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ABSTRACT 

The problem of fatigue crack growth monitoring and residual 

lifetime prediction is faced by means of sequential Monte 

Carlo methods commonly defined as sequential importance 

sampling/resampling or particle filtering techniques. The 

algorithm purpose is the estimation of the fatigue crack 

evolution in metallic structures, considering uncertainties 

coming from phenomenological aspects and material 

properties affecting the process. These multiple uncertainties 

become a series of unknown parameters within the 

framework of the dynamic state-space model describing the 

crack propagation. These parameters, if correctly estimated 

within the particle filtering algorithm, will cover the 

uncertainties coming from the real environment, improving 

the prognostic performances. The standard particle filter 

formulation needs additional methods to augment the state 

vector and to correctly estimate the parameters. The 

prognostic system composed by the sequential Monte Carlo 

algorithm able to account for different uncertainties is tested 

through several crack growth simulations. The applicability 

of the method to real structures and the employment in 

presence of real environmental conditions (i.e. variable 

loading conditions) is also discussed at the end of the paper. 

1. INTRODUCTION 

Crack propagation is one of the most widespread phenomena 

affecting metallic structures. Engineering community 

dedicated a lot of effort into the comprehension of the 

fracture mechanism and crack propagation phenomena, 

especially when fatigue loads affect the cracked structure. 

The latter case is well known as the fatigue crack growth 

(FCG) or fatigue crack propagation problem and, intuitively, 

it causes the need of the time to failure and the residual useful 

life (RUL) of the cracked structure for maintenance and 

safety purposes. 

The most part of RUL estimation techniques based on 

fracture mechanics have been developed from the work of 

Paris & Erdogan (1963) describing the crack growth rate as a 

function of the stress intensity factor (SIF) range acting 

during a fatigue load cycle. In the last decades, many works 

have been dedicated to FCG dealing with multiple aspects. 

Nonetheless, in spite of these in-depth studies, the RUL 

predictions cannot overlook the statistical aspects of fatigue 

crack propagation. The variability affecting FCG was 

highlighted from Virkler, Hillberry, Goel (1978), when 68 

fatigue crack growth tests on Al2024-T3 specimens produced 

a large variability of the crack growth data. This scatter can 

increase exponentially dealing with real structures in real 

environments. As a matter of fact, there are different sources 

of uncertainty affecting the fatigue crack behavior: (i) the 

variability of the material properties, (ii) the load sequences, 

(iii) the environmental conditions and (iv) the intrinsic 

variability of the phenomenon, that is driven by nano-scale 

events not accounted for within the usual engineering models. 

In order to overcome this variability and to improve the time 

to failure and RUL predictions, several statistical methods 

have been developed. Statistical definition of FCG 

parameters is a very popular technique to address the crack 

growth variability, since the parameter values comes from 

fitting procedures like regressions, maximum likelihood 

estimations etc. (Cross, Makeev & Armanios 2007, Corbetta, 

Sbarufatti, Manes & Giglio, 2014). Other methods employ 

stochastic models of the crack, using both analytical solutions 

and Monte Carlo methods, (Ray & Patankar 1999, Scafetta, 

Ray & West 2006, Mattrand & Bourinet, 2011). 

As mentioned above, the difficulties increase dealing with 

variable loading conditions. Elber (1970, 1971) introduced 

the crack closure effect that it has been studied later in 

presence of variable amplitude loading conditions by 

Newman (1981). Fatigue crack propagation under variable or 
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random loading conditions is still an open issue nowadays. 

Apart from the Newman’s paper (1981), many other works 

dedicated to crack growth rate are available (Newman 2005, 

Willenborg, Engle & Wood, 1971) and more recent papers 

appeared highlighting new methods to describe the prediction 

of crack propagation under random load spectra (Newman, 

Irving, Lin & Le, 2006, Mattrand & Bourinet, 2011). 

Nowadays, the development of real-time Structural Health 

Monitoring (SHM) techniques paves the way to real-time 

prognostics of structures. From a structural reliability point 

of view, the final target of prognostics is the prediction of the 

structure RUL starting from the information provided by an 

SHM unit composed by localized or distributed sensor 

networks and diagnostic algorithms. The output information 

should be combined with advanced algorithms able to take 

into account the uncertainties coming from both the SHM 

unit and the uncertainties affecting the monitored process. 

Therefore, the estimation of the probability density function 

(pdf) of the residual lifetime becomes feasible. The two main 

approaches employed in prognostics are the data-driven 

approach and the model-based approach. The first uses large 

amount of data to train algorithms able to predict the future 

degradation trends based on the previous knowledge, the 

second takes advantage of physical or phenomenological 

models to predict the most probable damage evolution. Only 

the model-based approach is considered in this context, based 

on the large number of studies on FCG and available models. 

Considering the SHM-Prognostics framework, a Sequential 

Importance Resampling (SIR) algorithm is proposed in this 

paper to track the damage propagation and update the RUL 

estimation of a simple structure subjected to fatigue loads. 

The dynamic state-space (DSS) model of the system is 

proposed in an adaptive form, thanks to the adaptation of 

model parameters and random processes. These quantities 

will be estimated during the crack propagation thanks to 

dedicated techniques within the SIR algorithm. Similar 

algorithms have just been applied to the fatigue crack growth 

problem. Cadini, Zio & Avram (2009) have applied particle 

filter algorithm (in the form of Sequential Importance 

Sampling/Resampling – SIS/SIR) without the parameter 

estimation. Corbetta, Sbarufatti, Manes & Giglio proposed a 

SIS/SIR algorithm with stochastic DSS model (2013a) and 

updating of the model parameters through Markov chain 

Monte Carlo (MCMC) techniques (2013b). Chiachio, 

Chiachio, Saxena , Rus & Goebel (2013) proposed a more 

complicated prediction problem dealing with composite 

materials and combined state-parameter estimation within the 

DSS framework. The SIR algorithm proposed in this work 

have some novelties with respect to the cited works, making 

use of the concept of intra-specimen and inter-specimen 

variability introduced by Bourinet & Lemaire (2008) and 

explained in detail is section 2. The artificial dynamics (AD) 

just used by Daigle & Goebel (2011) and Chiachio et al. 

(2013), and the kernel smoothing (KS) techniques will 

                                                           
1 Supposing a relatively small number of cycles (ΔN→1). 

improve the knowledge of the DSS model parameters 

describing the crack evolution. These methods will try to 

cover the inter-specimen variability affecting different 

specimens of the same structure. The intra-specimen 

variability is covered by a dynamic noise variance within the 

SIR formulation, explained in detail in section 3.4. An 

additional novelty introduced by this work is the evaluation 

of the Residual Useful Life through the numerical solution of 

the stochastic integral proposed by Yang & Manning (1996) 

instead of the long-lasting step-by-step simulation of the 

crack growth. Unfortunately, this method works in presence 

of constant-amplitude fatigue loads only. The purpose of this 

algorithm is to try covering several sources of uncertainties 

that can appear on real structures subjected to crack 

propagation. Several virtual tests on crack propagation 

altered with respect to the theoretical crack growth curve will 

prove the validity of the method. 

The paper organizes as follows: section 2 briefly introduces 

the FCG equation and its intrinsic variability, focusing on the 

residual life prediction problem. Section 3 summarizes 

sequential Monte Carlo methods and Bayesian filtering 

estimation, describing the adopted techniques for combined 

state-parameter estimations and dynamic noise variance 

selection. Section 4 shows the application of the algorithm to 

a simulated crack propagation and the prognostic 

formulation. Section 5 is dedicated to the results of the 

algorithm in terms of parameter estimation and RUL 

prediction, comparing the artificial dynamics and the kernel 

smoothing techniques. Section 6 concludes the paper. 

2. PROBLEM STATEMENT: FATIGUE CRACK GROWTH 

MONITORING AND PREDICTION 

Several FCG models are able to describe the growth rate as a 

function of crack length and a series of model parameters. 

The most popular model is the Paris-Erdogan equation (Paris 

& Erdogan, 1963) describing the FCG rate per load-cycle 

using the SIF range affecting the crack tip, as defined in Eq. 

(1a), and two empirical parameters commonly defined as C 

and m, as visible in Eq. (1b). 

 𝛥𝐾(𝑥) = 𝐹(𝑥)𝛥𝑆√𝜋𝑥 (1a) 

 
𝑑𝑥

𝑑𝑁
= 𝐶[𝛥𝐾(𝑥)]𝑚 (1b) 

Where x is the current crack length, ∆S is the applied load 

range, F(x) is a crack shape function depending on the crack 

length and the structure geometry, and N is the general load 

cycle. If the load range has constant amplitude and constant 

frequency, the FCG rate domain can easily change from load 

cycle to time domain, and Eq. (1b) becomes a first-order 

ordinary differential equation. If the discrete-time domain is 

used to describe the crack evolution, Eq. (1b) changes into 

Eq. (2a)1, where the crack growth rate dx/dN follows the 



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

3 

Paris-Erdogan Eq. (1b) or any other FCG rate model (see for 

instance the NASGRO model, NASA J.S. Centre, 2002). 

Considering the RUL of the cracked component, the Paris-

Erdogan model allows the direct calculation of the remaining 

number of cycles by a direct integration of Eq. (1b) using the 

separation of variable method, Eq. (2b)2. 

 𝑥𝑘 = 𝑥𝑘−1 +
𝑑𝑥

𝑑𝑁
|

𝑥=𝑥𝑘−1

Δ𝑁 (2a) 

 𝑁𝑟 =
𝑥

𝑙𝑖𝑚

(1−
𝑚
2

)
− 𝑥0

(1−
𝑚
2

)

𝐶𝐹𝑚Δ𝑆𝑚𝜋
𝑚
2 (1 −

𝑚
2

)
 (2b) 

The term x0 indicates the starting crack length, xlim is the limit 

crack length governed by the fracture toughness and the 

safety requirements for the structure. Nr is the number of 

remaining load cycles needed to reach the length xlim starting 

from x0. All the other variables are the same as in Eqs. (1). 

The application of more complicated models makes 

unfeasible the direct integration of Eq. (1b), requiring 

numerical integration or Monte Carlo simulation to estimate 

the remaining cycles. Obviously, the deterministic definition 

of Nr cannot be employed in effective lifetime predictions or 

maintenance strategies, because of the large variability 

affecting the crack growth process. As a proof of the 

variability affecting the FCG process on real structures, 

Figure 1 shows some experimental results coming from 

fatigue crack growth tests on helicopter fuselage panels. The 

ordinate axes shows the crack length in millimeters as a 

function of the load cycles on the abscissa. As clearly visible, 

there is an high discrepancy between the theoretical curve 

(built with NASGRO model) and the experimental data. 

Therefore, a statistical approach is mandatory for an efficient 

residual lifetime prediction. The interested reader can refer to 

Corbetta et al. (2014) for further information about the 

mentioned experimental activity.  

 

Figure 1. Comparison between experimental data and 

theoretical crack growth curve built with NASGRO model. 

                                                           
2 Considering a constant shape function F(x) = F. 

2.1. Conceptual definition of fatigue crack growth 

variability 

According to the previous considerations on the scatter 

affecting FCG data, the Bourinet & Lemaire (2008) approach 

is proposed here with a little modification. The method can 

be applied with any kind of FCG propagation model that 

follows the general form dx/dN = g(x) (in load-cycle domain 

or time domain). 

The variability affecting crack propagation is split into two 

main contributions, each of them related to one or several 

sources of uncertainty, according to the Bourinet & Lemaire 

approach. Firstly, a crack evolution can differ from the 

theoretical one because of different values of material 

properties and/or empirical parameters, which cannot be 

described by a single value for all the structures built with the 

same material. It is easy to understand this concept giving 

thought to a large fleet of the same aircraft, or to all the 

metallic parts constituting a long bridge or an high-rise 

building. Even though the same material is used, 

uncertainties due to manufacturing processes and 

environmental uncertainties are always present in these kind 

of structures. Moreover, as just mentioned above, the crack 

propagation event follows a random behavior caused by 

several variability not considered in the common engineering 

models of the phenomenon. This random behavior produces 

discrepancies between the theoretical crack evolution and the 

expected one, and these discrepancies can appear in a small 

time-range. The two variability contributions are defined as 

inter-specimen variability and intra-specimen variability, 

respectively.  

2.1.1. Inter-specimen variability 

Usually, the inter-specimen variability is described within the 

FCG model by a randomization of the parameters, for 

instance C and m affecting the Paris-Erdogan model. This is 

the most common technique to produce a random FCG 

model, and the sequential information on the crack length 

updates the parameter pdfs by means of statistical tools. 

Corbetta et al. (2014) propose an Adaptive Markov chain 

Monte Carlo algorithm to update the parameter distributions 

during real crack propagation on portions of helicopter 

fuselage. On the other hand, a slightly different approach is 

proposed hereafter. Checking the discrete-form of crack 

evolution in Eq. (2a), it can be described as in Eq. (3). 

 𝑥𝑘 = 𝑥𝑘−1 + Δ𝑥𝑘−1 Δ𝑁 (3) 

Where ∆xk-1 is the result of the Paris-Erdogan model in this 

context. Actually, ∆x∙∆N describes the crack increment 

within few load cycles. The model used to evaluate the crack 

increment ∆x can be very complex and composed by a large 

quantity of empirical parameters and/or material properties; 

however, the result will be always a crack increment per load 
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cycle (or per time unit considering constant-amplitude loads). 

Now, consider that the monitoring of the crack and the 

subsequent RUL prediction are the main goal of the 

prognostic system. Thus, one might be not interested in the 

exact knowledge of the parameters describing the current 

crack propagation, as the main intent is to correctly monitor 

the damage and to improve the prognostic performances. 

Accordingly, the inter-specimen variability is described 

hereby a single mathematical constant called correction 

parameter ψ. It will be modulated according to the 

information related to the crack length during the crack 

propagation. The correction parameter ψ multiplies the crack 

increment ∆x to adjust the model prediction on the measures 

coming from a general diagnostic unit (Eq. (4a)). The 

proposed Paris-Erdogan formulation is highlighted in Eq. 

(4b). 

 𝑥𝑘 = 𝑥𝑘−1 + 𝜓𝑘−1Δ𝑥𝑘−1Δ𝑁 (4a) 

 𝑥𝑘 = 𝑥𝑘−1 + 𝜓𝑘−1𝐶(𝐹(𝑥)Δ𝑆√𝜋𝑥𝑘−1)
𝑚

Δ𝑁 (4b) 

The updating procedure will change the value of the 

correction parameter ψ instead of the two parameters C and 

m during the Bayesian filter operation. The correction 

parameter, will try to cover the inter-specimen variability 

affecting the crack propagation phenomenon. From a 

different point of view, it could be considered a drift of the 

process noise usually employed to generate the stochastic 

model. This drift should cover the bias between the expected 

crack evolution (driven by the deterministic parameters of the 

model) and the actual crack growth happening on the 

structure. 

2.1.2. Intra-specimen variability 

The intra-specimen variability can be represented by a 

random process altering the crack growth at each time step as 

just presented by Yang & Manning (1996). The FCG rate 

model is modified by a lognormal random noise Ω, Eq. (5a).  

The employment of a lognormal random process to describe 

Ω is due to the nature of the damage. In fact, cracks can only 

increase over time (or at least, they remain constant), thus the 

crack increment during a discrete time step cannot be 

negative. Others distributions are able to satisfy this 

requirement, however the lognormal distribution is the 

easiest way to introduce the correct variability affecting the 

crack growth process. This random noise is representative of 

all the possible uncertainties affecting the real environments 

with respect to the theoretical model describing the FCG 

phenomenon: variability of the actual state of stress near the 

crack, environmental conditions, different direction of the 

applied load with respect to the expected one, just to name a 

few of them. 

Equation (3) modifies according to Ω and it can be employed 

in a dynamic state-space model of the process, Eq. (5b). 

 
𝑑𝑥

𝑑𝑁
= Ω 𝐶[Δ𝐾(𝑥)]𝑚 (5a) 

 𝑥𝑘 = 𝑥𝑘−1 + 𝐶[Δ𝐾(𝑥𝑘−1)]𝑚𝜔𝑘−1Δ𝑁 (5b) 

Where the term ωk-1 in Eq. (5b) is a realization of the random 

process Ω. This variable represents the random noise of the 

process within the Bayesian filtering framework. Even in this 

case, the optimal value of the process noise is unknown at the 

beginning of the crack growth. The first moments of the 

random noise (for instance the mean and variance) should be 

properly tuned using previous experimental tests 

representative of the current condition of the system. 

However, the amount of uncertainty makes impossible a 

complete characterization of the random noise. Then, the 

mean and the variance associated to the random noise Ω will 

be estimated during the crack propagation according to the 

data coming from the observation equation, as described in 

section 3. 

2.1.3. Residual useful life prediction 

The integration of Paris-Erdogan model is feasible even if the 

model becomes a random process due to the presence of Ω. 

The lognormal random process introduced in Eq. (5a) is used 

to evaluate the probability density function of the RUL 

according to Eq. (2b). As introduced by Yang & Manning, 

the integration of dx/dN= Ω g(x) brings to the equivalence in 

Eq. (6). 

 ∫
1

𝑔(𝑥)
𝑑𝑥

𝑥𝑙𝑖𝑚

𝑥0

= ∫ Ω
𝑁𝑟

0

0

𝑑𝑁 (6) 

The term Nr
0 is the theoretical number of remaining load 

cycles calculated with the deterministic FCG rate model g(x). 

The RUL distribution could be evaluated by means of Monte 

Carlo sampling and the theory of stochastic processes, 

avoiding the step-by-step simulation of crack growth samples 

commonly implemented in standard SIS/SIR algorithms. As 

a matter of fact, the right-hand side of Eq. (6) can be 

approximated using the summation of n* = Nr
0/∆N samples 

coming from the process Ω multiplied by the discretization 

∆N, as in Eq. (7). 

 ∫ Ω
𝑁𝑟

0

0

𝑑𝑁 ≈ ∑ 𝜔𝑗

𝑛∗

𝑗=1
Δ𝑁 (7) 

Again, the term ωj is the j-th sample coming from the random 

process Ω. The repetition of the summation in Eq. (7) for a 

relatively large number of times produces an approximation 

of the probability density function of the RUL in agreement 

with the theoretical curve defined by the stochastic Paris-

Erdogan law in Eq. (5a). This simple approach is limited to 

the case of constant amplitude loading conditions, and it will 

be explained in detail in section 3 within the pseudo-code of 

the SIR algorithm (subsection 3.5). Thus, if variable loads are 

applied to the cracked components, the step-by-step 
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simulation of the crack should be adopted, as well as more 

complicated techniques to evaluate the stochastic integrals. 

3. SEQUENTIAL IMPORTANCE RESAMPLING, PARAMETER 

ESTIMATION AND ADAPTIVE NOISE VARIANCE 

Literature about sequential Monte Carlo sampling is vast at 

least as the literature on fatigue crack growth. Therefore, the 

section summarizes the main features of SIR algorithms with 

a focus on the crack monitoring and prediction problem only. 

3.1. Monitoring and Prediction from a Bayesian filtering 

perspective 

Equations (3-5) presented in section 2 can be generalized 

with the common dynamic state-space model formulation 

composed by the state evolution, Eq. (8a) (following the 

hypothesis of the hidden Markov models of order one) and 

the observation equation, that is Eq. (8b) (linking the actual 

state of the system with the information provided by a 

measurement system). 

 𝑥𝑘 = 𝑓(𝑥𝑘−1, 𝜽, 𝜔𝑘−1) (8a) 

 𝑧𝑘 = ℎ(𝑥𝑘 , 𝜂𝑘) (8b) 

The vector θ contains empirical parameters supposed to be 

constant during the system evolution. Variables zk represents 

the measure related to the state xk at the general k-th step, and 

ηk is the random noise affecting the measurement system. The 

objective within the formulation of Bayesian filters is the 

evaluation of the posterior probability density function of the 

state x given a series of noisy observations z at a general time-

step k; it means the calculation of p(xk|z1:k). From a 

mathematical viewpoint, the problem statement is described 

by the Chapman-Kolmogorov equation, Eq. (9a) and the 

subsequent updating via Bayes’ rule, Eq. (9b). 

𝑝(𝑥𝑘|𝑧1:𝑘−1) = ∫ 𝑝(𝑥𝑘|𝑥𝑘−1)𝑝(𝑥𝑘−1|𝑧1:𝑘−1)𝑑𝑥𝑘−1 (9a) 

𝑝(𝑥𝑘|𝑧1:𝑘) =
𝑝(𝑥𝑘|𝑧1:𝑘−1)𝑝(𝑧𝑘|𝑥𝑘)

𝑝(𝑧𝑘|𝑧1:𝑘−1)
 (9b) 

The analytical solution of the posterior pdf is available if the 

system is linear and the processes are described by Gaussian 

distributions. This is not the case for crack propagation 

phenomena. The SIR algorithm allows approximating the 

posterior distribution p(xk|z1:k) by a series of samples 

representative of the system state, usually called particles by 

the widespread definition of the algorithm particle filter. 

Each particle has an associated weight w depending on the 

sequential information coming from the measurement 

system, diagnostic unit etc. The approximation of the 

posterior pdf is expressed in Eq. (10). 

 𝑝(𝑥𝑘|𝑧1:𝑘) ≈ ∑ 𝑤𝑛,𝑘
(𝑖)

𝛿(𝑥𝑘 − 𝑥𝑘
(𝑖)

)
𝑁𝑆

𝑖=1
 (10) 

Where NS is the total number of particles, xk
(i) is the value of 

the i-th particle at the general k-th time step, wn,k
(i) is the 

normalized weight associated to that particle and δ is the 

Dirac delta-function. The weight formulation employed in 

the SIR algorithm agrees with the bootstrap approximation, 

in which the transition density from xk-1 to xk is used as 

proposal distribution for the sample generation (Haug, 2005). 

As a consequence, the weights depend on the value at the 

previous step k-1 and on the likelihood of the measure given 

the particle value, as shown in Eq. (11). 

 𝑤𝑘
(𝑖)

= 𝑤𝑘−1
(𝑖)

𝑝(𝑧𝑘|𝑥𝑘
(𝑖)

) (11) 

Then the weights are normalized such that Σwk
(i)=1. 

Arulampalam, Maskell, Gordon & Clapp (2002) and Doucet, 

Godsill & Andrieu (2000) produced a detailed description of 

the algorithm for the interested reader.  

In case of combined state-parameter estimation, the vector x 

is augmented such that the extended system state is 

represented by the damage state and the parameter variables 

yk = [xk, θ]. Particles associated to the state x(i) and the 

parameter sample θ(i), together with the related weight w(i), 

will be representative of the combined state-parameter 

estimation or extended system state, Eq. (12a). It has to be 

remarked that the subscript k associated to θ in Eq. (12a) 

indicates the value of θ at the general k-th step, and it does 

not mean that θ is time-varying. The weight updating follows 

the same procedure of the standard particle filtering, 

nevertheless the likelihood of the measure is affected by the 

value of θ(i) used to propagate the particle (Eq. (12b)). 

{𝒚𝑘
(𝑖)

= (𝑥𝑘
(𝑖)

, 𝜽𝑘
(𝑖)

), 𝑤𝑘
(𝑖)

}
𝑖=1

𝑁𝑆
 (12a) 

𝑤𝑘
(𝑖)

∝ 𝑤𝑘−1
(𝑖)

𝑝(𝑧𝑘|𝒚𝑘
(𝑖)

) = 𝑤𝑘−1
(𝑖)

𝑝(𝑧𝑘|𝑥𝑘
(𝑖)

, 𝜽𝑘
(𝑖)

) (12b) 

The combined state-parameter posterior pdf is expressed 

thanks to Bayes’ rule (13) as highlighted by Liu & West 

(2001). 

𝑝(𝒚𝑘|𝑧1:𝑘) ∝ 𝑝(𝑧𝑘|𝒚𝑘)𝑝(𝑥𝑘|𝜽, 𝑧1:𝑘−1)𝑝(𝜽|𝑧1:𝑘−1) (13) 

As clearly visible by Eq. (13), the knowledge of the 

parameter pdf given the series of observations z is 

fundamental to approximate the posterior pdf of the 

augmented state vector y correctly. Thus, the proposal 

distribution from which to draw the samples of the parameter 

vector has to be considered in the SIR algorithm. The next 

sub-section briefly discusses the two main approaches used 

in this work: the artificial dynamics and the kernel smoothing 

techniques (Liu & West, 2001). Both these techniques will be 

used during the algorithm to update the correction parameter 

ψ shown in section 2. They have been selected because of 

their simplicity, while other more advanced techniques are 

available in literature as summarized by Kantas, Doucet, 

Singh & Maciejowski (2009). 

3.2. Artificial dynamics technique 

The main drawback in the insertion of constant parameter in 

the state vector is that the filtering method has to identify two 
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different quantities: one is time-varying, and the other one is 

constant. The first attempt is to select a DSS equation for the 

constant parameter on the form θk = θk-1. However, it leads to 

the well-known problem of sampling impoverishment or 

sample degeneracy. The sample degeneracy can be overcome 

by the addition of a small change in the sample values at each 

step of the algorithm. This small change is a random noise 

added to each particle, as presented in Eq. (14). 

 𝜽𝑘
(𝑖)

= 𝜽𝑘−1
(𝑖)

+ 𝝃𝑘
(𝑖)

 (14) 

where ξk
(i) is a random value with zero-mean and a variance 

that decreases in time. This is the idea suggested by Gordon, 

Salmond & Smith (1993) and recalled by Liu & West (2001). 

Actually, the statistics of ξ does not depend on the observed 

data, then p(θ|z1:k-1) is negligible in the posterior formulation 

of the state distribution. 

Noticeably, the simplicity of the method introduces a non-

negligible drawback that is the loss of information between 

the time steps. It happens because of the introduction of the 

mentioned artificial changing in the parameter values when 

they are fixed. Moreover, two questions have to be solved to 

maximize the performances of the algorithm: the selection of 

the initial covariance matrix of ξ, σξ,0
2, and the decreasing 

function depending on the discrete time σξ
2= σξ,0

2f(k), in order 

to reach the convergence in a relatively small number of 

iterations. 

3.3. Kernel smoothing technique 

Kernel smoothing method was developed by West (1993b) 

and it is based on the mixture modelling approach. It allows 

approximating the parameter posterior distribution by a 

Gaussian mixture using the weights associated to the 

particles, as shown in Eq. (15). 

 𝑝(𝜽|𝑧1:𝑘) ≈ ∑ 𝑤𝑘
(𝑖)

𝑁(𝜽|𝜇𝜽,𝑘
(𝑖)

, 𝜻𝑘
2Σ𝜽,𝑘)

𝑁𝑆

𝑖=1
 (15) 

where μθ,k
(i) is the kernel location for the i-th particle of the 

parameter θ, ζk is the smoothing parameter and Σθ,k is the 

Monte Carlo covariance matrix of θ. Intuitively, N(∙|m,S) 

indicates a probability that follows a normal distribution with 

mean m and covariance matrix S. Effective kernel locations 

μθ,k are specified according to the shrinkage rule proposed by 

West (1993b) depending on the smoothing parameters ζk and 

another parameter b=√(1- ζk
2). Equation (16) defines the 

kernel location for each particle. 

 𝜇𝜽,𝑘
(𝑖)

= 𝒃𝜽𝑘−1
(𝑖)

+ (1 − 𝒃)𝐸(𝜽𝑘−1) (16) 

The term E(θk-1) is the mean of the parameter vector θ at the 

k-1 th time step. Even though this methodology allows an 

effective and adaptive sampling technique, the function ζk = 

ζ(k) must be properly selected in order to reach the 

convergence of the algorithm. It should be a small decreasing 

function of the time as it happens for the variance introduced 

in the artificial dynamics method. Nevertheless, the loss of 

information is limited with respect to the previous approach. 

3.4. Dynamic noise variance 

In the previous sub-section, the problem of constant 

parameter estimation is faced presenting two different 

techniques covering the inter-specimen variability affecting 

the damage propagation phenomenon that can appear on real 

structures. Now the focus is on the intra-specimen variability. 

In this kind of nonlinear problems with non-Gaussian pdfs, 

the selection of too small noise features makes the algorithm 

unable to track the state variations properly. If this happens, 

the wrong state estimation will produce larger errors in the 

estimation of the RUL. On the other hand, too large noise 

features produce unreasonable enlargement of the posterior 

distributions, then useless information. Moreover, a too large 

noise variance alters the particle evolutions producing 

implausible propagation of the crack and falling into 

unexpected RUL distribution, too. An adaptive noise is 

proposed hereafter, trying to avoid the tuning of the noise Ω 

affecting the process. 

A suitable process noise for the crack growth problem is the 

lognormal random process already introduced in section 2. 

According to the theory of lognormal distributions, Ω can be 

described as an exponential function of a normal random 

process Λ, with mean and variance precisely selected, Eqs. 

(17a, b). In order to produce an unbiased estimation of the 

mean crack growth curve, the mean and variance of the 

normal random process Λ must be related according to the 

formulation in Eq. (17c), such that the mean of the random 

process approaches one (Eq. (17d)). 

 Ω = exp Λ (17a) 

 λ ~𝑁(𝜇Λ, 𝜎Λ
2) (17b) 

 𝜇Λ = −
𝜎Λ

2

2
 (17c) 

 𝐸(Ω) = exp {𝜇Λ +
𝜎Λ

2

2
} = 1 (17d) 

In this way, the average of the random process x (the 

evolution equation of the DSS model) will be centered on the 

deterministic evolution of x. The i-th sample of the process 

noise ω can be easily drawn according to Eq. (18). 

 𝜔(𝑖)~ exp{𝜆(𝑖)} = exp{𝜇Λ + 𝜎Λ 𝑟} (18) 

Where r indicates a random value drawn from the 

standardized normal distribution; thus λ(i) is a single 

realization of the random process Λ. Despite the link between 

the mean and the variance of the random process, the 

selection of σΛ
2 remains heuristic in the common practice. 

Then, a non-constant variance tuned on the scatter of the 

measures could improve the performance of the algorithm. 
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According to this concept, the simulations presented in 

section 5 make use of two methods to adjust the noise 

variance. First, the variance of the process Λ is assumed equal 

to the variance associated to the observations, which is a 

function of the estimated state at the previous time-step, as 

expressed in Eq. (19). 

 𝜎Λ𝑘+1

2 = 𝜎𝑧𝑘
2 (𝑥𝑘) (19) 

This is a very simple approach useful for systems where the 

variance of the process or the variance of the measurement 

system can increase over time, like in the structural 

degradation processes. The other technique makes use of the 

formulation of Xu and Li (2005) introducing the similarity 

parameter between the observation and the estimated state, 

defined in Eq. (20). The similarity parameter is proportional 

to the distance between E(xk) and the observation zk in multi-

dimensional or one-dimensional spaces (as in this case). The 

term V(xk) indicates the Monte Carlo variance of the state at 

time step k. 

 𝜑𝑘 = exp {−
(𝑧𝑘 − 𝐸(𝑥𝑘))

2

2𝑉(𝑥𝑘)
} (20) 

The new noise variance is computed according to Eq. (21) 

through the similarity parameter φk. 

𝜎Λ𝑘+1

2 = max (min (σΛ0
2√

1

𝜑𝑘

, 𝜎Λ,𝑚𝑎𝑥
2 ) , 𝜎Λ,𝑚𝑖𝑛

2 ) (21) 

Actually, the variance selection is replaced by the tuning of 

three parameters, so it is not completely avoided. They are 

the constant σΛ,0
2, the maximum and minimum allowable 

variances, σΛ,max
2 and σΛ,min

2. However, the selection of these 

quantities could be simpler than the selection of the optimal 

variance in some cases. Both the formulations in Eq. (19) and 

Eq. (21) will be employed in the SIR algorithm. 

3.5. Algorithm operation 

Sub-sections 3.1-3.4 define the equations adopted in the SIR 

algorithm, highlighting the artificial dynamics and kernel 

smoothing techniques to estimate constant model parameters 

(covering the inter-specimen variability), and an adaptation 

of the process noise variance (accounting for the intra-

specimen variability). The following points summarize the 

algorithm operation, while Table 1 explains the variances 

involved in the algorithm. 

1. Initialize the algorithm: 

𝑧0~𝑝 (𝑥0
𝑟 , 𝜎𝑧0

2 (𝑥0
𝑟)) 

∀ 𝑖 =  1, … , 𝑁𝑆 

𝜽0
(𝑖)

 ~𝑝(𝜽0, 𝜎𝝃0

2 ) 

𝑥0
(𝑖)

~𝑝(𝑥0|[𝑧0 𝜽0
(𝑖)

], 𝜎𝑥0
2 ) 

𝑤0
(𝑖)

= 1
𝑁𝑆

⁄  

2. Perform the transition: 

Update useful parameters 

𝜎𝝃𝑘

2 = 𝜎𝝃0

2 𝑓(𝑘)   for artificial dynamics, or 

𝜻𝑘 = 𝜻0𝑓(𝑘)   for kernel smoothing 

𝜎Λ𝑘

2 = 𝑓 (𝜎𝑧𝑘
2 (𝑥𝑘

𝑟))  according to (19), or 

𝜎Λ𝑘

2 = 𝑓(𝜑𝑘 , 𝜎Λ,0
2 , 𝜎Λ,𝑚𝑎𝑥

2 , 𝜎Λ,𝑚𝑖𝑛
2 ) according to (21) 

∀ 𝑖 =  1, … , 𝑁𝑆 

𝜽𝑘
(𝑖)

~𝑝(𝜽𝑘|𝜽𝑘−1
(𝑖)

, 𝜎𝝃𝑘

2 ) for artificial dynamics, or 

𝜽𝒌
(𝒊)

~p(𝜽𝑘|𝜇𝜽.𝑘
(𝑖)

, 𝜻𝑘
2Σ𝜽,𝑘−1) for kernel smoothing 

𝑥𝑘
(𝑖)

~𝑝(𝑥𝑘|[𝑥𝑘−1
(𝑖)

 𝜽𝑘
(𝑖)

], 𝜎𝑥𝑘−1
2 ) 

Draw 

𝑧𝑘 using a simulated measurement system 

3. Evaluate the new weights 

𝑤𝑘
(𝑖)

∝ 𝑤𝑛,𝑘−1
(𝑖)

𝑝(𝑧𝑘|𝒚𝑘
(𝑖)

= [𝑥𝑘
(𝑖)

 𝜽𝑘
(𝑖)

]) 

𝑤𝑛,𝑘
(𝑖)

=
𝑤𝑘

(𝑖)

∑ 𝑤𝑘
(𝑖)

𝑖

⁄  

4. Evaluate the posterior pdf 

𝑝(𝒚𝑘|𝑧1:𝑘) = ∑ 𝑤𝑛,𝑘
(𝑖)

𝛿(𝒚𝑘 − 𝒚𝑘
(𝑖)

)
𝑖

 

If the kernel smoothing is adopted, the posterior pdf of 

parameters becomes: 

𝑝(𝜽|𝑧1:𝑘) = ∑ 𝑤𝑛,𝑘
(𝑖)

𝑁(𝜽|𝜇𝜽,𝑘
(𝑖)

, 𝜻𝑘
2Σ𝜽,𝑘)

𝑖
 

5. Evaluate the Residual useful life up to the limit state xlim. 

∀ 𝑖 =  1, … , 𝑁𝑆 

- Estimate the theoretical number of remaining load cycles 

using Eq. (2b) 

𝑁𝑟
(𝑖)

= 𝑁𝑟(𝑥𝑙𝑖𝑚 , 𝑥0 = 𝑥𝑘
(𝑖)

, 𝜽𝑘
(𝑖)

) 

- Alter the estimation of the remaining load cycles using the 

integral of the random process Ω in (7): 

𝑁𝑟
(𝑖)

= ∫ Ω
𝑁𝑟

(𝑖)

0

𝑑𝑁 = ∑ 𝜔𝑗

𝑛∗=
𝑁𝑟

(𝑖)

Δ𝑁

𝑗=1
Δ𝑁 

- Generate the posterior pdf of the remaining load cycles 

𝑝(𝑁𝑟|𝑧1:𝑘) = ∑ 𝑤𝑛,𝑘
(𝑖)

𝛿(𝑁𝑟 − 𝑁𝑟
(𝑖)

)
𝑖

 

6. Resample the particles according to whatever resampling 

procedure: for instance the systematic resampling 

scheme (Arulampalam et al. 2002). 

∀ 𝑗 =  1, … , 𝑁𝑆 Assign: 𝑦𝑘
(𝑗)

= 𝑦𝑘
(𝑖)

 with probability 𝑤𝑛,𝑘
(𝑖)

 

7. Repeat the steps 2-6 for each k-th time step. 
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4. PROGNOSIS OF THE FCG PHENOMENON 

This section shows the SIR algorithm of section 3 applied to 

several simulated crack propagations. The key parameters of 

the algorithm are set according to the problem and the main 

features of the simulation are described as well. 

4.1. Target crack growth 

Target crack propagations are simulated according to Eq. (22) 

to prove the validity of the method. In this sub-section, the 

term a indicates the target crack, despite of the term x that 

indicates the crack samples drawn by the SIR algorithm. 

Table 2 shows the values of constants and parameters 

employed in the simulation. 

 𝑎𝑘 = 𝑎𝑘−1 + 𝜓0 𝐶(𝐹Δ𝑆√𝜋𝑎𝑘−1)
𝑚

𝜔𝑘−1Δ𝑁 (22) 

The correction parameter ψ0 modifies the theoretical crack 

propagation, and it constitutes the only parameter that has to 

be estimated thorough the SIR algorithm. It means that the 

vector θ describing the parameters of the model collapse to a 

single scalar quantity, ψ. Consequently, the vector of random 

processes ξ becomes scalar, too. Roughly speaking, a 

different correction parameter in the simulated crack 

increases or reduces the theoretical crack increment 

introduced by the Paris-Erdogan model. Several simulations 

are performed using different correction parameters. Figure 2 

shows an example of crack propagation simulated according 

to the characteristics in Table 2 and in Eq. (22). The target 

crack length a altered by a normal random noise (driven by 

ση
2) constitutes the observation z provided to the SIR 

algorithm, visible in Eq. (23a). 

The variance of the normal random noise is a function of the 

crack length itself multiplied by a constant α on the order of 

1E-3 as presented in Eq. (23b). This simulated measurement 

system is adopted in both the simulations with AD and KS 

approach. 

 
 𝑧𝑘 = ℎ(𝑎𝑘 , 𝜂𝑘) = 𝑎𝑘 + 𝑁(0, 𝜎𝜂𝑘

2 ) (23a) 

 𝜎𝜂𝑘
2 = 𝛼𝐸(𝑎𝑘)2 (23b) 

In this case, the variance of the random process ση,k
2 coincides 

to the variance of the measurement system given the Eq. 

(23a). As a consequence, σz,k
2=ση,k

2. 

4.2. SIR algorithm with artificial dynamics 

The monitoring-prediction problem of the FCG can be 

described combining the equations and ideas described in the 

previous sections. Equations (24a), (24b) and (24c) constitute 

the core of the SIR algorithm with the AD technique for the 

estimation of the model parameters. 

𝑥𝑘
(𝑖)

= 𝑥𝑘−1
(𝑖)

+ 𝜓𝑘−1
(𝑖)

𝐶 (𝐹Δ𝑆√𝜋𝑥𝑘−1
(𝑖)

)

𝑚

𝜔𝑘−1
(𝑖)

Δ𝑁 (24a) 

log 𝜓𝑘
(𝑖)

= log 𝜓𝑘−1
(𝑖)

+ 𝜉𝑘
(𝑖)

 (24b) 

𝑧𝑘 = 𝑎𝑘 + 𝜂𝑘 (24c) 

The superscript (i) indicates the i-th particle of the algorithm. 

Moreover, since the crack can only increase over time, the 

parameter ψ should be log-normally distributed so that the 

values cannot be negative. Therefore, the logarithmic 

transformation allows computing the artificial dynamics 

method by means of a normally distributed noise ξ. Equations 

(25) show the random processes used during the filtering 

procedure. The random process affecting the measures is the 

same just described in the Eqs. (23). 

𝜔𝑘 = exp{𝜆𝑘}; 𝜆𝑘~𝑁 (𝜇Λ𝑘
= −

𝜎𝜂𝑘
2

2
, 𝜎Λ𝑘

2 =  𝜎𝜂𝑘
2 ) (25a) 

𝜉𝑘~𝑁 (0, 𝜎𝜉𝑘

2 = 𝜎𝜉0

2 𝑓(𝑘)) (25b) 

𝜂𝑘~𝑁(0, 𝜎𝜂𝑘
2 = 𝛼𝐸(𝑎)𝑘

2
) (25c) 

 

Table 1. Variances used to develop the SIR algorithm. 

 

Variance Description 

σz,k
2(xk

r) 
Variance associated to the observations as a 

function of the real state xk
r at the k-th step 

σξ,k
2 

Variance associated to the parameter samples 
for the AD algorithm at the k-th step 

σx,k
2 

Variance associated to the state x coming from 

the state evolution equation at the k-th step 

ζk 
Smoothing parameter for KS algorithm a the 

general k-th step 

σΛ,0
2 Constant value associated to the noise variance 

σΛ,max
2 

Maximum allowable variance of the random 
noise Λ 

σΛ,min
2 

Minimum allowable variance of the random 

noise Λ 

Σθ,k Monte Carlo variance of θ at the k-th step 

 

Table 2. Features of the crack simulation. 

 

Parameter Description Value 

F(x) Crack shape function [-] 1.2 

ΔS 
Applied fatigue load 

[MPa] 
30 

C 
Empirical constant 

[mm/cycle · 1/MPa√mm] 
2.382e-12 

m Empirical constant [-] 3.2 

ψ0 Correction parameter [-] 1.25 

ω Random noise ~logN(1,exp{2}-1) 

a0 
Starting crack length  

[mm] 
5 

alim 
Critical crack length 

[mm] 
100 

ΔN 
load cycle increment per 

time-step [cycles] 
100 
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Equation (25a) shows the variance of the ancillary quantity Λ 

(used to define the random process ωk) as presented in Eq. 

(19). The artificial dynamics for the parameter estimation is 

generated using a normal random noise as in Eq. (25b) with 

decreasing variance defined in section 4.4. 

4.3. SIR algorithm with kernel smoothing 

Similarly to the formulation of the sub-section 4.2, Eq. (26) 

shows the DSS model of the algorithm using the KS approach 

for the parameter estimation. 

𝑥𝑘
(𝑖)

= 𝑥𝑘−1
(𝑖)

+ 𝜓𝑘−1
(𝑖)

𝐶 (𝐹Δ𝑆√𝜋𝑥𝑘−1
(𝑖)

)

𝑚

𝜔𝑘−1
(𝑖)

Δ𝑁 (26a) 

log 𝜓𝑘
(𝑖)

= 𝜇log 𝜓,𝑘
(𝑖)

+ 𝜁𝑘√σlog 𝜓,𝑘−1
2 𝑁(0,1) (26b) 

𝑧𝑘 = 𝑎𝑘 + 𝜂𝑘 (26c) 

σlogψ,k-1
2 is the estimated variance of log ψ at the previous 

time-step. The term μψ
k is the kernel location at step k and it 

is represented hereafter in scalar form (27). 

 𝜇log 𝜓,𝑘
(𝑖)

= 𝑏 log 𝜓𝑘
(𝑖)

+ (1 − 𝑏)𝐸(log 𝜓𝑘) (27) 

Where b=√(1- ζk
2). All the other quantities follow the 

definitions of the previous sections. The random processes 

defining the noises are the following: the realizations of the 

state noise Ω follow Eq. (25a). The definition of σΛ
2 is driven 

by the variance of the measurement system or by the 

similarity parameter of Xu and Li defined in (21), as in the 

case of artificial dynamics. The value of the smoothing 

parameter is presented in section 4.4. 

4.4. On the influence of initial variances 

As reminded in section 3, the artificial dynamics approach to 

estimate the model parameters needs a starting value for the 

variance used to draw the samples, which is σξ,0
2. Even the 

kernel smoothing approach requires the selection of the initial 

variance, but it is less important than the values employed in 

the AD algorithm. Actually, only the first samples of the 

parameters log ψ are drawn using the starting variance. 

 
Figure 2. Example of target crack growth according to (22) 

and Table 2. 

The Monte Carlo variance σlogψ
2 of the previous time step and 

the smoothing parameter ζ govern the current sampling step. 

However, a wrong initial variance of the parameter pdf can 

affect the overall performance of the algorithm even using the 

KS approach. Besides, prognostic system requires the 

decreasing function f(k) to update σξ,k
2 and ζk, respectively. 

The values presented afterwards have been preliminary 

selected following a trial & error procedure. These values 

must not be regarded as the best in absolute terms; 

nevertheless, they are associated to fairly good performances 

of the algorithm. A sensitivity analysis of SIR performances 

with respect to initialization values is matter of future 

research by the authors. 

The quantities presented here represent reasonable values 

according to the other parameter values, the variability 

associated to the observations and the magnitude of the 

observed state x. As declared above, they cannot be 

considered optimal, nor suboptimal variances for the studied 

process. Equation (28a) shows the starting values employed 

for the parameter noise variance with both the AD and KS 

technique, while Eq. (28b) shows the decreasing variance for 

the artificial dynamics. Regarding the KS approach, the 

initial value and the sub-sequent values of the smoothing 

parameters are defined in (28c-d). 

 𝜎𝜉,0
2 = 0.1 (28a) 

 𝜎𝜉,𝑘
2 =

𝜎ξ,0
2

𝑘
 (28b) 

 𝜁0 = 1 (28c) 

 𝜁𝑘 =
1

√𝑘
 (28d) 

The starting variances of the random noise ω conditioning the 

state evolution is selected with the same trial & error 

approach. Nevertheless, if the method based on Eq. (19) is 

adopted, the tuning of the initial variance is not required. As 

a matter of fact, the variance σΛ
2 is associated to the 

observation variance from the first measure. The approach 

proposed by Xu & Li requires the selection of three quantities 

instead: σΛ,0
2, σΛ,min

2 and σΛ,max
2. The magnitudes used in the 

simulations are expressed in Eq. (29) and can be considered 

reasonable values for the studied damage propagation 

process. 

 𝜎Λ,0
2 = 1  (29a) 

 𝜎Λ,𝑚𝑎𝑥
2 = 1.5 (29b) 

 𝜎Λ,𝑚𝑖𝑛
2 = 0.2 (29c) 

These values are used for both the AD and the KS algorithms. 

It has to be noticed that the term σΛ,0
2 is not the actual variance 

associated to the random noise, because it has multiplied by 

√(1/φ), as presented in (21). 



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

10 

5. RESULTS 

This section contains the main results of the algorithm. The 

capability of the developed prognostic unit to assess the 

residual lifetime of the system is highlighted in terms of 

model parameter estimation and RUL pdf. The overall 

behavior of the algorithm is established using both the AD 

and the KS technique. The crack length monitoring is 

simulated up to 150000 load cycles, which corresponds to a 

crack increment of around 7 mm: from 5 mm to 12 mm. The 

number of employed particles is 5000, the ∆N is set to 100 

load cycles, and a measure of the crack length z becomes 

available every ∆N. During these 150000 load cycles, the 

algorithms try to estimate the most probable crack length 

(state of the system), the correction parameter ψ, and the 

remaining number of cycles before the critical crack length 

limit (here arbitrary set to 100 mm). 

5.1. Monitoring and prediction of FCG  

The estimation of the crack length is the easiest goal because 

of the construction of the algorithm itself. Almost every 

estimation of the state contains the actual state, and the results 

are comparable for both the KS and the AD. The results are 

satisfactory and do not constitute the nodal point of the 

proposed algorithm. Then, the following parts will focus on 

the estimation capabilities in terms of correction parameter 

and RUL probability density functions. 

Figures 3 and 4 shows the results of the algorithm using the 

artificial dynamics approach to estimate the parameter ψ and 

the RUL, respectively. The simulations involve a small crack 

increment (from 5 to 12 millimeters) with respect to the 

critical crack length (100 mm), and the algorithm uses many 

measures to achieve acceptable results of the parameter ψ 

(expressed in Figure 3 in its logarithmic form), then adjusting 

the RUL prediction (Figure 4). 

However, the crack increment ∆x is very small in the first part 

of the crack propagation so that the discrimination among 

good and wrong values of the correction parameter is 

difficult. 

 
Figure 3. Correction parameter (log ψ) estimation using the 

SIR algorithm with artificial dynamics. 

 

Above all, the convergence velocity depends on the scatter 

affecting the measures. Hence, less frequent measures 

provided with larger ∆N could produce the same results 

because the difference between two distant crack lengths 

makes easier the identification of good and bad parameter 

values. 

The results of the previous figures have been achieved using 

the variance updating in (19), in which the variance of the 

observation equation governs the variance of the process 

noise σΛ
2. The implementation of the similarity parameter to 

drive the variance σΛ
2 produces comparable results. 

Figure 5 and 6 show the same graphs using a SIR algorithm 

with the kernel smoothing method. As expected, the 

smoothness of these results is higher with respect to the 

artificial dynamics case where, actually, the smoothing is 

missing. The advantages of the kernel smoothing technique is 

clear looking at the results of the whole simulation. The KS 

algorithm produces more stable results in terms of parameter 

estimation and above all RUL prediction with respect to the 

artificial dynamics method. 

The results of the kernel smoothing algorithm relate to the 

adaptive noise variance in (21), using the similarity parameter 

proposed by Xu and Li. It is important to underline that the 

first approach using the same variance of the observation 

equation does not work in this case. This can be related to the 

measure variance which is too small with respect to the one 

required by the algorithm. Figure 7 shows the estimation of 

the correction parameter using the kernel smoothing 

approach with the adaptive variance of the process noise 

according to (19). 

It obviously produces a wrong RUL prediction. The problem 

does not appear in the artificial dynamics case, where the 

artificial noise added to the particles is independent from 

whatever previous estimation. This leads to an higher scatter 

of the particles with respect to the kernel smoothing case.  

Therefore, a small variance of ω does not decrease the 

performance in a marked way. 

 
Figure 4. Residual useful life estimation using the SIR 

algorithm with artificial dynamics. 
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The approach of Xu and Li based on the similarity between 

the state estimation and the observations seems better as it 

works with both the algorithms. However, the tuning of 

σΛ,max
2, σΛ,min

2 and above all σΛ,0
2 is solved here with a trial 

& error procedure. One more question has to be investigated: 

the capability of the algorithm with one adaptive parameter 

only (ψ), to predict the RUL of a simulated crack built with a 

different couple of parameters C and m instead of a different 

value of ψ only. Then, a fictitious crack growth is simulated 

using (C; m) = (2.39e-11; 2.9) instead of the values presented 

in Table 2. In this case, the results are compared in terms of 

RUL distributions only because the correction parameter ψ, 

assumes a value which is not comparable with a target. Figure 

9 and 10 show the RUL prediction of the latter case for the 

artificial dynamics and the kernel smoothing algorithm, 

respectively. Even in this case, the variance of the random 

process is set equal to the variance of the observations for the 

AD and the similarity parameter has been employed for the 

KS approach, respectively. However, the initial variance of 

the correction parameter, defined as σξ,0
2, has to be properly 

tuned and differs from the case where a different ψ0 drives 

the target crack growth. As visible in the comparison between 

the figures 4-8 and 6-9, the results remain good. Of course, 

the validity of the results is limited to the range of crack 

lengths adopted in these simulations. 

 
Figure 5. Estimation of the correction parameter (log ψ) 

using the kernel smoothing algorithm. 

 
Figure 6. Estimation of the RUL using the kernel smoothing 

algorithm. 

The performances outside this range must be investigated. 

The AD algorithm produces worse results with respect to the 

previous case, while the kernel smoothing converges to a 

slightly biased expected value. This small bias does not 

appear when the target crack is built with a different 

parameter ψ. Nonetheless, the estimations remain acceptable. 

All the analyses and results presented above can be 

considered a preliminary study of the matter. Of course, they 

do not have the intent to quantify the errors occurring during 

the filtering procedure performed by the SIR algorithm. They 

want to investigate the effectiveness of the proposed methods 

and to analyze the performances as a tradeoff between 

different approaches. 

6. CONCLUSION 

A prognostic unit for FCG grounding on sequential Monte 

Carlo algorithms has been developed in this work. The kernel 

smoothing technique introduces more stable parameter 

estimation and RUL prediction. Its disadvantage is the higher 

computational effort with respect to the artificial dynamics 

algorithm. The estimation of the remaining number of cycles 

Nr using the stochastic integral proposed by Yang & Manning 

(1996) drastically reduces the computational effort required 

by common SIR algorithms for FCG prediction. Reporting on 

the adaptive variance of the process noise, the simple method 

that links the variance of the random process with the 

variance of the measurement system does not work in general 

terms, since the results are good only in the case of artificial 

dynamics algorithm. The approach based on the similarity 

parameter produces better results provided that the constant 

parameter σΛ,0
2 and the maximum and minimum allowable 

variances are properly selected. Actually, the tuning of all the 

parameters introduced in the mathematical formulation is a 

non-negligible limitation of the algorithm. Although the work 

highlighted some issues not already solved, the preliminary 

analysis presented here shows promising results. The authors 

want to stress the attention on the different kind of 

uncertainties that can affect the damage propagation process 

and on the proposed solution, introducing the inter-specimen 

and the intra-specimen variability within a Bayesian filtering 

framework. On the other hand, several investigations are 

mandatory to understand the behavior of the proposed 

sequential Monte Carlo algorithm. The validity of the 

correction parameters to cover the inter-specimen variability 

driven by multiple parameters (for example C and m) has to 

be proved, even though the results presented in section 5 

seems good. Then, an in-depth study of the variances 

involved in the process could bring to self-adaptive 

algorithms in which the influence of the selection of the 

initial variances is very limited. Finally yet importantly, the 

testing of the proposed system on real structures is 

fundamental to prove the effectiveness of the method. The 

implementation of the methodology on real structures 

remains prohibitive especially because of the difficulties to 

deal with random load conditions.  Even though the scientific 
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community has developed many approaches to solve the 

problem using efficient statistical ways, the implementation 

of these methods into a real-time prognostics framework 

introduces additional complications. For instance the real-

time estimation of the loads close to the damage, or the 

implementation of time-varying variables in the RUL 

prediction. These questions add up to the current issues of 

model parameter estimation and optimal variance selection, 

enlarging the dimension of the prognostic problem. 

 
Figure 7. Wrong estimation of the correction parameter (log 

ψ) using the KS algorithm and a noise variance equal to the 

variance of the measurement system. 

 
Figure 8. RUL prediction with artificial dynamics algorithm, 

using a target crack built with different C and m parameters. 

 
Figure 9. RUL prediction with kernel smoothing algorithm, 

using a target crack built with different C and m parameters. 
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