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ABSTRACT

In the context of more electrical aircrafts, Permanent Mag-

net Synchronous Machines are used in a more and more ag-

gressive environment. It becomes necessary to supervise their

health state and to predict their future evolution and remain-

ing useful life in order to anticipate any requested mainte-

nance operation. Model-based prognosis is a solution to this

issue. Any prognosis method must rely on knowledge about

the system ageing. A review of existing ageing laws is pre-

sented. The generic ageing model proposed in (Vinson, Ri-

bot, Prado, & Combacau, 2013) is extended in this paper. It

allows representing the ageing of any equipment and the im-

pact of this ageing on its environment. The model includes

the possible retroaction of the system health state to itself

through stress increase in case of damage. The proposed

ageing model is then illustrated with Permanent Magnet Syn-

chronous Machines (PMSM). Two critical faults are charac-

terized and modeled : inter-turns short-circuits and rotor de-

magnetization. Stator and rotor ageing are well represented

by the proposed ageing model. The prognosis method de-

veloped in (Vinson et al., 2013) is extended to consider this

new generic ageing model. In order to test the prognosis al-

gorithm, ageing data are needed Since no real measurements

are available, a virtual prototype of PMSM is developed. It is

a realistic model which allows running a fictive but realistic

scenario of stator ageing. The scenario comprises apparition

and progression of an inter-turns short-circuit and its impact

on stator temperature, which value has an impact on the age-

ing speed. The prognosis method is applied successfully to

the PMSM during this scenario and allows estimating the Re-

maining Useful Life (RUL) of the stator and the machine.

Garance Vinson et al. This is an open-access article distributed under the

terms of the Creative Commons Attribution 3.0 United States License, which

permits unrestricted use, distribution, and reproduction in any medium, pro-

vided the original author and source are credited.

1. INTRODUCTION

In the context of the more electrical aircrafts, electrical mo-

tors such as permanent magnet synchronous machines are

more and more used for critical functions in the actuators,

such as landing gear extension/retraction, braking systems,

or flight control. They are often used in very aggressive envi-

ronments. The future transition from 270V to 540V of supply

voltages, and the increase in switching frequencies, also ap-

plies a lot of additional stress on the motors. In this aggressive

context, permanent magnet synchronous machines (PMSM)

may have more and more degradation and faults. In order to

ensure the operational availability of critical functions, one

option is to implement a Health-Monitoring module. This

Health-Monitoring module consists in a detection and diag-

nosis module, that allows assessing the current health state of

equipments, and a prognosis module, that allows predicting

the future health state of equipments, and their remaining use-

ful life (RUL). With prognosis, the maintenance action can be

anticipated in advance. The goal is to optimize maintenance

planning and avoid any operational interruption or flight de-

lays due to equipment faults.

Predicting the future health-state of equipments requires to

know how they are ageing. This knowledge can take several

forms, it can be based on experience, on degradation and age-

ing data obtained in service or in tests, or on ageing physical

models. Knowledge on system ageing can always be put into

the form of an ageing model, that can be more or less precise

but can be represented in a generic way. A generic ageing

model, partly published in (Vinson et al., 2013), allows rep-

resenting the behavior and ageing of any kind of equipment,

that may be heterogeneous and complex. This model has be

to extended to consider the impact of the ageing on its envi-

ronment. Then the model has to take into account the possible

retroaction of the system health state to itself through stress

increase in case of damage. The generic prognosis method
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proposed in (Vinson et al., 2013) has also to be extended to

deal with new aspects in the ageing model. An illustration is

proposed on PMSM, with the modeling of two critical pro-

gressive degradation: inter-turns short-circuits and rotor de-

magnetization. Ageing data are needed to test the prognos-

tic algorithms on PMSM, but real data are not available. A

complete PMSM virtual prototype is then developed to ob-

tain these ageing data. This is a precise model that repre-

sents a lot of phenomena linked to the ageing of PMSM. The

virtual prototype allows simulating a short-circuit virtual sce-

nario, from the start of the degradation to the increasing speed

of the short-circuit gravity and the associated loss of perfor-

mance until the end of life of the stator.

This paper is organized as follows. A survey of ageing laws

is presented in Section 2 that motivates the need of a generic

representation. The generic ageing model is presented in Sec-

tion 3 and is illustrated with two PMSM faults ageing mod-

els: inter-turns short-circuit and rotor demagnetization. The

generic prognosis method based on the model is extended on

Section 4. This section also presents the virtual protoype of

the PMSM and the application of the diagnosis and prognosis

algorithms on a virtual short-circuit scenario. Finally Section

5 proposes some conclusions and perspectives.

2. AGEING MODELS FOR PROGNOSIS

In order to predict the system RUL, prognosis requires knowl-

edge about the system ageing that is contained in a model.

This model describes the evolution of the system ageing state,

it is a priori known and used on-line for predictions. In the

literature, several prognosis methods already exist which rely

on different models:

• experience-based prognosis,

• data-driven prognosis,

• and model-based prognosis.

The choice of one of these methods depends on the level of

knowledge contained in ageing model and is mainly charac-

terized by the availability of sensors that allow obtaining on-

line data of the system state. Every approach has pros and

cons, and it is often useful to combine them.

2.1. Experience-based prognosis

Experience-based approaches, like case-based reasoning or

reliability analyses, are the only alternative when no sensors

nor physical knowledge of the system ageing is available.

This form of prognostic model is the simplest and only re-

quires failure history to determine the probability of failure

within a future time (Gebraeel, Elwany, & Pan, 2009). Relia-

bility techniques are used to fit a statistical distribution to the

failure data.

The Weibull law is often used due to its flexibility in relia-

bility analyses for mechanical or electrical components. It

can represent a time-dependent failure rate by describing the

different phases of a component life with three parameters.

(van Noortwijk & Klatter, 2002) models the cost of structure

replacement with Weibull distributions by applying the maxi-

mum likelihood estimation method on life data obtained from

broken structures. The main drawback of the Weibull law is

the difficulty of estimating these three parameters. The expo-

nential law is simpler as it depends on only one parameter, the

failure rate, which is constant. It can represent a component

ageing without wear, i.e. the abrupt failures. It is used a lot for

life duration of electronic devices. For progressive failure, the

Gamma law seems to be well suited. It can represent a failure

rate increasing in time and is used to model progressive fail-

ures like crack evolution in (Lawless, 2004) or erosion in (van

Noortwijk, Kallen, & Pandey, 2005). It is also possible to use

several laws simultaneously like in (Huynh, Castro, Barros,

& Berenguer, 2012) which combines a Gamma law with a

Poisson process to model progressive degradation and abrupt

failures.

Models used by experience-based approaches use available

data without dedicated effort. This approach does not take

into account the way the equipment is used, or its past. This

might be useful for the manufacturer, but not for the user that

is interested in one particular component.

2.2. Data-driven prognosis

Evolutionary and trend monitoring methods are used when

on-line observed data are available. These prognostic method

use on-line estimators or indicators to evaluate the system

current degradation state relying on the on-line observations.

To get the estimators, failure history is required (identifica-

tion of fault patterns). Such estimators may be obtained by

learning techniques (neural networks or Bayesian networks)

or by identifying parameters of classical estimators like for

Kalman filters (Hu, 2011).

Neural networks allow building a grey/black box ageing model

to estimate and predict the current and future trend of the

system degradation from specific indicators (Goh, Tjahjono,

Baines, & Subramaniam, 2006). Neural networks are used

in (Das, Hall, Herzog, Harrison, & Bodkin, 2011) to per-

form prognosis on systems of high-speed milling. (Adeline,

Gouriveau, & Zerhouni, 2008) tests and compares different

methods based on neural networks in terms of prediction pre-

cision, computation cost and requirements related to the im-

plementation. Fuzzy neural networks combines neural net-

works and fuzzy logic to deal with ambiguous, inaccurate,

noisy or incomplete data (El-Koujok, Gouriveau, & Zerhouni,

2010). Fuzzy systems use knowledge as expert rules. They

are recommended in case where no qualitative information

about the system degradation is available but only causal rules

describe fault propagation within the system. They can be au-

tomatically adjusted and do not require physics-based knowl-
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edge.

Ageing models can be represented by Bayesian networks that

are acyclic graphs defined by a set of nodes and relations with

conditional probabilities. Each node may represent a poten-

tial degradation mode of the system and transition probabili-

ties from a current mode to possible future modes result from

a learning phase. The RUL is then predicted from transition

probabilities of the network. Theory of Bayesian networks is

well explained in (Bouaziz, Zamai, & Duvivier, 2013) which

shows its relevant application in the semi-conductor indus-

try. (Weber, P.Munteanu, & Jouffe, 2004) uses dynamical

Bayesian networks and Markov chains to model the ageing of

a system composed of a pump and a valve. (Muller, Suhner, &

Iung, 2008) combines Bayesian networks with an event-based

approach to monitor degradation of an automatic mechanical

system of lamination. A priori knowledge is based on experi-

ence and trend monitoring is performed on line thanks to data.

Physics-based knowledge allows determining causal relations

of component degradations.

(Greitzer & Pawlowski, 2002) proposes a parametric model

of the vibration waveform for different faults (particularly for

bearing faults) on a diesel motor to apply a trend monitoring-

based prognosis approach. (Byington & Stoelting, 2004) per-

forms diagnosis and prognosis on an EMA of a flight control

system with a model whose parameters are estimated from

on-line data. Diagnosis estimates the current health state of

the system with classification tools. Prognosis computes the

rate of change of state at current time and anticipates it in

the future. In this study, prognosis is a simple temporal pre-

diction of the indicator evolution that does not take into ac-

count the equipment environment. (Lacaille, Gouby, & Piol,

2013) studies the wear of turbojets and proposes a simple al-

gorithm to build a degradation indicator from successive mea-

surements of exhaust gas temperature after each flight accord-

ing to the operating time.

Data-driven method transform a huge amount of noisy data

into a few relevant data for prognosis. The main drawback

is that the method efficiency highly depends on the quantity

and quality of data. In aeronautics, equipment are generally

very reliable, and preventive maintenance is realized before

the failure occurrence, so there are very few degradation data.

Tests can be done to obtain data, but they are costly, time

consuming, and destructive.

2.3. Model-based prognosis

Model-based prognosis relies on a deep knowledge of the

equipment ageing. The model provides more information by

extrapolating on-line data by physics-based reasoning. The

ageing model can be an analytical model, represented as a set

of equations which involve physical quantities correspond-

ing to environmental constraints (Onori, Rizzoni, & Cordoba-

Arenas, 2012; Bregon, Daigle, & Roychoudhury, 2012), or

a simulation model identified from tests results. In (Gucik-

Derigny, Outbib, & Ouladsine, 2011), the ageing model is

represented as a set of nonlinear differential equations with

multiple time scales (short for the system behavior dynamic

and large for its degradation). The fast dynamic state is es-

timated thanks to observers and the parameters of the ageing

model (i.e. the slow dynamic) are determined. The illustra-

tive example is an electromechanical oscillator. In (Khorasgani,

Kulkarni, Biswas, Celaya, & Goebel, 2013), the ageing of

electrolytic capacitors with temperature is represented by a

complex nonlinear physics-based model. Particle filtering

is then used to estimate the parameters of the degradation

model.

Physics-based ageing models can be divided into three types

depending on their output format. They can directly compute

the RUL or progressive evolution of degradation by evaluat-

ing the damage or a failure rate to anticipate the future behav-

ior of the equipment. (Venet, 2007) uses the Arrhenius law

to model the impact of temperature on the lifetime of liquid

electrolyte capacitors but it can also be applied for dielectric

components, semiconductors or batteries. The inverse power

law describes the impact of damaging factors on the compo-

nent lifetime like voltage on electronic components for exam-

ple. It can also be used for mechanical components subjected

to fatigue. A specific case of the inverse power law is the

Coffin Manson law that gives the number of cycles leading

to the rupture when components are subjected to temperature

variations. The generalized Eyring model allows taking into

account any type of damaging factor (like temperature, volt-

age, humidity, etc.) in ageing of electronic components or

mechanical components subjected to rupture. The Paris law

is used in (Pommier, 2009-2010) to model the damage for a

component by computing the crack propagation according to

the number of cycles. The Miner’s law models the accumula-

tion of linear damages due to fatigue. It can be used for metals

only until yield strength. The Wlher curve gives the number

of cycle leading to damage thanks to a characteristic param-

eter like maximal constraint for example. The american mil-

itary norm MIL-HDBK-217 gives the failure rates for some

components such as transistors, resistors, etc. For example,

the law Belvoir Research Development & Engineering evalu-

ates the failure rate of a solder joint. The Cox model, based

on a failure risk function, is mainly used in the medicine and

maintenance fields to study the impact of different variables

involved in the component degradation process.

A physics-based ageing model can also be determined from

tests performed in controlled conditions in order to identify

characteristic parameters of the system degradation. In this

case, the damage evolution is assumed to be measured from

tests. Moreover, simulation is interesting as no component

destruction nor deterioration is needed to study the system

degradation. The main difficulty consists in elaborating and

validating the ageing simulation model, since equipment are
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complex and faults are multiple and difficult to be understood

as a whole (Bansal, Evans, & Jones, 2005).

In some cases, it can be useful to combine different types

of information in a common ageing model. For example,

by combining failure history and physical laws, a statistical

physics-based model can be obtained. In such a model, phys-

ical stress is represented through a parameter of the statistical

law which is then adapted to the operational environment of

the component. The difficulty is to assign a physics-based law

to one or several parameters of the statistical law (Byington,

Roemer, & Galie, 2002; Brissaud, Lanternier, Charpentier, &

Lyonnet, 2007; Nima, Lin, Murthy, Prasad, & Yong, 2009;

Gebraeel et al., 2009). (Ray, 1999) builds a stochastic model

for the crack propagation in a metallic material from test data.

The non-stationary probability density function depends on

the instant of crack initiation and its actual size (in order to

deduce the speed of the crack propagation).

(Hall & Strutt, 2003) proposes a statistical model of physics

of failure that results fromMonte-Carlo simulations performed

with different parameters of the physics-based degradation

model. These values are then represented with the Weibull

distribution whose parameters are well chosen to fit data.

2.4. Synthesis

The choice of a prognostic method depends on available knowl-

edge, the presence of sensors or physics-based models that

allow monitoring and analyzing the real condition of the sys-

tem. This ageing knowledge can be represented as an expe-

rience, a known qualitative or quantitative model or an esti-

mated model obtained by learning and classification methods.

The prognostic model may vary from a very poor model (that

cannot handle on-line observations for example) to a very rich

one (that can handle on-line observations and can extrapolate

these observations in terms of physical reasons for the com-

ponent to fail in the future). In an industrial context such

as aeronautics, a lot of equipment is similar but no identical.

So in this paper, the challenge consists in defining a generic

ageing model, whatever the available knowledge about the

system degradation, in order to apply a generic model-based

prognosis method.

3. A GENERIC AGEING MODEL AND ITS APPLICATION

TO PERMANENTMAGNET SYNCHRONOUSMACHINES

3.1. The generic ageing model

In (Vinson et al., 2013) a structural and functional model is

presented. A system Σ is a set of n components Ci. Param-
eters p represent physical quantities in a component. There

are three kinds of parameters. Input parameters ip values

depend on the environment, private parameters pp belong to
only one component, and output parameters op are a com-

bination of input and private parameters through functional

relationships ar. The values of parameters at time t are p(t).
The rank r of a parameter p is the set of possible values, such
as ∀t , p(t) ∈ r(p). Components are connected through the
structure st via their input and output parameters to form the

system. Two parameters structurally connected are such as

ipi,j = st(opk,l) ⇒ ∀t , ipi,j(t) = opk,l(t). This structural
and functional model is represented on the first layer of the

modeling framework on Figure 1. The ageing model devel-

oped hereby enriches the functional model.

3.1.1. Damage and ageing laws

During operational life an equipment ages, it is damaged.

Ageing is due to stresses, that can be thermal, electrical, me-

chanical or chemical. Stresses are modeled with damaging

factors. The set of damaging factors of one component Ci is
Di = {df i

l }. The set of damaging factors of the system Σ is

DΣ =
⋃n

i=1D
i. The value of a damaging factor at time t is

df(t). Ranks are defined for damaging factors, they are noted
r(df i

l ) and they are such as ∀t, v(df
i
l , t) ∈ r(df i

l ).

The equipment ageing is characterized by its damage. Dam-

age is irreversible. It is null at the beginning of the equipment

life and increases with the ageing.

Since they do not vary for functional purposes and they are in-

trinsic to one component, we decide to use private parameters

and their values to represent the system and component health

state. A private parameter modification represents therefore a

damage. The damage ei,j at time t is modeled as the distance
between ppi,j(t) and the initial value ppi,j0 :

ei,j(t) = d(ppi,j0 , v(ppi,j , t)) (1)

with ppi,j0 = ppi,j(t0) and e
i,j(t0) = 0.

There is one damage per private parameter, but every com-

ponent may have several damages represented by different

private parameters.

The damage depends on stresses. The ageing law ag allows
the calculation of damage e as a function of the damaging

factor values df i
1, ...df

i
n:

{

ag : C× T −→ C

(df i
1, ...df

i
n, t) 7−→ ei,j(t) = ag(df i

1, ...df
i
n, t)

(2)

It is possible to define a global damaging factor as a combina-

tion of damaging factors, in order to have a unique parameter

for the ageing law, and to include known ageing laws (de-

scribed in Section 2) in this approach.
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3.1.2. The retroaction law

The stress that undergoes an equipment depends on its en-

vironment and depends also on its own damage. Indeed a

damaged component often has a more negative impact on its

environment and on itself. For instance the wear of a com-

ponent will increase the level of pollution in a mechanical

system, and pollution is certainly a stress for the component

and its environment.

This is modeled by the fact that damaging factors values de-

pend on the system health state. The function fdf assesses a

damaging factor rank. The rank may depend only on the sys-

tem environment. Otherwise, if the rank of a damaging factor

depends on the system health state, the function fdf is defined
as follows:

{

fdf : DΣ × Supp(df i
l ) −→ IR

df i
l 7−→ r(df i

l ) = fdf ({e
x,y(t)})

(3)

We highlight that the damage depends on damaging factors

through ageing laws and that damaging factors depend on the

damage through the retroaction laws. Figure 1 presents both

the functional and structural model on the first layer and the

ageing model on the second layer. The two models communi-

cate through the private parameters, that is to say through the

health state: the ageing model affects the functional model.

Figure 1. Modeling of a system Σ damage: ageing laws and
retroaction laws.

All kind of knowledge can be represented with this generic

modeling framework, as will be shown on our industrial ap-

plication.

3.2. Application: the ageing model of PMSMs

3.2.1. The functional model of PMSMs

The functional and structural model of PMSMs is shown on

Figure 2. The PMSM has two components, the stator and

the rotor that are combined to perform the PMSM function:

to transform supply voltage Uab, Ubc, Uca into a given me-

chanical speed Ω, independently of the torque C applied by

the environment on the shaft of the PMSM. The stator trans-

forms the voltages into phase currents, Ia, Ib, Ic, indepen-
dently of the induced voltages Ea, Eb, Ec produced by the

rotor. The stator private parameters are the phase resistances

Ra,Rb,Rc and inductances La, Lb, Lc. The rotor transforms

the phase currents into a mechanical speed. Its private param-

eters are the magnets electromagnetic remanent field B, the
rotor inertia J and the friction coefficient Kf . The relation-

ships between parameters are explained in details in (Vinson,

Combacau, & Prado, 2012).

Figure 2. Modeling of the PMSM.

Thanks to a Failure Modes Effects Analysis and Criticity two

faults were selected as candidates for model-based prognosis,

corresponding with the two components of the PMSM: inter-

turns short circuits in the stator and demagnetization of a part

of the rotor.

3.2.2. The stator ageing : inter-turns short-circuits pro-

gression

A common and critical degradation of PMSM are short - cir-

cuits, and especially inter-turns short-circuits, that come from

the stator insulation ageing and degradation. A short-circuit

model is proposed in (Vinson, Combacau, Prado, & Ribot,

2012). There is the creation of a short-circuit loop in one of

the three phases, phase A for instance. Two fault parameters,

Rf and Sa, represent the gravity of the short-circuit. Rf is the

resistance of the insulation at the short-circuit point and pro-

gressively decreases until 0Ω in case of direct short-circuit.

Sa is the percentage of short-circuited turns and varies be-

tween 0 and 100%.

The private parameter that represents the damage of the sta-

tor is chosen to be the short-circuited phase resistance, Ra,

for the three following reasons. It varies with short-circuit, it

depends on the two fault parameters, Rf and Sa, and unlike

them it can actually be measured on a real PMSM. Ra, the

equivalent resistance of phase A with the short-circuit loop

of resistance Rf , is expressed as:

Ra(t) = Ra0(1− Sa(t)) +
Ra0Sa(t)Rf (t)

Ra0Sa(t) +Rf (t)
(4)
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The stator damage es is then:

es(t) = |Ra0 −Ra(t)|. (5)

During the stator ageing the damage es progressively increases.
Two thresholds are defined to estimate the gravity of the short-

circuit: the degradation threshold esd and the fault threshold

esp. According to the comparison between the damage value
and these thresholds, the stator is considered nominal when

es(t) < esd, degraded when esd < es(t) < esp, or faulty when
es(t) > esp.

Ageing law The insulation degradation is due to thermal

and electrical stresses. The damaging factors are the magni-

tude V and frequency f of the supply voltage, and the statoric
temperature TS : DF

s = {V, f, Ts}.

Since no real ageing data are available to estimate the stator

ageing law, a law obtained in (Lahoud, Faucher, Malec, &

Maussion, 2011) is used for illustrative purpose. This law was

obtained with tests on insulation boards. We consider that the

shape of the law is correct for the stator, and the parameters

K1, K2, K3 and b values are adjusted to fit with realistic life
duration known from experience. L is the stator life duration

and depends on the stator temperature Ts:

L(t) = K1 +K2 × exp(−b× Ts(t)) (6)

The proposed ageing law ags is then :

es(t) = ags(Ts, t) =
K3

L(t)
(7)

For one particular PMSM V and f are constant so we con-

sider that the ageing law only depends on Ts. There is a cor-

relation between L and es that is known from experience.

Retroaction law Short-circuits increase the temperature Ts

because of the high currents that circulate in the phases and in

the short-circuit loop. The following retroaction law is pro-

posed:

Ts(t) = fs
df (e

s, t) =











70◦C if es(t) < esd

80◦C if esd < es(t) < esp

90◦C if esp < es(t)

(8)

This is the only retroaction function of the stator ageing model

since we consider that there is no influence of the short-circuit

on f and V .

3.2.3. The rotor ageing : demagnetization progression

Another degradation that may occur on PMSMs is rotor de-

magnetization, which means that the remanent electromag-

Figure 3. The Wohler curve and the mechanical ageing of a
rotor magnet.

netic field B of one or several magnets decreases. This can

be due to two kinds of degradation. Cracks or breaks of the

magnets induce air gaps, which consequence at the electro-

magnetic level is the diminution of B. High currents or high
temperature variations can modify the physical composition

of magnets which also leads to a diminution of their remanent

electromagnetic field B.

An analytical demagnetization model is proposed in (Vinson,

Combacau, Prado, & Ribot, 2012). The fault parameter is

the percentage of demagnetization of one magnet, which is

proportional to the loss of B of this magnet. The private pa-

rameter that represents the damage of the rotor is B. The

rotor damage er is then :

er(t) = |B0 −B(t)| (9)

At every effort cycle the fatigue of the magnet is accumu-

lated because it is sized to resist to the effort. There is a

macroscopically elastic deformation. The maximal number

of cycles that the magnet can bear being reached, it breaks

up. From this state, every part of the magnet undertakes a

similar ageing process than the first one until it breaks again.

During this evolution the brutal rupture of a magnet is ex-

pressed with the Wohler curve described on Figure 3. It rep-

resents the limit of endurance σ of a material as a function

of a number of fatigue cycles. When the limit is reached the

material breaks.

We assume that the more the magnet is broken the more it

becomes fragile. Calling Ni the date of the ith rupture, we

suppose that ∀i,Ni −Ni−1 > Ni+1 −Ni, because the dura-

tion between two breaks is shorter and shorter.

If the number of cycles between breaks i and i+ 1 is divided

6
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by a factor k > 1 compared with the number of cycles be-

tween breaks i−1 and i, the number of breaks increases more
and more rapidly. We define Tx = Ni+1

Ni
as the acceleration

factor of the degradation. The number n of ruptures at time t
is defined as:

n(t) =
log(Tx)− log(Tx + t× (1− Tx))

log(Tx)
(10)

Every break devides the remanent induction of a factor K >
1, due to the air gap. We obtain a law giving the remanent

induction as a function of the number of use cycles. The pro-

posed rotor ageing law agr, is then:

er(t) = agr(t) = B0(1−Kn(t)) (11)

In this ageing law, the only considered damaging factor is the

time (i.e. the number of fatigue cycles). As a perspective, if

sufficient data are available, it would be possible to add other

damaging factors, such as short-circuit currents Icc or stator
temperature Ts, that may accelerate the rotor degradation.

4. THE PROGNOSIS

4.1. The generic prognosis method

A Health-Monitoring module is proposed in (Vinson et al.,

2013). It is based on the generic model of the system and

comprises a fault detection and diagnosis module. The prog-

nosis algorithm is developed in Figure 4 and Algorithm 1. Its

input is the result of diagnosis ∆Σ, which allows estimating

all the parameter values, even if they are not observable, at

current time t. The prognosis module predicts the future val-
ues of damaging factors thanks to retroaction laws (Equation

3). It then predicts the future values of private parameters

thanks to ageing laws (Equation 7), and the input and ouput

parameters values thanks to the knowledge of the future ex-

ternal solicitation of the system, and to the analytical laws

between parameters. The future values of damages are esti-

mated (Equation 1) and the time of degradation or fault can

be predicted. The principle of the prognosis operation are

presented on Figure 4.

The prognosis operation is similar to a diagnosis operation,

but realized in the future. The main difference is that pa-

rameters values are predicted instead of being observed. The

parameters or damaging factors are observable if their value

at current time is known, for instance they are measured with

sensors. The parameters or damaging factors are predictable

if their future value can be estimated thanks to the ageing

model or the functional model. The sets of predictable pa-

rameters and damaging factors arePpred ⊂ P andDFpred ⊂
DF .

The prognosis is a sequence of diagnoses realized at future

Figure 4. The prognosis algorithm.

degradation time ti, until the fault time tf :

ΠΣ(t) = {∆Σ(t),∆Σ(t1), . . . ,∆
Σ(tf )} (12)

The prognosis algorithm uses the generic formalism devel-

oped in this paper, as shown in Algorithm 1. It is developed

on Matlab and needs to be validated on degradation and fault

data. Since no real data are available, a virtual prototype is

built on Matlab Simulink.

4.2. Development of a virtual prototype

The virtual prototype is a very precise and complete func-

tional and ageing model of the PMSMs. It is used only for

simulation purposes in order to obtain a realistic set of data

to validate the prognosis algorithm, built with a simple func-

tional and ageing model of PMSMs. In the virtual prototype

the equation of dissipation of thermal power allows predict-

ing the stator temperature Ts. Phase resistances are computed

thanks to an ageing law that depends on Ts, V and f , and
thanks to the equation of copper resistivity that depends on

Ts. This coupled phenomena are represented on Figure 5.

Figure 5. Virtual prototype: relationships between stator tem-
perature and phase resistance

To model the virtual prototype we consider the following hy-

pothesis:

7
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Algorithme 1 Prognosis

Input: Σ, t,∆Σ

Output: ΠΣ(t)
Initialization: k ← 1
while RUL 6= 0 do

t← t+∆t
for all ppi,k ∈ PP do

r(ppi,k) = rΣx (pp
i,k) % values known from diagnosis

end for
for all df i

l ∈ DF do
r(df i

l ) = fdf ({r(pp
i,k)})

end for
for all ppi,j ∈ PPi

pred do

r(ppi,j) = agi,j({df i
l })

end for
for all ipi,j = st(opk,l, t) ∈ IPi

pred do

ipi,j(t) = opk,l(t)
end for
for all opi,j ∈ OPi

pred do

opi,j(t) = ar({pi,k})
end for
for all ppi,j ∈ PPpred do

if ei,j ≥ ei,jx then
tk ← t
go out of loop

end if
end for
Diagnose the system at time tk
ΠΣ(t)← ∆Σ(tk)
k ← k + 1

end while
Return {ΠΣ}

• the ambient temperature is constant (the ventilation is

working well) ;

• the motor shell acts as a constant thermal resistanceRth2,

and a uniform temperature ;

• the insulator acts as a constant thermal resistance Rth1 ;

• the winding temperature is uniform ;

• only the steady state is considered since the transition

state is short.

Although these hypothesis are restrictive, building a more

representative model is one of this work perspectives.

Variation of the short-circuit resistance The ageing law

allows deducing the short-circuit resistance value Rf . The

health points PV are used to correlate the life durationLwith

Rf .

The initial number of health points PV0 corresponds with the

initial life duration value L0. Between t and t+dt the propor-
tion of consumed health points isPV (t)−PV (t+dt) = dt

L(t) ,

so

PV (t) =

∫ t

0

1

L(z)
.dz (13)

The integration of the ageing law can be done by approxima-

tion with a piecewise continuous function having the value

L(T (tk+1)) between times tk and tk+1:

{

PV (0) = 0

PV (tk+1) = PV (tk) +
(tk+1−tk)
L(T (tk+1))

(14)

To the best of our knowledge the law that gives the short-

circuit evolution as a function of health points does not exist.

We choose an exponential shape because we assume that the

degradation accelerates with time:

Rf (t) = Rf0(1− exp(−k
PV (t)− PV0

PV0
)). (15)

Variation of phases resistivity At temperature T the resis-

tance R of a coil is R(T ) = (ρ(T ) × L)/s, where l is the
length of the cable and s is its section. T0 is the nominal

temperature, R0 = R(T0). Besides the short-circuited phase
resistance modification due to the short-circuit loop with re-

sistance Rf , the three phase resistances Ra, Rb and Rc re-

spect the following equation:

R(T ) = R(T0) +
l

s
× (ρ(T )− ρ(T0)) (16)

where the copper resistivity is ρ(T ) = 17.24 × (1 + 4.2 ×
10−3 × (T − 20))× 10−6.

Thermal power dissipation

Ts = (Rth1 +Rth2)× Pd + Ta (17)

The stator temperature is obtained from the dissipated sta-

tor thermal power Pd, that depends on phase resistance Ra,

Rb and Rc, on the short-circuit intensity through Sa and Rf ,

and on phase and short-circuit currents. The equation can be

found on (Vinson et al., 2013).

4.3. Application: Permanent Magnet Synchronous Ma-

chine prognosis

A short-circuit scenario is simulated on the virtual prototype.

The resulting fault resistance and stator temperature can be

seen on Figures 6 and 7. The short-circuit resistance de-

creases progressively with the short-circuit, until 0Ω when

the short-circuit is direct. Meanwhile, the stator temperature

progressively increases with the degradation.

During the degradation progression, phase currents are ob-

served on the virtual prototype. This allows the diagnosis

of the stator and the PMSM thanks to the diagnosis algorithm

developed in (Vinson, Combacau, Prado, & Ribot, 2012) which

8



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

Figure 6. Evolution of the short-circuit resistance Rf during
an inter-turns short-circuit.

Figure 7. Evolution of the stator temperature Ts during an
inter-turns short-circuit.

uses a short-circuit indicator based on the phase currents. The

damage es is estimated thanks to the diagnosis algorithm, as
shown on the top left of Figure 8. The diagnosis module eval-

uates the health-state of the stator according to the damage

value: it is first nominal, the degraded, and then faulty (top-

right on Figure 8). The prognosis module is run every time

when a threshold is passed by the stator damage. It can pre-

dict the future values of the stator temperature Ts thanks to

the retroaction law described by 8 (bottom-left on Figure 8).

It can then predict the life duration L of the stator thanks to

the ageing law represented by Equation 7 (bottom-right on

Figure 8. Two predictions are realized with two different val-

ues of the parameter b (Equation 7), in order to represent un-
certainties on the ageing law. The real life duration can be

compared with the two predicted life duration.

5. CONCLUSION

In this paper a study about related work on existing ageing

models and prognosis methods was first proposed. It moti-

vated the idea of designing a generic ageing modeling frame-

work in order to represent every kind of known ageing law,

whatever the nature of available knowledge. The proposed

generic modeling framework contains all information to per-

form diagnosis and prognosis. Besides a diagnosis algorithm

presented in details in a previous paper (Vinson et al., 2013),

a prognosis algorithm based on this generic ageing model is

extended. It uses predictable parameters and damaging fac-

tors to estimate the future degradation and faults occurrences.
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Figure 8. Results obtained by the diagnosis and prognosis
algorithms on a short-circuit scenario.

An illustration is shown on Permanent Magnet Synchronous

Machines, which ageing is successfully modeled by the pro-

posed model. A virtual prototype is designed in order to ob-

tain ageing data, and is run with a realistic short-circuit sce-

nario. The end of life of the stator and the machine is pre-

dicted by the prognosis algorithm.

The developed modeling framework and prognosis algorithm

are intended to be applied to other critical equipment in aero-

nautics, such as hydraulic pumps or electromechanical actu-

ators. The efficiency of the method should be stated thanks

to real case studies. In order to adjust the proposed ageing

model with ageing and retroaction laws, it seems essential to

perform some degradation tests. The generic ageing model

we proposed is a common representation of ageing of any

equipment type. But the level of knowledge contained in the

model is directly characterized by the availability of sensors,

experience or physics-based models and may vary from one

component to another. The higher the level of knowledge

about ageing is, the more accurate the prognosis results. It be-

comes interesting to define and implement performance met-

rics for prognosis based on the level of knowledge contained

in out generic aging model in order to compare the results ob-

tained for the components and qualify the prognosis result at

the system level.
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