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ABSTRACT 

Much effort has been made to develop technologies and 

define metrics for Prognostics Health Management 

(PHM).  The problem is that most of this effort has focused 

on theoretical and high risk concepts of Prognostics 

performance while ignoring the real needs in “System 

Health Management”. In the wake of this technological 

attention, the importance of true Integrated Systems Health 

Management (ISHM) has been masked by the focus on 

single failure mode physics of failure solutions. The critical 

PHM metrics, derived from Integrated Systems Diagnostics 

Design (ISDD) have mostly been ignored.  These critical 

metrics include Reliability, Safety, Testability, and System 

Maintainability & Sustainment, as well as the impact of 

prognostics performance on Systems Diagnostics. A key 

point to be made is that the ISDD process is much larger 

than just developing metrics. ISDD results in a well-

designed system that meets true health management needs, 

as well as significantly lowering development costs, and the 

cost of ownership. Another point that needs to be made is 

that the core of ISDD is a proven and highly effective 

analysis solution in Model Based Diagnostics.  This paper 

discusses the approach of using Model Based Diagnostics in 

the ISDD process to determine the best balance of the 

Health Management design. It will be shown how the 

impact and effectiveness of prognostics as integrated with 

the ISDD process provides true value to performance and 

cost avoidance. 

1. THE SKEWED PHM TECHNOLOGIES 

New York University mathematics physicist, Alan Sokal, 

submitted an article on current physics and mathematics 

based around quantum mechanics / chaos theory (Sokal, 

1994&1995).  Sokal’s article was republished by top 

scientist in 1996 citing Sokal’s article as a credit to 

scientific research. Soon after Sokal explained in a new 

article that his publication had been salted with nonsense, 

and in his opinion was accepted because: (a) it sounded 

good and (b) it flattered the editor’s ideological 

preconceptions.  

It turns out that Sokal’s Hoax served a public purpose to 

attract attention to what Sokal saw as a decline of standards 

of rigor in the academic community.  Today, this 

philosophy of Sokal’s Hoax can easily be applied to 

Government, Industry and Academia on the subject of 

Prognostics Health Management. Far too many 

technologists and business managers fall into the “hoax” 

that systems can be prognosed to predict, within a known 

Remaining Useful Life (RUL) parametric, for any and all 

failures; then to go on to promote this RUL prediction of 

precluding all failures that will prevent system operational 

failures and enhance sustainment. 

Back about thirty years ago this author had his first 

experience with prognostics based on signature analysis. As 

a result of this operation, the U.S. Navy looked into using 

signature analyses from the ship’s noise propagation to 

predict a signature shift that could possibly be leading to a 

failure.  After much trial and error on this concept, and after 

unnecessary consumption of spare parts and maintenance 

labor hours, it was decided that this form of “prognostics” 

was not working. 

 A major U.S. project was based on PHM being the core to 

the prevention of catastrophic failures and system aborts 

through prognostics. This PHM system would also provide 

the operational data needed to drive an Advanced Logistics 

Information System (Gill, 2003). After investing untold 

millions in U.S. dollars, it is recognized that the planned 

PHM path must be modified.  The realization that you 

cannot prognose an entire system is finally coming into 

focus. The idea of using the proven technology of Model 

Based Diagnostics was discarded early in the program due 

to the same philosophy Sokal exposed. By the way, the 
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original definition of PHM was Diagnostics and Prognostics 

Health Management.  It did not take long for diagnostics to 

be displaced by the more “exciting” prognostics exclusivity.  

If you have read this far, you are probably thinking that this 

author is anti-technology development and is only trying to 

promote an old method for determining the Health 

Management of a system. This is far from the intent of this 

paper! This author has been a proponent of advanced 

technology development from the 50s during the early 

transition from vacuum tubes (valves as some say) to solid 

state technology, and on to today’s prognostic technologies. 

He has attended courses at Georgia Tech and has worked 

with prognostics professionals.  From all of this, it has to be 

said that prognostics plays a very powerful role in PHM and 

is the way of the future.  With that said, it is also apparent 

that prognostics is not a “Systems” health management 

technology. It is limited to selected failure modes that must 

not be allowed to fail due to system criticality. In depth 

physics of failure analysis, proper sensors, and precise 

processing needs to be in place to determine RUL when a 

single failure mode approaches a critical state. Keep in mind 

that the focus is on a single failure mode, and even into the 

molecular structure of this single mode. Even then, this 

processed single failure mode effect must be observable at 

the system level to be considered a functional component of 

PHM. 

This is in contrast to a typical operational platform with tens 

of thousands, or even hundreds of thousands of failure 

modes. It is obvious that the prognostics technologies are far 

from capable of performing system level PHM. There have 

been attempts in AI, Bayesian Networks, Boolean Logic, 

and others to perform this PHM System analysis. But, these 

have been shown to be ineffective, at a very high cost and 

risk. 

As stated, there is a need for integrated prognostics that can 

map a prognosed event to overall System PHM. Investment 

into prognostics must be accountable, not just bought in to 

satisfy study funding. Thousands of pages have been written 

on prognostics but those studies have had a difficult, if not 

impossible, time performing in a fielded system, let alone 

contribute any value to design influence. 

Over the last decade or so, the demand for increased 

prognostics within complex, critical systems has resulted 

not only in changes to how these systems are developed, but 

also to the way in which designs are analyzed as they are 

developed. In particular, system analysis practices have 

been moving away from true System Health Management 

values, such as reliability, testability, maintainability, 

sustainment and the critical parametric today - Cost. Some 

critical systems have focused on prognostics details while, 

to the most extent, ignored the ISDD process. System 

designs now either pursue high cost and risk custom 

solutions to focus on prognostics, incorporate prognostic 

details into other calculations, or ignore prognostics 

altogether. This issue is amplified by the fact that much of 

the value in reliability and testability analysis can best be 

realized when design feedback is available relatively early 

in the development cycle. On the other hand, prognostic 

development and the evaluation of prognostic performance 

take years of operational time to obtain any metrics of value. 

It is unlikely that information derived from formal 

prognostic performance metrics (Saxena, et al, 2010) can be 

incorporated into systems engineering analyses to profitably 

impact system development and decision-making. At the 

same time, un-validated prognostics can lead to low 

Availability and high sustainment cost due to false 

removals. This results in notoriously time-consuming and 

costly prognostic performance 

As an alternative, some projects have implemented custom 

solutions, modifying design-time engineering analyses to 

account for the expected impact of prognostics concurrently 

under development. There is, however, no standardized or 

officially sanctioned approach to accounting for prognostics 

performance. For each project, systems analysts must ask a 

series of questions; for example, diagnostic analysts must 

decide whether fault detection & isolation metrics should 

take full or partial credit for prognosed failures, or whether 

testability analysis can be constrained to cover only the non-

prognosed portion of the design. In either case, should 

prognostic horizon and/or accuracy be taken into 

consideration? 

If so, then how is the end user or maintainer expected to 

respond to prognostic notifications without questioning 

them? Will there be cases in which some sort of 

confirmation will be required before a maintenance action is 

performed? Then the key question is, should diagnostic 

analysis be consulted when determining the optimal areas in 

which to develop prognostic measurements or will only 

criticality considerations be involved in the selection of 

prognostic candidates? 

The root of these, and other related questions is the lack of 

realistic and cost effective requirements, and the lack of 

systems diagnostics understanding.  So, what is the solution 

to effective and affordable PHM?  The answer is obvious – 

Model Based Diagnostics. This Model Based Diagnostics is 

a proven technology that has been in use for decades. In the 

past 20 plus years it has come to be recognized as the 

systems engineering tool of choice throughout industry. 

Without going off track on the balancing of prognostics and 

diagnostics in PHM development, it needs to be mentioned 

that there is once again a push for something new in the 

field of diagnostics analysis. There has been talk of Model 

Based Diagnostics falling out of “fashion” within the same 

community that has proliferated prognostics. Also, Model 

Based Diagnostics has received some bad press from entry 

level tools whose use has been attempted on projects where 

the tools failed to perform. Unfortunately, these unproven 

tools resulted in high costs with no acceptable results.  
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These failures to perform lead the technology community to 

downplay the use of Model Based Diagnostics and they 

became vulnerable to high cost and high risk solutions.  

They are told Model Based Diagnostics is considered 

obsolete due to construed higher order mathematical 

solutions.  The issue is these “non-model based” solutions 

have significant problems with development skill needs, 

high cost, lack of system integration, and are limited to 

small scale analyses.  Just as prognostics entered as the 

“new and improved” health management solution, other 

analytical solutions are continuing to be pushed into the new 

wave of thinking without the understanding of a systems 

engineering approach. 

 

One such solution attempt has been tried over the years in 

several research communities and this is based on Bayesian 

Networks. As with prognostics, a Bayesian Network 

requires extensive development and cannot begin until the 

design is well defined.  Then, if there is a design change, the 

analysis needs to start all over again.  Even if a network can 

be completed, it is limited to smaller systems, cannot 

provide knowledge to the Logistics sustainment solution, 

and still requires years of learning to “fine tune” the results.  

2. DIAGNOSTICS DRIVEN PHM 

Now that this author has ripped “stand alone” attempts at 

prognostic solutions, the following discussion focuses on 

effective diagnostics driven PHM based on Model Based 

Diagnostics. This ISDD process is centered on a proven tool 

suite and process that brings the system design into an 

optimized PHM solution. This solution provides the 

confidence needed for fault detection and isolation at the 

system level that includes the impact of prognostics on 

diagnostics. This ISDD process identifies the candidates 

needed for an effective prognostics analysis. It also provides 

the parametrics used for and Operational and Support 

Simulation.  This simulation capability is shown in section 

5.  

For the system design to be optimized for effective health 

management and sustainment, the diagnostics design 

process needs to begin early in the design process.  This is 

something prognostics cannot do.  The diagnostics analysis 

results in a selection of candidates for prognostics analysis.  

See Figure 1 for this diagnostics informed prognostics 

analysis process.   

As emphasized, for optimum results in design influence, the 

ISDD process needs to begin at the start of the project’s 

design phase. This is where PHM and sustainment must be 

considered to be effective and affordable. Along with 

testability requirements (the probability of fault detection, 

isolation to a defined ambiguity set, and false alarm 

constraints), PHM and logistics requirements must be 

understood.  

 

 

Figure 1. Diagnostics selection of prognostics candidates 

 

With this in mind, and to keep this paper on track, the 

following discussion focuses on system prognostics 

requirements as driven by the ISDD process. 

Figure 1 shows these prognostic requirements being defined 

at the beginning of the diagnostics engineering 

development. This is a critical point in PHM design and is 

where the customer typically falls short in requirements 

definitions.  Very few customer project managers 

understand prognostics well enough to flow down cohesive 

prognostic requirements. To be effective, these initial 

prognostics requirements now need to be included in the 

diagnostics test definitions in the form of prognostic tests.  

These prognostic parametrics are defined in section 3.1. 

As the diagnostics analysis is developed, prognostic 

candidates are developed as part of the optimized 

diagnostics results.  The prognostics candidates are 

prioritized based on the failure mode severity and the failure 

rate. The primary candidates are those failure modes that 

cannot be allowed to progress to failure, and failure 

mitigation through functional redundancy is not practical or 

possible. An example of a prognostics candidate list derived 

from the diagnostics analysis is shown in Figure 2. This 

example is not intended to be an eye test but is used to show 

the format of a typical candidate list. Note that in the 

example, two Loss of Life severities are listed below the 

Loss of Equipment candidates. This is not to suggest Loss 

of Life is less important, it is just listed based on the lower 

failure rates. In an actual prognostics assessment, these two 

candidates would certainly be considered important. But, at 

the same time, if their Loss of Life failure probability is 

very low, the prognostics for this failure mode may not be 

cost effective. 
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Figure 2. Prognostic Candidate List from Diagnostics 

Continuing in the diagnostics engineering process, the 

diagnostics analysis results, along with selected prognostics 

tests, are fed into the product design to support the PHM 

design solution. This provides the all-important design trade 

study process that builds a well-balanced, diagnostics 

driven, PHM solution. Later in the process it is shown 

where prognostics parameters may be available to further 

optimize the diagnostics analysis. 

3. SYSTEM PROGNOSTIC REQUIREMENTS  

The following discussion focuses on the approach to 

incorporating prognostic considerations into areas such as 

reliability, testability, maintainability and sustainment 

analyses. This is accomplished by representing expected 

prognostic behavior in terms derived from system 

prognostic requirements. This will show how these 

parameters can be used to define prognostic behavior within 

a diagnostic engineering process. Finally, this will show 

how these prognostic definitions can be used to modify the 

results of standard measures of diagnostic effectiveness 

using fault detection and isolation metrics defined within 

IEEE Standard 1522-2004. This also looks into informed 

simulation-based approaches for assessing the impact of 

different prognostic, diagnostic and maintenance strategies. 

The following definition of requirements, parameters and 

example are based on a paper by Eric Gould who has 

developed advanced prognostic influence capabilities in the 

DSI eXpress Diagnostics Engineering tool (Gould, 2011). 

This previous paper is being paraphrased in some sections to 

provide specific information needed to understand how 

prognostics is used in the ISDD process. 

Even though the academic technology of system prognostics 

has been around with study support since the 1990s, the 

understanding of prognostics requirements are relatively 

new to design development projects.  This is compared to 

system diagnostic and testability requirements which have 

been around since the 1980s. It is therefore not surprising 

that there has been a fair amount of variance in the 

definitions of desired prognostic capabilities from one 

project to another.  

For effective prognostics requirements to be defined, a 

process for the derivation of these requirements must be 

understood and followed. Aspects covered by these 

qualitative descriptions include 1) whether the prognostics 

shall be embedded in the system, 2) whether prognostics 

shall be automated or initiated, 3) whether prognostics shall 

be developed solely for the determination of mission-

readiness or also for the optimization of Logistics, 4) 

whether prognostics results shall be reported to the crew, 

maintenance technicians, and/or mission planners, and 5) 

whether prognostics shall consist solely of condition-based 

observations of failure precursors or whether it can also 

contain predictions based on the failure rates and stress 

histories of individual components. Although information of 

this type is essential for describing the prognostic capability 

required for each project, it is not relevant to the following 

discussion. In the example shown in section 3.2, the 

requirements have been trimmed down to include only the 

information needed for a quantitative evaluation of a 

system’s prognostics capability, and the impact of 

prognostics on systems diagnostics in PHM.  

3.1. Prognostic Parameters 

With the quantitative aspects of the requirement broken 

down into individual parameters, it was determined that five 

basic parameters were sufficient for describing any of the 

sample requirement statements:  

Scope – the set of possible failures to which a given 

requirement applies. Common scopes include mission 

critical failures, essential function failures, or failures that 

necessitate a system abort.  

Category – the set of prognoses to which a given 

requirement applies, such as embedded or sensor-based 

prognoses. 

Horizon – the time before failure that prognosis must occur. 

This can either be a fixed value (e.g., 72 hours prior to 

failure) or a calculated value, based on both the desired 

mission length and the corrective action time associated 

with each failure.  

Coverage – the percentage of failures in the specified scope 

that must be prognosed. This parameter can either be failure 

probability-weighted (so that there is greater credit for 

failures that occur more frequently) or non-weighted (so that 

all failures in the specified scope are counted equally). 

Accuracy – the desired confidence/correctness of the overall 

prognostic capability (typically defined as a percentage of 

accuracy). In some requirement statements, Accuracy is 

bundled with Coverage as a single percentage of failures 

prognosed.  

3.2. An Example of Prognostic Requirements 

The following example examines the individual prognostic 

requirements, parsing each statement into the related 

parameters and discussing any interpretive peculiarities. All 

threshold/objective parameters have been simplified so that 

they are expressed as a single goal.  
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1) Requirement Example 

Prognostics shall predict at least 80% of the mission critical 

failures 96 hours in advance of occurrence with 90% 

probability.  

 

Scope: Mission Critical Failures  

Horizon: 96 hours  

Coverage: 80%  

Accuracy: 90% 

This prognostic requirements statement has four parameters 

that collectively specify the expected behavior of the 

prognostics. Because it reads like a performance 

requirement — one that specifies the expected performance 

of a fielded system, greater credit should be given to 

prognosed failures that occur more frequently than to those 

that occur relatively infrequently. So, when calculated as an 

engineering metric, the prognostic coverage should be 

weighted by the failure probability of each individual 

failure. The overall coverage can thus be calculated by 

summing the failure rates of the failures in the scope that 

can be prognosed, divided by the sum of the failure rates for 

all failures in the scope.  

4. PROGNOSTIC DEFINITIONS 

Now let’s take a look at how prognostic definitions can be 

defined within a proven diagnostic engineering tool. There 

are several reasons why support for prognostics should be 

added to tools that are used primarily for the creation, 

assessment and optimization of system diagnostics. First of 

all, if the tool has been designed for system-level diagnostic 

analysis, then it already has the infrastructure in place to 

perform an analysis of system-level prognostic performance. 

Data from individual prognostic definitions is compiled 

across the entire system to produce overall measures of 

prognostic effectiveness— measures that can be easily 

compared to system prognostic requirements to determine 

contract compliance.  

A second (and perhaps more significant) advantage to 

representing prognostic measurements within a Diagnostic 

Engineering tool is that the Reliability, Testability, and 

Maintainability evaluations performed within the tool will 

be able to reflect the expected performance of systems for 

which mission readiness is assured using prognostics. 

Moreover, diagnostic procedures developed within the tool 

can be optimized based on the assumption that prognostics 

will be employed based on real needs.  

For example, prior to developing prognostic sensor and 

algorithm requirements, an analysis of the system can be 

used to determine the set of failures for which prognosis is 

most desirable. This takes into consideration not only the 

criticality and frequency of failures, but also how 

successfully the system can diagnose and remediate the 

failures without prognostics. Later, if the bottom line 

changes and you need to reconsider the value of developing 

some of the more expensive prognostic sensing and 

algorithms, you can easily reevaluate the PHM performance 

that would be achieved if the system were to not have this 

capability.  

A third advantage of adding prognostic definitions to a 

diagnostic engineering tool’s model or database is that this 

information can be easily exported for analysis within an 

external tool. For example, simulation-based case studies 

can be performed using different health management 

approaches. This will allow PHM analysts to evaluate 

different combinations of diagnostics, prognostics and 

preventative maintenance to determine which combinations 

are most effective, not only from the perspectives of 

availability or mission readiness, but also sustainment and 

cost effectiveness. Section 5 describes some of this 

simulation capability. 

4.1. Tests and Prognoses  

In proven and accepted model-based diagnostic engineering 

tools, test definitions are used to represent diagnostic 

knowledge. To be effective, each individual test definition 

must specify the coverage of a corresponding fielded 

operational test or measurement. This coverage identifies 

the specific functions or failure modes that should be 

exonerated (removed from suspicion) or indicted (called 

into suspicion) when that test passes or fails. Tests are 

organized into different test sets so that they can be easily 

selected as groups to support different diagnostic case 

studies.  Examples given relate to eXpress, DSI 

International’s Diagnostics Modeling and Analysis tool, and 

to DSI’s STAGE Operations and Support Simulation tool. 

Prognostic measurements can be represented using a special 

type of test definition. This is basically a test definition to 

which prognostic parameters have been attached. The 

coverage for each prognosis is represented the same way as 

it would be for a diagnostic test; the only difference being 

that the coverage now represents the specific functions or 

failure modes for which failures can be predicted using 

prognostics. As with diagnostic tests, prognostic 

measurements can also be organized into test sets. When a 

project has prognostic requirements that utilize the Category 

parameter, the individual measurements should be grouped 

into sets by category. The analysis can then be constrained 

by simply selecting the sets that correspond to the desired 

prognostic categories.  

4.2. Prognostic Terms 

For each prognostic definition, the analyst must specify one 

or more Horizons, each accompanied by three variables— 

Confidence, Correctness and Accuracy—that collectively 

describe the expected behavior of the given prognostic 

measurement at that Horizon. See Figure 3 for an example 

of Prognostic Settings in eXpress with single horizon.  
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Figure 3. Prognostic Settings in eXpress with single horizon 

The value of the specified Horizon is similar to the Horizon 

parameter within a prognostic requirement; it represents a 

time interval before failure that the given prognosis might 

occur. The Confidence represents the likelihood that the 

given prognosis will predict the covered failure(s) at or 

before the specified Horizon. It is expected that Confidence 

increases as the Horizon decreases; in other words, that 

predictions become more confident as a prediction 

approaches the time of failure.  

The Correctness variable is used to represent the expected 

percentage of prognoses that are correct; that is, not too 

early. By default, the Correctness setting affects neither the 

prognostic nor diagnostic analysis performed using that 

measurement. The Correctness value, however, can still be 

used to categorize prognoses within a simulation-based 

assessment of a proposed PHM approach. Note that 

excessively early prognoses leads to false aborts and wasted 

maintenance cost and time. 

The calculated Accuracy value corresponds to the Accuracy 

parameter within a prognostic requirement. Unlike the other 

two values used to describe a given Horizon, Confidence 

and Correctness, the Accuracy variable is not defined by the 

analyst, but rather calculated automatically by the analysis.  

A prognostic condition that must be addressed is the need 

for corrective action to be performed only for prognoses 

verified to be correct. This is the case when a given 

prognosis is not only independently verifiable, but will be 

verified before corrective action is performed. As an 

example, think of the brake pads on an automobile. As the 

pads wear past a given point, they begin to squeal when the 

breaks are applied. This is an intentional design 

characteristic that allows the owner of the car to identify 

when the pads need to be replaced. This relates to the 

squealing of the brake pad as a condition-based prognosis of 

a pending failure. Now, imagine that, when your brakes start 

to squeal you inspect the pads and see that there is plenty of 

life left—the squeal came too early. Would you still replace 

the pads?  

 

 

 

 

Figure 4. Accuracy calculated using both Confidence and 

Correctness 

From a purely realistic standpoint, the Accuracy of your 

prognosis would be equal to your Confidence that prognosis 

would occur prior to failure. If, however, if you only replace 

the pads when they have truly worn down (when the 

prognosis was correct) then the accuracy of your prognosis 

must be adjusted down to account the possibility of these 

false squeals.  

So, when this prognostic condition is selected in the 

analysis, the calculated Accuracy is equal to the product of 

the Confidence and Correctness percentages. See Figure 4 

for an example of Accuracy calculations. Accuracy then 

represents the likelihood that the prognosis occurs early 

enough (Confidence), but not too early (Correctness).  

Of course, the real value of incorporating prognostics into a 

diagnostic engineering model is not so much to facilitate the 

prognostic analysis itself as it is to develop, assess and 

optimize systems diagnostics capability This is based on the 

assumption that a given level of prognosis can and will be 

achieved.  

5. SIMULATION OF PROGNOSTIC IMPACT ON DIAGNOSTICS 

Figure 5 shows a section of an automotive braking system 

that has been modeled for diagnostics analysis. The pink 

highlighted items (1, Brake Pads, 2, Tires) are identified for 

prognostic testing. The diagnostic results from this analysis 

were exported in an XML schema (DiagML) to be used for 

PHM software development and for use in other tools.  One 

of these tools, DSI STAGE, takes the analysis results and 

performs a Monte Carlo simulation using developed 

calculations for specific simulation results.  Some of these 

results are presented below to show the diagnostics behavior 

for systems that are to be supported using selected 

prognostics derived from the analysis.  Note that the 

simulation graphs shown are for representation of example 

analyses. Do to scaling of the graphs, the scale legends are 

not legible and are for reference only.  The typical 

simulation time is 4000 hours of brake operational use.  
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Figure 5. Section of eXpress diagnostics model showing 

targeted prognostic candidates 

 

This capability of analyzing prognostic performance as part 

of diagnostics in PHM provides PHM optimization based on 

both requirements and constraints.  Through simulation, the 

overall PHM solution is evaluated based on how well PHM 

meets system requirements and how well it can be 

implemented within cost constraints. Some typical 

simulation calculations include: Prognostic Effectiveness, 

Fault Detection and Isolation, Diagnostic False Alarms, 

Critical Failures, System Aborts, Mission Success, Mean 

Time Between Failure, Mean Time to Repair, System 

Availability, Development Costs, Sustainment Costs, and 

Total Cost of Ownership, plus many more to meet analysis 

needs. 

The following charts are from simulation runs based on the 

diagnostics results from the model shown in Figure 4. The 

simulation was run with 500 iterations of an operational 

time of 4000 hours. The simulation was randomly seeded. 

The calculations used where: Likelihood of Critical Failures 

Over Time (progressive), Critical Failures Prognosed Over 

Time (number), System Aborts Over Time (number), 

Critical Failure Prognosed per Failure Entity (number), 

Mean Time Between Prognostics/Maintenance Actions 

Over Time, and Faults (Despite Prognostics) Over Time.  

The use of effective prognostics developed condition based 

maintenance can reduce the likelihood of critical failures. 

As seen in Figure 6, the critical failure events on this 

analysis begin with loss of operation (1–yellow) and loss of 

equipment (2-Orange), beginning with low probability in 

the systems operational life cycle.  Then, as the system ages, 

the probability of Loss of operation increases rapidly, 

followed by loss of equipment. Finally, the loss of life 

severity (3-red) begins to increase further into the 

operational life cycle. This is where the assessment of 

prognostics needs to be performed for those failure modes 

contributing to these critical failures. 

 

 

Figure 6. Simulation results showing likelihood of Critical 

failures over time 

 

Where the simulation shown in Figure 6 shows total failures 

progressively over time by severity, Figure 7 shows the 

number of critical failures over time, and also shows those 

failures detected by prognoses (4, magenta). These 

prognosed failures are calculated as being repaired prior to 

critical failure. Since it well known that prognostics is not 

100% correct, other critical failures did occur.  These 

failures are shown by number of failures at a specific point 

in time. These failures are also identified by severity (1, 

yellow, loss of operation; 2, orange, loss of equipment; 3, 

red, loss of life). With the ability to observe types of failures 

over time, it is now possible to re-analyze the diagnostics, 

and possibly improve the prognostics effectiveness. 

 

Figure 7. Number of critical failures prognosed over time 
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Figure 8. System aborts contributed to inadequate PHM 

 

Figure 8 shows the simulation results for system aborts over 

Time. This calculation is based on the accuracy of 

prognostic tests defined in the diagnostics analysis.  The 

“true” system aborts are projected over time as shown at the 

bottom of the graph (2-orange).   

The system aborts contributed to false prognostics are 

shown in the top of the graph (1-red). This is a design 

condition that can be corrected by improving the prognostic 

tests and therefore the accuracy of these tests. Once the 

prognostics have been assessed for improvement, the 

diagnostics analysis would be adjusted based on new test 

parameters. The simulation would then be re-run to validate 

the results for improvement in system aborts. During this 

diagnostics update, the “true” system aborts can be assessed.  

Even though the number of true aborts is low, there may be 

opportunities for improvement. 

Figure 9 shows the number of critical failures over time by 

failure entity (failed item) and by failure severity. Note that 

the diagnostic analysis performed on the sample automotive 

braking system is used for demonstration only and does not 

necessarily represent actual operational parameters for this 

system. This statement is made to keep people from arguing 

about the actual diagnostic values rather than paying 

attention to the message being presented!  

The failures shown are the same as those contributing to the 

simulation results in the other charts, except these are 

identified by specific parts. Those item failures prognosed 

are identified in magenta (2). The groups of four are the 

brake pads (four right and four left, front and rear). The 

prognostic test for these is quite basic.  Each pad contains a 

low pad thickness metallic “scraper” or “squealer”.  When 

the brakes squeal, it is time for inspection.  The added 

failures shown for the brake pads (1, orange, loss of 

equipment), are based on actual pad failure to where they 

are scraping the disk rotor (very expensive repair). These 

“running to failure” events can be minimized through better 

prognostics.   

 

Figure 9. Number of critical failures by item and severity  

 

In fact, existing, more sophisticated, brake pad wear 

detection does exist in the form of optical sensing. 

There is a loss of life (3, red) failure that involves the 

Antilock Brake System hydraulic pump.  There is a possible 

loss of braking control if this pump fails. It does have a low 

probability of failure, but this would be a candidate for 

additional prognostics. 

The lager loss of operation, or degraded operation (4, 

yellow), failures noted are for air in the hydraulic lines. 

There are two items shown with higher failure rate for loss 

of equipment (orange). These are the rear brake lights.  The 

burnt out bulb failure mode would be difficult to prognose 

but some automobiles do have detection sensors that 

provide a warning on the dashboard.  The use of LEDs 

significantly reduces the failure rate for these items. But, 

again, this shows the value of running a simulation of 

diagnostics results to provide a graphical representation of 

diagnostics, prognostics and maintenance actions over a 

specified operational time. The simulation results are not 

limited to charts.  Each calculation result has a detailed 

report defining events and values. 

Figure 10 shows calculation results for frequent failures that 

are prognosed but without a maintenance plan. These 

prognosed items are repaired without opportunistic 

maintenance or an effective level of repair definition. Since 

actual physics of failure prognostics typically looks at 

molecular level single failure modes, the analysis considers 

only single failure modes with no repair concept. Reliable 

items that were not repaired as a balanced maintenance 

action will begin to fail as the operating system matures, 

resulting in increased prognostic related failures and low 

Mean Time Between Maintenance Action (2, green) and 

Mean Time Between Prognostic events  (1, magenta)  
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Figure 10. Mean time between a prognostics maintenance 

action over time 

If this were calculated for Mission Success and Availability, 

It would show a direct correlation to reduced performance 

from the lack of maintenance understanding in a prognostics 

analysis. This is mitigated through the integration of 

prognostics and diagnostics in an effective ISDD process. 

 

Figure 11 shows the calculation results of failure modes that 

are prognosed but the failure was not detected prior to 

failure. The loss of equipment failure severity (2, orange) is 

shown for those failure modes that need to be reassessed for 

possible prognostics improvement. The grey areas indicate 

no failure effect (1). 

 

Figure 11. Faults over time by severity despite prognostics 

 

 

 

 

 

 

 

6.0. CONCLUSIONS 

There are currently no real guidelines for the calculation of 

diagnostic-related metrics for systems whose critical failures 

are covered by prognostics. More important is the lack of 

prognostics selection based on intelligent diagnostics 

analysis. Not only have approaches not yet been 

standardized, but many of the alternatives may not have 

even been discussed in the public arena. Existing standards 

describing diagnostic analysis, such as the IEEE Testability 

standard (IEEE Std. 1552, 2004), do not yet account for 

prognostics in any way. As a result, diagnostic engineering 

analysis and simulation tools have been enhanced to address 

this issue.  

As more systems are planned for embedded prognostics, 

questions about the relationship between prognostics and 

diagnostics, and even beyond into sustainment, are likely to 

become even more prominent. A common practice will 

begin to emerge with subsequent efforts at standardization. 

It is important that the relationship between prognostic and 

diagnostic analysis be worked as an integrated solution. 

Based on subjective, experience driven research, previous 

methods for assessing diagnostic-related prognostics 

behavior remain in question, and suppliers, customers and 

the companies that supply their tools also remain in 

question. 

The main point of all of this is to break out of the “Sokal 

Hoax” syndrome and work the technologies with the goal of 

a balanced Health Management and Sustainment solution. 

The end result will be significantly lower development, 

operation, and support costs, while experiencing higher 

Mission Success and Operational Availability! 

ACKNOWLEDGEMENT 

Eric Gould, Senior Scientist, DSI International, needs to be 

recognized for his development of the integration of 

Diagnostics and Prognostics in the model Based Diagnostics 

process. 

REFERENCES 

IEEE Trial-Use Standard for Testability and Diagnosability 

Characteristics and Metrics, IEEE Std 1522-2004.  

Gill, Luke, 2003, F-35 Joint Strike Fighter Autonomic 

Logistics Supply Chain 

Gould, E., 2011, Diagnostics “After” Prognostics 

Saxena, A., Celaya, J., Saha, S., and Goebel, 2010, K., 

Metrics for Offline Evaluation of Prognostic Performance, 

International Journal of Prognostics and Health 

Management, ISSN 2153-2648, 1010 001.  

Sokal, Alan D., 1994, 1995, Transgressing the Boundries: 

Towards a Transformative Hermeneutics of Quantum 

Gravity  



European Conference of Prognostics and Health Management Society 2012 

 

10 

BIOGRAPHY 

James R. Lauffer (Jim) began the technology journey in 

Ohio, USA, on New Year’s Day, 1941. Jim received his 

Ham Radio license at the age of 12 and designed many 

antennas and radio systems. He entered the Air Force at 17 

and worked in the Strategic Air 

Command as a maintainer of B47s and 

anything else that landed on the base. 

He entered industry in 1962 and spent 

the next 40 years in Logistics, 

Reliability, Maintainability and finally 

Systems Engineering. This career 

began with North American Aviation 

in 1962, then Rockwell and finally Boeing. Much of the 

engineering time was in combat system development on 

international programs, field operations testing, and then in 

management trying to get all of these technologies to work 

together.  Much of the field testing work involved passive 

sonar sea trails in the Atlantic and the Mediterranean. He 

also worked aircraft avionics upgrades for the Royal 

Australian Air Force. Jim retired from Boeing in 2001 and 

agreed to help out a small engineering business called DSI.  

This was 11 years ago and he still has not figured out how 

to retire. But, this past eleven years have resulted in a wealth 

of knowledge related to the diagnostics technologies and the 

resulting health management and sustainment systems. 

Jim’s formal education is a bit thin compared to others in 

this field.  He started in the world of Applied Physics but 

due to work and family, ended up with a business degree. I 

guess you would say he has several PhD degrees in 

experience. Jim is a past member of the Society of Logistics 

Engineers, Society of Reliability Engineers, and the 

Association of Old Crows (Electronic Warfare), IEEE, and 

presently The American Institute of Aeronautics and 

Astronautics (AIAA). To this day Jim continues to study 

and attend courses in the sciences.  He is still active in Ham 

Radio with his Extra Class license and is always looking for 

new and balanced PHM solutions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


