen in Fig. 9, the distribution of the generated
profiles accurately describes the original data. It is important
to notice that the probability distribution of the speed is left
truncated, due to only non-negative speeds are considered.

−2 −1 0 1 2

Acceleration [m/s2] →

PD
F

0 20 40 60 80 100 120 140

Speed [km/h] →

PD
F

−10 −5 0 5 10

Slope [◦] →

PD
F

Figure 9. Probability distribution of the measured and simu-
lated speed (top), the acceleration (bottom-left) and the slope
(bottom-right). The solid and the dashed lines correspond to
the measurements and to the model, respectively.

Furthermore, it is of interest to investigate the impact com-
puting the speed with Eq. (29) instead of considering it part
of the Markov chain. To this aim we employ the joint speed-
acceleration frequency distribution (SAFD) depicted in Fig. 10.
The SAFD offers a good overview of the driving situations
exhibited by the driving data. As it can be appreciated, the
simulated driving profiles successfully models the real driv-
ing data in low-speed regions. However, the simulated data
lies very tight in regions above 80 km/h. This is due to the
drive cycles chosen to estimate Φva mainly describe driv-
ing situations in the city and rural areas. The usability of
the methodology presented in section 3.1.2 can be proved by
simulating driving data and by finding out the percentage of
data generated by using a Beta distribution. From 500 000 s
of simulated data a total of 4.7% was identified to be gener-
ated using this methodology.
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Figure 10. Joint frequency distribution of the measured (top)
and simulated (bottom) speed and acceleration profiles.

The power demand is computed by simulation using both the
training and the simulated input variables together with the
parameters shown in Table 2 . Fig. 11 depicts the distribution
of the power demand. As it can be seen, the proposed ap-
proach accurately models the power demand of the EV, spe-
cially important being the region with negative values, i.e.,
the distribution of power recovered through the regenerative
braking system.

The auto-covariance function (ACF) confirms that the power
demand of the EV can be predicted using a model-approach
with input variables modeled as Markov processes.
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Figure 11. Probability distribution (top) and ACF (bottom)
of the measured and simulated power demand. The solid and
the dashed lines correspond to the measurements and to the
model, respectively.

6.3. Experimental Case Studies

The proposed approach for adaptively predicting the driving
load is validated through a series of trips. Each trip takes
place along a different road and under a different driving sit-
uation. Three driving situations are tested, namely driving in
the city, in rural areas and driving in a combination of high-
way and city. All trips start with the Φva and Φθ estimated in
section 6.2, so that no previous information about the driver
behavior or the driving scenario is available. This allows in-
vestigating the adaptability of the TPMs for the different driv-
ing situations.

6.3.1. Scenario 1: City

The speed and the slope profile of the first trip are shown in
Fig. 12. Here the EV travels 9.17 km in approximately 20
minutes. The speed profile exhibits the common behavior of
a vehicle traveling in a city with many stops and a maximum
speed of approximately 50 km/h.

Fig. 13 shows the probability distribution of the predicted in-
put variables together with the computed power demand. The
prediction takes place at kp = 600 s, that is 10 minutes af-
ter beginning the trip and the horizon length of the prediction
is hl = 600 s. As it can be seen, the shape of PDF of the
speed resembles the real distribution. In the same manner the
PDF of the distribution fits the measured data. The difference
in the distribution of the predicted slope profile with the real
measurements is due to the discretization resolution used in
the Markov chain.

This causes the predicted slope to be more focused in some
regions, e.g. 0◦, in comparison to the real measurements
where the data is more widespread. Despite the difference
in the slope distribution, the PDF of the electrical power suc-
ceeds to describe the distribution for both demanded and re-
covered power.
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Figure 12. Driving situation representing a trip in the city.
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Figure 13. Snapshot at kp = 600 s of the probability distri-
bution of the predicted input variables and the power demand
for hl = 600 s in the city scenario. The solid and the dashed
lines correspond to the measurements and to the model, re-
spectively.

6.3.2. Scenario 2: Rural Areas

The second trip is depicted in Fig. 14. In this trip the EV
travels 17.03 Km along a rural road. The approximate du-
ration of the entire trip is 30 minutes. This driving scenario
is characterized by transition between zones with maximum
speed of 50 km/h and 70 km/h. The height profile remains
almost constant during the trip, with exception of the last 5
minutes where the slope of the road slightly increases. The
probability distribution of the predicted input variables and
the computed power demand is presented in Fig. 15. The dis-
tributions shown are the result of a prediction carried out 5
minutes after the beginning of the trip. i.e., kp = 300 s. In
this case the hl = 1 500 s. As it can be noticed, the distribu-
tion of the predicted speed presents a region of high probabil-
ity near to the zero speed. This is the result of the large stop
of approximately 100 s occurred at time step k = 400 s. Sim-
ilarly to results shown in the previous case, the distribution
of the power demand successfully captures the uncertainty of
the prediction.
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Figure 14. Driving situation representing a trip in rural areas.

−2 −1 0 1 2

Acceleration [m/s2] →

PD
F

0 50 100 150

Speed [km/h] →

PD
F

−10 −5 0 5 10

Slope [◦] →

PD
F

−50 0 50

Power demand [KW] →

PD
F

Figure 15. Snapshot at kp = 300 s of the probability distribu-
tion of the predicted input variables and the power demand for
hl = 1 500 s in the rural scenario. The solid and the dashed
lines correspond to the measurements and to the model, re-
spectively.

6.3.3. Scenario 3: Highway-City

The last experimental case study illustrates the flexibility of
our approach. Both the speed and the high profile are shown
in Fig. 16.

The purpose of this experiment is to test the ability to adapt
the driving load prediction to the change in the driving situ-
ation. To this aim the EV travels 75.28 Km on the highway
followed by 20.3 Km in the city. The driving behavior on the
highway is characterized by a mean speed above 100 km/h
and by very few stops. A very important feature of this driv-
ing scenario is the large increment on the height profile in one
segment of the road. In this case two prediction were carried
out, each of them with a horizon length hl = 1 500 s.

Fig. 17 shows the probability distribution of the predicted in-
put variables and the power demand for the first prediction
at kp = 1 800 s. As it can be seen the PDF of the predicted
speed differs from the real distribution, in that the region with
low speed is almost neglected. This is due to the segment of
city contained withing the horizon length of the prediction is
not taken into consideration. This causes the power demand
to be slightly overestimated.

At kp = 3 600 s a new prediction is carried out. In this case
the EV travels in a city driving scenario. As it can be seen
in Fig. 18 the PDF of the predicted speed profile seems to
converge to the real distribution. Accordingly, the distribu-
tion of the predicted driving load resembles very accurately
the shape of the real distribution. This shows that the pro-
posed approach succeeds in predicting the driving load even
if remarkable changes in the driving situation occur.

7. CONCLUSIONS AND FUTURE WORK

In this work a methodology for predicting the driving load
of an EV in uncertain environments is presented. The pre-
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Figure 16. Driving situation representing a trip combining
highway and city segments.
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Figure 17. Snapshot at kp = 1 800 s of the probability distri-
bution of the predicted input variables and the power demand
for hl = 1 500 s in the combined highway-city scenario. The
solid and the dashed lines correspond to the measurements
and to the model, respectively.
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Figure 18. Snapshot at kp = 3 600 s of the probability distri-
bution of the predicted input variables and the power demand
for hl = 1 500 s in the combined highway-city scenario. The
solid and the dashed lines correspond to the measurements
and to the model, respectively.

diction takes place under a model-based approach, in which
the input variables of an EV model, used to describe the driv-
ing situation, are modeled as first order discrete-time Markov
processes. The transition probabilities between Markov states
are first estimated offline from historical driving data via max-
imum likelihood estimation. Furthermore, an approach for
estimating transition probabilities in the presence of sparse
data is introduced. In order to account for most up to date
driving situations, road conditions and driving behaviors in
the driving load prediction, the transition probabilities are re-
cursively updated via Bayesian inference.

The validity of the proposed methodology is illustrated through
simulation and by means of a series of experimental cases of
study. The obtained results suggest, that the driving load can
be successfully predicted with our approach regardless of the
driving environment. Nevertheless, it has been realized that
by abrupt changes in the driving situation within a trip, the
time the transition probabilities take to converge to the new
driving situation can become large.

An aspect we aim to investigate in the future is therefore to
model the transition between driving situations as a Markov
jump process. In this way, it would be possible to choose dif-
ferent TPMs according to some stochastic process describing
the change between driving situations.
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