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ABSTRACT

With the paradigm shift towards prognostic and health man-
agement (PHM) of machinery, there is need for reliable PHM
methodologies with narrow error bounds to allow mainte-
nance engineers take decisive maintenance actions based on
the prognostic results. Prognostics is mainly concerned with
the estimation of the remaining useful life (RUL) or time to
failure (TTF). The accuracy of PHM methods is usually a
function of the features extracted from the raw data obtained
from sensors. In cases where the extracted features do not
display clear degradation trends, for instance highly loaded
bearings, the accuracy of the state of the art PHM methods
is significantly affected. The data which lacks clear degra-
dation trend is referred to as non-trending data. This study
presents a method for extracting degradation trends from non-
trending condition monitoring data for RUL estimation. The
raw signals are first filtered using a discrete wavelet trans-
form (DWT) denoising filter to remove noise from the ac-
quired signals. Time domain, frequency domain and time-
frequency domain features are then extracted from the fil-
tered signals. An autoregressive (AR) model is then applied
to the extracted features to identify the degradation trends.
Features representing the maximum health information are
then selected based on a performance evaluation criteria us-
ing extreme learning machine (ELM) algorithm. The selected
features can then be used as inputs in a prognostic algorithm.
The feasibility of the method is demonstrated using experi-
mental bearing vibration data. The performance of the method
is evaluated on the accuracy of RUL estimation and the results
show that the method can be used to accurately estimate RUL
with a maximum error of 10%.

1. INTRODUCTION

The last one decade has seen focus shifting towards predic-
tive maintenance strategies where maintenance action is taken
based on future health state prediction of a component or sys-
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tem. Accurate prediction of the future health or damage prop-
agation of a component provides the maintenance engineers
with time to appropriately schedule maintenance without af-
fecting operations. Autonomous systems can also use the pre-
dictions to adapt to the prevailing conditions, such that their
missions are accomplished. Unlike diagnosis which deals
with events that have already occurred, prognosis is much
more difficult since it deals with stochastic events that are
yet to occur (Kim, Tan, Mathew, & Choi, 2012). Although
numerous prognostic methods have been proposed, they are
still at the experimental stage (Dragomir, Gouriveau, Minca,
& Zerhouni, 2009). This could be attributed to the wide er-
ror bounds associated with most algorithms such that mainte-
nance engineers would not have confidence to allow a system
to operate once a fault has been identified. Another challenge
is the long computational time for both training and predic-
tion, displayed by most methods, rendering them unsuitable
for real time prognosis.

Prognosis is a function of the features extracted from the raw
data and therefore it is important that the features extracted
contain maximum information regarding degradation trend
for the predictions to be accurate. Depending on the type
of component or system, the observed features may show
an increasing or decreasing trend. However, there are sit-
uations where the data does not show any observable trend
(non-trending data), making long-term prognosis very diffi-
cult. Figure 1 (a) shows data with observable degradation
trend while (b) shows data with no observable trend until fail-
ure.

Various attempts to extract features that represent degradation
trends in machinery components have been made. Amongst
these attempts is the use of time-frequency methods and au-
toregressive models. Gu et al., (Gu, Zhao, & Zhang, 2013)
introduced a hybrid approach based on autoregressive filter to
remove discrete frequencies from a bearing signal and empir-
ical mode decomposition to extract the residual signal which
contains the degradation trend. However, the performance
of this approach on the ability to provide accurate RUL es-
timation was not evaluated. Junsheng et al., (Junsheng, De-
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Figure 1. Extracted features from (a) trending data and (b) non-trending data.

jie, & Yu, 2006) presented a fault diagnosis approach based
on empirical mode decomposition (EMD) and autoregressive
(AR) model which was verified with experimental data on
the ability to accurately diagnose bearing faults. Zhang et al.,
(Y. Zhang, Zuo, & Bai, 2013) proposed a fault diagnosis and
performance degradation method based on multiple features,
where singular values and autoregressive model parameters
are extracted from the results of empirical mode decomposi-
tion of the raw signals. Kernel principal component analysis
(KPCA) was then employed for feature transformation and
reduction. However, the capability of the method to iden-
tify performance degradation was not verified. In addition,
although PCA has been successfully applied in feature reduc-
tion for diagnosis purposes, it may not suitable for prognosis
since it orthogonally transforms features which makes them
loose important degradation information. Recently, EMD has
received a lot of attention as a feature extraction technique
for non-stationary signals (Georgoulas, Loutas, Stylios, &
Kostopoulos, 2013; Wang, Lu, Wang, Liu, & Fan, 2013; Yu,
Dejie, & Junsheng, 2006; Xiong & Yang, 2012). This method
is able to enhance impulses in signals, associated with faults
and is therefore more suited for fault diagnosis rather than
prognosis, where the ability to identify continued degradation
is important. Since not all of the extracted features contain
important information on degradation trend, it is important to
select the features that accurately represent the degradation
process.

There has been considerable effort to develop algorithms for
automatic feature selection. However, most of these algo-
rithms are focused on feature selection for fault diagnosis or
health state based prognosis. In this case, features are se-
lected based on their capability to discriminate between dif-
ferent classes (fault categories or health states). Linear dis-
criminant analysis (LDA) which is based on the assumption
that different classes generate data based on Gaussian dis-
tributions has been employed in feature selection for fault
classification (Bator, Dirks, Monks, & Lohweg, 2012). Dis-

tance evaluation technique which computes the largest dis-
tance separating data between classes is another feature se-
lection technique that has been employed to select the opti-
mal features that represent the different health states of a de-
grading component (Kim et al., 2012). Camci et al., (Camci,
Medjaher, Zerhouni, & Nectoux, 2012) proposed a feature
evaluation method for effective bearing prognostics based on
separability value. The features were divided into time seg-
ments and the separability of the segments based on 25th and
75th percentile distributions computed. The overall separa-
bility value of each feature was then computed as a feature
evaluation value. However, the performance of this method
for accurate prognosis was not evaluated. The use of separa-
bility of features as a method of feature selection can also be
found in (Medjaher, Camci, & Zerhouni, 2012). Benkedjouh
et al., (Benkedjouh, Medjaher, Zerhouni, & Rechak, 2013)
employed isometric feature mapping reduction technique to
find a small number of features that represent a large number
of observations. The accuracy of the method on ability to im-
prove prognosis was not evaluated. Other methods of feature
selection or selection can be found in (Li et al., 2011; Sug-
umaran, Muralidharan, & Ramachandran, 2007; K. Zhang,
Li, Scarf, & Ball, 2011). Saxena and Vachtsevanos, (Saxena
& Vachtsevanos, 2007) explored the capabilities of multi-
core cell processing environment for feature extraction and
selection for on-board diagnosis and prognosis. Their effort
was concentrated on developing parallel algorithms for Fast
Fourier Transforms (FFTs) that could speed up their imple-
mentation. Tran and Yang, (Tran & Yang, 2010) presented
a method for feature selection based on classification and re-
gression trees. The feature selection was however conducted
for classification of faults only and not for prognosis. Ra-
masso and Gouriveau, (Ramasso & Gouriveau, 2010) pro-
posed a prognostics method involving three modules, obser-
vation selection, prediction and classification. A method for
feature selection was also presented but found to have high
computational requirements. From the literature surveyed,
it is evident that there is a need to develop an effective fea-
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ture selection approach for prognosis based on regression ap-
proach.

This paper presents a feature extraction method based on com-
bination of a wavelet denoising filter and autoregressive model
with automatic model order selection for feature extraction
and the use of kernel based ELM for feature selection based
on performance evaluation criteria of the extracted features.
This feature extraction approach has the capability of extract-
ing degradation trends from non-trending data. The perfor-
mance of the method based on ability to provide accurate
RUL estimations using ELM is also demonstrated.

2. PROPOSED METHOD

The proposed method involves denoising the raw signals us-
ing discrete wavelet transform (DWT) denoising then extract-
ing time, frequency and time-frequency domain features. An
AR model is then established for each of the extracted fea-
tures. The optimum features are then selected using kernel
based ELM algorithm. Finally the performance of the method
is evaluated using the same kernel based ELM algorithm. Fig-
ure 2 shows the workflow of the proposed method.

2.1. Feature Extraction

Feature extraction involves deriving time, frequency and time-
frequency domain features from the raw signals which are
sampled at suitable frequencies. Signals acquired from some
machinery components such as faulty bearing are normally
considered non-stationary, that is, frequency varies with time,

and hence the extraction of time-frequency features. In this
work, wavelet packet decomposition (WPD) is employed for
the extraction of the time-frequency features. The denoised
signal is decomposed up to 3 levels using bior3.7 wavelet.
The detail coefficients from level 1 to 3 and the approximate
coefficient for level 3 are then obtained. The wavelet energy
is then computed from the wavelet coefficients. Fast Fourier
Transform (FFT) is employed to extract the frequency domain
features. A total of 19 features, 12 time domain, 3 frequency
domain and 4 time-frequency domain from each signal may
be extracted from the denoised signals. A summary of these
features is presented in Table 1 (Galar, Kumar, & Zhao, 2012;
Maio et al., 2012).

2.2. Autoregressive (AR) Model

AR model represents a time series in which the next value in
the sequence is predicted based on a certain number of pre-
vious values. The AR model parameters may contain im-
portant information regarding the condition of a component
(Y. Zhang et al., 2013). The following model is established to
each of the extracted features f to obtain degradation trend:

fn =

p∑
k=1

akfn−k + en, n = 1, 2...N (1)

where ak are the model parameters, p is the model order, en is
the residual of the model and N is the number of data points
in f . In this work, the model parameters were determined
using the Yule-Walker method (Stoica, Friedlander, & Son-
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Figure 2. Workflow of the proposed method.
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Table 1. Features extracted from denoised signals

2.2. Feature Extraction 

Feature extraction involves deriving time-, frequency- and time-frequency- domain features from the raw signals. 
Signals acquired from some machinery components such as faulty bearing are normally considered non-
stationary, that is, frequency varies with time, and hence the extraction of time-frequency features. In this work, 
wavelet packet decomposition (WPD) is employed for the extraction of the time-frequency features. The denoised 
signal is decomposed up to 3 levels. The detail coefficients from level 1 to 3 and the approximate coefficient for 
level 3 are then obtained. The wavelet energy is then computed from the wavelet coefficients. Fast Fourier 
Transform (FFT) is employed to extract the frequency domain features. Table 1 shows the features extracted from 
the denoised signals. 

Table 1 
Features extracted from the denoised signals. 
 
Time domain features Shape 

factor ∑ | |
 

Power 
spectral 
density of FFT 

RMS 
1

 

Line 
integral | | 

Time –frequency domain 

Variance  

1
̅  

Peak to 
peak value 

max min  Energy of 
WPD detail 
coefficient 
one  

1  

Peak value max	 | |  Shannon 
entropy log  

Energy of 
WPD detail 
coefficient 
two  

2  

Crest factor 
 

Skewness 
∑ ̅

∑ ̅

 

Energy of 
WPD detail 
coefficient 
three  

3  

Kurtosis ∑ ̅

3 

Frequency domain Energy of 
WPD 
approximate 
coefficient 
three  

3  

Clearance 
factor 

∑ | |
 

Peak 
value of 
FFT 

max , 

 

  

Impulse 
factor ∑ | |

 
Energy of 
FFT  

  

2.3. Autoregressive Model 

AR model represents a time series in which the next value in the sequence is predicted based on a certain 
number of previous values. The AR model parameters may contain important information regarding the condition 
of a component [5]. The following model is established to each of the extracted features to obtain degradation 
trend: 

∑ ,        (3) 

where	  are the model parameters,  is the model order and  is the residual of the model. In this work, 
the model parameters were determined using the Yule-Walker method [20]. The performance of the AR model 
depends on the choice of the model order. In this study, the Akaike information criteria (AIC) introduced by Akaike 
was employed [21]: 

log ,          (4) 

with, 

∑ ∑ ,       (5) 

derstrom, 1988). The performance of the AR model depends
on the choice of the model order. In this study, the Akaike in-
formation criteria, AIC introduced by Akaike was employed
(Ayalew, Babu, & Rao, 2012):

AIC(p) = log(σ̂p) +
2p

N
, (2)

where,

σ̂p =
1

(N − p)

N∑
n=p+1

(fn −
p∑

k=1

akfn−k)
2, (3)

The model order is varied from 1 to 100 and the model order
yielding the minimum AIC is selected. The feasibility of
this approach is demonstrated using the impulse factor IF ,
extracted from the filtered signal. For each sampled signal
with M data points, IF is obtained as follows:

IF =
max(xK)

1
M

∑M
K=1 |xK |

, K = 1, 2, ..M (4)

Figure 3(a) shows the impulse factor of a bearing vibration
signal before application of AR model, in which the degrada-
tion trend is not clearly identifiable. Figure 3(b) shows the AR
model (fIF ) of the feature, which presents a clearer degrada-

tion trend or fault evolution trend. The AR model also acts
as a filtering method, thus eliminating the noise within the
extracted feature.

2.3. Extreme Learning Machine (ELM)

Extreme learning machine is a relatively new simple learning
algorithm for single-hidden layer feedforward neural network
(SLFN) which was first proposed by Huang in 2005 (Huang,
Zhu, & Siew, 2006). Figure 4 shows the structure of a SLFN
with radial basis function (RBF) hidden neurons. xj is the
input vector at the input neuron j, ai is the input weight con-
necting the hidden neuron i and the input neurons, bi is the
bias of the hidden neuron βi is the output weight of the hidden
neuron i and y is the output (Huang et al., 2006).

In ELM, the input weights and hidden layer biases of SLFN
are randomly generated, while the output weights linking the
hidden layer to the output layer are determined through sim-
ple generalized inverse operation of the hidden layer output
matrices (Huang et al., 2006). The ELM learning process
is extremely fast compared to other machine learning algo-
rithms such as support vector machines and artificial neural
networks with back propagation (Huang et al., 2006). The
kernel based ELM has two parameters (regularization param-
eter C and kernel parameter γ) that tuning. In this work,
C = 7000 and γ = 2.9 were employed.
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2.3.1. ELM Based Feature Selection

Feature selection is important for machinery prognosis in or-
der to reduce computational time and effort, and also to avoid
over-fitting of data which results to large prediction errors.
In this work, kernel based extreme learning machines was
employed for feature selection due to its robust predictions
and fast training and prediction times. The AR features are
first evaluated individually on their ability to provide accurate
prognosis. The input to the ELM method is the AR features
while the target vector is the fraction of the remaining useful
life. The mean square error computed from the target frac-
tional RUL and estimated fractional RUL of the training data
for each individual input feature is obtained and values for all
the inputs are normalized between 0 and 1. A performance
evaluation criterion, PEC is then defined by:

PEC = 1− mse

max(mse)
(5)

where µ is the normalized training mean square error, mse.

Figure 5 shows the workflow of the feature selection algo-
rithm.

AR model
of feature i

Target vector

ELM training

ELM degradation
model

ELM Test

Compute PECi<N

No

Yes

select i if
PEC i PEC( ) ≥

sc

i i 1= +

Figure 5. Workflow of the ELM-based feature selection al-
gorithm. i is the feature index and N is the total number of
features.

To obtain the selection criteria PECsc, the PEC is varied
from 0 to 1 and the mse of the training data set is obtained.
The PEC value that yields the minimum mse is taken as the
feature selection criteria.

2.3.2. ELM Based RUL Estimation

During the training stage of the method, the selected features
are used as inputs to the PHM algorithm while the fractional
remaining useful life is used as the target vector. The frac-
tional RUL is used to take care of the varying lifetimes of ma-
chinery components. A degradation model is obtained after
training, which is used together with the testing input features
to predict the fractional RUL of the test data.

Given the current time, tc, and the fractional RUL, Fc, the es-
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timated remaining useful lifeRUL can be obtained by similar
triangles as follows:

RUL = tEOL − tc =
tc

1− Fc
Fc (6)

where tEOL is the time to end of life of the component.

3. APPLICATION EXAMPLE

To demonstrate the applicability of the method, a case study
was conducted. Run to failure rolling element bearing data
provided for the 2012 PHM data challenge was employed
(Nectoux et al., 2012). The data consists of run to failure
vibration data recorded by two accelerometers, along the ver-
tical direction and along the horizontal direction, sampled at
a frequency of 25.6 kHz with 2560 samples recorded at inter-
vals of 10 seconds. Two complete run to failure data sets are
provided for algorithm training and five truncated run to fail-
ure data are provided for testing. The challenge is to provide
an estimation of the remaining useful life of the test bearings
(Nectoux et al., 2012).

The features detailed in section 2.1 were extracted and an AR
model applied. The proposed feature selection method de-
scribed in section 2.3.1 was then applied. Figure 7 shows the
mse as a function of PEC.
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Figure 7. Mean square error, mse as a function of perfor-
mance evaluation criteria, PEC for the training data set.

From Figure 7, it is evident that features with a performance
evaluation criteria value of 0.65 yield the lowest mse. There-
fore a selection criterion of PECsc = 0.65 was employed
in this study. Based on this selection criterion, 11 out of
38 features were selected. Figure 8 shows the PEC value
of each feature. It can be observed that not many features
from the vertical acceleration were selected. The vibration
signal from the vertical accelerometer was highly impulsive
which led to high mean square errors. Although the features
extracted from the vertical accelerometer may not be suitable
for prognosis, they may provide valuable information about
the nature and location of faults within the bearings.
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Figure 8. Performance evaluation criteria of the extracted fea-
tures described in section 2.1, (a) horizontal vibration and (b)
vertical vibration.

The selected features were then extracted from the denoised
signals of the training and test data. An AR model was ap-
plied to the resulting features in order to obtain inputs to the
ELM algorithm. The ELM method was then trained with the
AR features as the input and fractional lifetime as the target
vector. A degradation model consisting of the number of neu-
rons, the input and output weights of the hidden layer was ob-
tained. The AR features from the test data were then used as
inputs to the degradation model and the estimated fractional
lifetime obtained as the output.

Using Eq. 6, the RUL of the five test bearings were computed
from the fractional lifetime obtained as the output from the
ELM algorithm. Figure 9 shows curves of the estimated RUL,
the actual RUL and predicted RUL of bearing 1 3. RULc is
the RUL at the current time. The predicted RUL is obtained
by fitting a linear curve from the current time to the point
where the RUL is zero

Figure 9 shows that the accuracy of the method increases to-
wards the end of life of the component. This is the most crit-
ical stage of the prognosis since it signifies that the mainte-
nance engineers should start planning for maintenance.
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The performance of the method was evaluated based on per-
formance metrics such as percentage RUL error and percent-
age accuracy as shown below:

%Error =
ActRUL− estRUL

ActRUL
× 100, (7)

whereActRUL is the actual RUL of the test data provided for
validation of the prognostic methods and estRUL is the esti-
mated RUL. Table 2 shows the performance of the proposed
method based on percentage error and percentage accuracy.
The estimated RUL is based on the current time.

Table 2. Performance of the proposed method based on prog-
nostic performance metrics.

Test % Error
Bearing 1 3 0.44
Bearing 1 4 5.31
Bearing 1 5 -4.94
Bearing 1 6 -8.41
Bearing 1 7 3.71

The negative percentage error signifies late prediction or over-
estimation of RUL, which is usually not desirable in machin-
ery prognosis since the machine may breakdown before the
scheduled maintenance, depending on the margin of error of
the estimation. Table 1 shows the proposed method yields
accuracies within 10% error bounds. This would be a good
reference for maintenance.

4. CONCLUSION

The accuracy of any prognostic algorithm is a function of
the information contained in the input features which are ex-
tracted from the raw condition monitoring data. A method
for feature extraction and selection for machinery prognosis
based on autoregressive modeling and extreme learning ma-
chine is presented. The proposed feature extraction method
is able to identify degradation trends in condition monitoring
data for effective prognosis. The feasibility of the method is
demonstrated using bearing run-to-failure experimental data.
The results show that the proposed method is effective in es-

timating the remaining useful life of machinery components,
with error bounds within a 10% bandwidth. The results also
show that feature selection improves the accuracy of RUL es-
timation significantly. Therefore, we conclude that the pro-
posed method of feature extraction and selection can be used
as an effective tool for estimating the remaining useful life of
machinery components.
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