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ABSTRACT

Electrolytic capacitors are used in several applications rang-
ing from power supplies on safety critical avionics equipment
to power drivers for electro-mechanical actuators. This makes
them good candidates for prognostics and health management
research. Prognostics provides a way to assess remaining use-
ful life of components or systems based on their current state
of health and their anticipated future use and operational con-
ditions. Past experiences show that capacitors tend to degrade
and fail faster under high electrical and thermal stress condi-
tions that they are often subjected to during operations. In
this work, we study the effects of accelerated aging due to
thermal stress on different sets of capacitors under different
conditions. Our focus is on deriving first principles degra-
dation models for thermal stress conditions. Data collected
from simultaneous experiments are used to validate the de-
sired models. Our overall goal is to derive accurate models of
capacitor degradation, and use them to predict performance
changes in DC-DC converters.

1. INTRODUCTION

Most devices and systems today contain embedded electronic
modules for monitoring, control and enhanced functionality.
In spite of the electronic modules being used to enhance sys-
tem performance and capabilities, these modules are often the
first elements in the system to fail (Saha et al., 2009; Goebel
et al., 2008; Saxena et al., 2008). These failures can be at-
tributed to adverse operating conditions, such as high tem-
peratures, voltage surges and current spikes. Studying and
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analyzing the degradation of these systems (i.e.,degradation
in performance) provides data that can be used to meet criti-
cal goals like advance failure warnings; (Goebel et al., 2008;
Saxena et al., 2008), unscheduled maintenance;(Saha et al.,
2009) which play an important role in aviation safety.

The term “diagnostics” relates to the ability to detect and
isolate faults or failures in a system. “Prognostics” on the
other hand is the process of predicting health condition and
remaining useful life based on current state and previous
conditions. Prognostics and health management (PHM) is
a method that permits the assessment of the reliability of a
system under its actual application conditions. PHM meth-
ods combine sensing, data collection, interpretation of envi-
ronmental, operational, and performance related parameters
to indicate systems health. PHM methodologies can be im-
plemented through the use of various techniques that study
parameter variations, which indicate changes in parameter
degradation and operation performace based on variations in
a life-cycle profile.

Prognostics and Health Management (PHM) methodologies
have emerged as one of the key enablers for achieving ef-
ficient system level maintenance and safety in military sys-
tems (Saha et al., 2009). Prognostics and health management
for electronic systems aims to detect, isolate, and predict the
onset and source of system degradation as well as the time
to system failure. The goal is to make intelligent decisions
about the system health and to arrive at strategic and business
case decisions. As electronics become increasingly complex,
performing PHM efficiently and cost-effectively is becoming
more demanding (Saha et al., 2009; J. R. Celaya et al., 2010).

In the aerospace domain, flight and ground staff need to ac-
quire information regarding the current health state for all
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subsystems of the aircraft, such as structures, propulsion,
control, guidance and navigation systems on a regular basis
to maintain safe operation. This has given rise to research
projects that focus on accurate diagnosis of faults, developing
precursors to failure, and predicting remaining component
life (Balaban et al., 2010; J. R. Celaya et al., 2010). Most the
avionics systems and subsystems in todays modern aircrafts
contain significant electronics components which perform a
critical role in on-board, autonomous functions for vehicle
controls, communications, navigation and radar systems. Fu-
ture aircraft systems will rely on more electric and electronic
components. Therefore, this may also increase the rate of
electronics related faults that occur in these systems with per-
haps unanticipated fault modes that will be hard to detect and
isolate. It is very important to provide system health aware-
ness for digital electronics systems on-board, to improve air-
craft reliability, assure in-flight performance, and reducing
maintenance cost. An understanding of how components de-
grade is needed as well as the capability to anticipate fail-
ures and predict the remaining useful life of electronic com-
ponents (Balaban et al., 2010; Saha et al., 2009).

1.1. Related Work

The output filter capacitor has been identified as one of the
elements of a switched mode power supply that fails more
frequently, and therefore, has a critical impact on perfor-
mance (Vohnout et al., 2008; Goodman et al., 2007; Orsagh
& et’al, 2006). A prognostics and health management (PHM)
approach for power supplies of avionics systems is presented
in (Orsagh & et’al, 2006).

A health management approach for multilayer ceramic ca-
pacitors is presented in the work by (Nie et al., 2007). This
approach focuses on the temperature-humidity bias acceler-
ated test to replicate failures. This approach to fault detection
uses data trending algorithms in conjunction with multivariate
decision-making. The Mahalanobis distance (MD) is used to
detect abnormalities within the data and classify the data into
“normal” and “abnormal” groups. The abnormal data are then
further classified into severity levels of abnormality based on
which predictions of RUL are made.

In the study done by (Gu et al., 2008), 96 multi-layer ceramic
capacitors (MLCC) were selected for in-situ monitoring and
life testing under elevated temperature (85◦C) and humidity
(85% RH) conditions with one of 3 DC voltage bias levels:
rated voltage (50 V), low voltage (1.5 V), and no voltage (0
V). This method uses data from accelerated aging tests to de-
tect potential failures and to make an estimation of time of
failure. A data driven fault detection algorithm for multilayer
ceramic capacitor failures is presented in (Gu & Pecht, 2008).
The approach used in this study combines regression anal-
ysis, residual, detection and prediction analysis (RRDP). A
method based on Mahalanobis distance is used to detect ab-

normalities in the test data; there is no prediction of RUL.

In the work done by (Wereszczak et al., 1998) the failure
probability of the Barium Titanate used for the manufactur-
ing of MLCC’s was studied. Dielectric ceramics in multi-
layer capacitors are subjected to thermo-mechanical stresses,
which, may cause mechanical failure and lead to loss of elec-
trical function. Probabilistic life design or failure probability
analysis of a ceramic component combines the strength dis-
tribution of the monolithic ceramic material comprising the
component, finite element analysis of the component under
the mechanical loading conditions of interest, and a multiax-
ial fracture criterion.

The work by (Buiatti et al., 2010) looked at the degradation
in metalized polypropylene film (MPPF) capacitors, where a
noninvasive technique for capacitor diagnostics in Boost con-
verters is studied. This technique is based on the double es-
timations of the ESR and the capacitance, improving the di-
agnostic reliability and allowing for predictive maintenance
using a low-cost digital signal processor (DSP).

We adopt a physics based modeling (PBM) approach to pre-
dict the dynamic behavior of the system under nominal and
degraded conditions. Faults and degradations appear as pa-
rameter value changes in the model, and this provides the
mechanisms for tracking system behavior under degraded
conditions (Kulkarni et al., 2009).

In DC-DC power supplies used as subsytem in avionics sys-
tems (Bharadwaj et al., 2010; Kulkarni et al., 2009), elec-
trolytic capacitors and MOSFET switches are known to have
the highest degradation and failure rates among all of the
components (Goodman et al., 2007; Kulkarni et al., 2009).
Degraded electrolytic capacitors affect the performance and
efficiency of the DC-DC converters in a significant way. We
implement the PHM methodology to predict degradation in
electrolytic capacitors combining the physics of failure mod-
els with data collected from experiments on the capacitors
under different simulated operating conditions. In (Kulkarni,
Biswas, et al., 2011b; Kulkarni, Celaya, et al., 2011) we dis-
cuss about degradation related to thermal overtress conditions
and qualitative degradation mechanims. In this paper we dis-
cuss the derived physics based modeling and degradation re-
lated to thermal overstress condition (TOS) along with the
experiments conducted.

2. ELECTROLYTIC CAPACITORS

Electrolytic capacitor performance is strongly affected by its
operating conditions, such as voltage, current, frequency, and
ambient temperatures. When capacitors are used in power
supplies and signal filters, degradation in the capacitors in-
creases the impedance path for the AC current and decrease
in capacitance introduces ripple voltage on top of the desired
DC voltage. Continued degradation of the capacitor leads the
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converter output voltage to drop below specifications affect-
ing downstream components. In some cases, the combined
effects of the voltage drop and the ripples may damage the
converter and downstream components leading to cascading
failures in systems and subsystems.

A primary reason for wear out in aluminum electrolytic ca-
pacitors is due to vaporization of electrolyte (Goodman et
al., 2007) and degradation of electrolyte due to ion exchange
during charging/discharging (Gomez-Aleixandre et al., 1986;
Ikonopisov, 1977) , which, in turn leads to a drift in the two
main electrical parameters of the capacitor: (1) the equivalent
series resistance (ESR), and (2) the capacitance (C). The
ESR of a capacitor is the sum of the resistance due to alu-
minum oxide, electrolyte, spacer, and electrodes (foil, tab-
bing, leads, and ohmic contacts) (Hayatee, 1975; Gasperi,
1996). The health of a capacitor is often indicated by the
values of these two parameters. There are certain industry
standard thresholds for these parameter values, upon crossing
these threshold barrier the component is considered unhealthy
to be used in a system, i.e., the component has reached its end
of life, and should be immediately replaced before further op-
erations (Lahyani et al., 1998; Eliasson, 2007; Imam et al.,
2005).

As illustrated in Fig. 1 an aluminum electrolytic capacitor,
consists of a cathode aluminum foil, electrolytic paper, elec-
trolyte, and an aluminum oxide layer on the anode foil sur-
face, which acts as the dielectric. When in contact with the
electrolyte, the oxide layer possesses an excellent forward di-
rection insulation property (Gasperi, 1996). Together with
magnified effective surface area attained by etching the foil,
a high capacitance value is obtained in a small volume (Fife,
2006). Since the oxide layer has rectifying properties, a ca-

Anode Foil

Cathode Foil

Connecting Lead 

Aluminum Tab

Separator Paper

Figure 1. Physical Model of Electrolytic Capacitor

pacitor has polarity. If both the anode and cathode foils have
an oxide layer, the capacitors would be bipolar. In this work,
we analyze “non-solid” aluminum electrolytic capacitors in
which the electrolytic paper is impregnated with liquid elec-
trolyte. The another type of aluminum electrolytic capacitor,
that uses solid electrolyte (Bengt, 1995) is not discussed in

this work.

2.1. Overview of Degradation Mechanisms

The flow of current during the charge/ discharge cycle of the
capacitor causes the internal temperature to rise. The heat
generated is transmitted from the core to the surface of the
capacitor body, but not all the heat generated can escape. The
excess heat results in a rise in the internal temperature of
the capacitors which causes the electrolyte to evaporate, and
gradually deplete (Kulkarni, Biswas, et al., 2011b; Kulkarni,
Celaya, et al., 2011). Similarly in situations where the capac-
itor is operating under high temperature conditions, the ca-
pacitor body is at a higher temperature than its core, the heat
travels in the opposite directions from the body surface to the
core of the capacitor again increasing the internal temperature
causing the electrolyte to evaporate. This is explained using
a first principles thermal model of heat conduction (Kulkarni,
Biswas, et al., 2011b; Kulkarni, Celaya, et al., 2011).

Degradation in the oxide layer can be attributed to crystal de-
fects that occur because of the periodic heating and cooling
during the capacitor’s duty cycle, as well as stress, cracks, and
installation-related damage. High electrical stress is known to
accentuate the degradation of the oxide layer due to localized
dielectric breakdowns on the oxide layer (Ikonopisov, 1977;
Wit & Crevecoeur, 1974). These breakdowns, which accel-
erate the degradation, have been attributed to the duty cycle,
i.e., the charge/discharge cycle during operation (Ikonopisov,
1977). Further another simultaneous phenomenon is the
increase in the internal pressure (Gomez-Aleixandre et al.,
1986) due to an increased rate of chemical reactions, which
can again be attributed to the internal temperature increase in
the capacitor. This pressure increase can ultimately lead to
the capacitor popping.

All the failure/degradation phenomenon mentioned may act
simultaneously based on the operating conditions of the ca-
pacitors. We first study the phenomenon qualitatively, and
then discuss the steps to derive the first principles analytic
degradation models for the different thermal stress condition.
Electrolyte evaporations is caused either due to increase in in-
ternal core temperature or external surrounding temperature.
Both phenomenon lead to the same degradation mode,caused
either by the high electrical stress or thermal stress, respec-
tively.

3. THERMAL OVERSTRESS EXPERIMENT

In this setup we emulated conditions similar to high tem-
perature storage conditions (Kulkarni, Biswas, et al., 2011b;
Kulkarni, Celaya, et al., 2011), where capacitors are placed
in a controlled chamber and the temperature is raised above
their rated specification (60068-1, 1988). Pristine capacitors
were taken from the same lot rated for 10V and maximum
storage temperature of 85◦C.
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The chamber temperature was gradually increased in steps of
25◦C till the pre-determined temperature limit was reached.
The capacitors were allowed to settle at a set temperature for
15 min and then the next step increase was applied. This
process was continued till the required temperature limit was
attained. To decrease possibility of shocks due to sudden de-
crease in the temperature the above procedure was followed.

Experiments done with 2200 µF capacitors with TOS tem-
perature at 105◦C and humidity factor at 3.4%. At the end of
specific time interval the temperature was lowered in steps of
25◦C till the required room temperature was reached. Before
being characterized the capacitors were kept at room temper-
ature for 15 min. The ESR value is the real impedance mea-
sured through the terminal software of the instrument. Simi-
larly the capacitance value is computed from the imaginary
impedance using Electrochemical Impedance Spectroscopy
(EIS). Characterization of all the capacitors was done for
measuring the impedance values using an SP-150 Biologic
impedance measurement instrument (Biologic, 2010).
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Figure 2. Capacitance Plot for all the devices under TOS

4. PHYSICS BASED MODELING OF CAPACITOR DEGRA-
DATION

Based on the above discussions on degradation and experi-
ments conducted, in this section we discuss about deriving
the first principles models for thermal overstress conditions.
Under thermal overstress conditions since the device was sub-
jected to only high temperature with no charge applied we
observe degradation only due to electrolyte evaporation. The
models are derived based on this observations and measure-
ments see during from the experimental data.

For deriving the physics based models it is also very much
necessary to know about the structural details of the compo-
nent under study. The models defined use this information

for making effective degradation/failure predictions. A de-
tail structural study of the electrolytic capacitor under test is
discussed in this section.

During modeling it is not possible to know the exact amount
of electrolyte present in a capacitor. But using information
from the structure details we can approximately calculate the
amount of electrolyte present. Based on the type and configu-
ration, the electrolyte volume will vary which can be updated
in the model parameters. The equation for calculating the ap-
proximate electrolyte volume is derived from calculating the
volume of the total capacitor capsule, is given by :

Vc = πr2chc (1)

The amount of electrolyte present depends on the type of pa-
per used as a separator between the anode and cathode foils.
A highly porous paper type is used in the construction of the
capacitor such that maximum amount of electrolyte can be
soaked in the paper. The electrolyte is completely soaked in
the paper spacer. Hence the electrolyte volume can be ap-
proximated as :

Ve ≈ Vpaper (2)

The approximate volume of electrolyte, Ve based on ge-
ometry of the capacitor is expressed in terms of following
equation:

Ve = πr2chc −Asurface(dA + dC) (3)

A simplified electrical lumped parameter model of
impedance, M1 defined for a electrolytic capacitor is
as shown in Fig.3. The ESR dissipates some of the stored
energy in the capacitor. In spite of the dielectric insulation
layer between a capacitor’s plates, a small amount of ‘leak-
age’ current flows between the plates. For a good capacitor
operating nominally this current is not significant, but it
becomes larger as the oxide layer degrades during operation.
An ideal capacitor would offer no resistance to the flow of
current at its leads. However, the electrolyte , aluminum
oxide , space between the plates and the electrodes combined
produces a small equivalent internal series resistance.

C1
R1

ESR

C

1mΩ

R3 ≥ 10K   R4 ≥ 10K   

R2RE C2
Anode foil 

electrode 

resistance

Cathode foil 

electrode 

resistance

Electrolyte 

resistance

R1

2 mΩ

R2   

RE

1mΩ

C1
R1

2 mΩ

RE

Coxide_layer

C1

Figure 3. Lumped Parameter Model (M1 )

From the literature (Rusdi et al., 2005; Bengt, 1995; Roeder-
stein, 2007) and experiments conducted under thermal over-
stress, it has been observed that the capacitance and ESR
value depends of the electrolyte resistance RE . A more de-
tailed lumped parameter model derived for an electrolytic ca-
pacitor under thermal overstress condition,M2 can be modi-
fied fromM1, as shown in Fig. 4. R1 is the combined series
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and parallel resistances in the model. RE is the electrolyte
resistance. The combined resistance of R1 and RE is the
equivalent series resistance of the capacitor. C is the total
capacitance of the capacitor as discussed earlier.

R1 RE C

ESR

Figure 4. Updated Lumped Parameter Model (M2 )

4.1. First Principle Models

The input impedance of the capacitor network is defined in
terms of the total lumped series and parallel impedance of
the simplified network. The total lumped capacitance of the
structure is given by

C = (2εRε0Asurface)/dC (4)

From the literature study (Rusdi et al., 2005; Bengt, 1995) for
modeling ESR degradation it was observed that electrolyte
resistance (RE) parameter, as discussed above forms a major
part of combined ESR as shown in Fig. 3. Thus being a
dominant parameter any changes in RE lead to changes in
the ESR value. We studied the relationship between RE and
Asurface, which gives us a degradation model for ESR. The
equation for RE is given by :

RE = ρE dC PE/(2 ∗ L ∗H) (5)

Since RE is a dominant parameter in ESR and any changes
in RE affect ESR value, from Eq. (5) we express ESR in
terms of the oxide surface area, Asurface as:

ESR = ρE dC PE/(2 ∗Asurface) (6)

Exposure of the capacitors to temperatures Tapplied > Trated
results in accelerated aging of the devices (Kulkarni, Celaya,
et al., 2011; Kulkarni, Biswas, et al., 2011a; 60068-1, 1988).
Higher ambient storage temperature accelerates the rate of
electrolyte evaporation leading to degradation of the capaci-
tance (Kulkarni, Celaya, et al., 2011; Bengt, 1995). The de-
pletion in the volume and thus the effective surface area is
given by Eq. (7).

V = Vo − (Asurface jeo we)× t (7)

Details of the derivation of this equation can be found
in (Kulkarni, Biswas, et al., 2011b; Rusdi et al., 2005). Evap-
oration also leads to increase in the internal pressure of the ca-
pacitor, which decreases electrolyte evaporation rate. Eq. (9)
and Eq. (8) give us the decrease in the active surface area due
to evaporation of the electrolyte, which results in a decrease in
C and an increase in ESR, respectively (Bengt, 1995; Roed-
erstein, 2007).

4.1.1. Capacitance Degradation Model

Thus from Eq. (4) and (7) we can derive the first principles
capacitance degradation model, D1 which is given by :

D1 : C(t) =

[
2εRε0
dC

] [
V0 − V (t)

jeo t we

]
(8)

The degradation in capacitance is directly proportional to the
damage parameter V . As discussed earlier, increase in the
core temperature evaporates the electrolyte thus decreasing
the electrolyte volume leading to degradation in capacitance.
The resultant decrease in the capacitance can be computed
using Eq. (8).

4.1.2. ESR Degradation Model

From Eq. (6) and Eq. (7) the ESR degradation model, D2 is
given as :

D2 : ESR(t) =

[
ρE dC PE

2

] [
jeo we t

V0 − V (t)

]
(9)

In this model there are two parameters which change with
time, rate of evaporation jeo and the correlation factor related
to electrolyte spacer porosity and average liquid pathway, PE .
As the electrolyte evaporates due to high temperature the cor-
relation factor PE will increase as the average pathway of the
liquid decreases. Electrolyte evaporation under thermal stress
storage condition results due to the increase in the high atmo-
spheric temperature. Under this operating condition when the
surrounding temperature gets high, the temperature of the ca-
pacitor capsule also increases. Heat travels from the surface
of the body to the core of the temperature, this phenomenon
is described through the thermal model (Kulkarni et al., 2009;
Kulkarni, Celaya, et al., 2011).

The decrease in the capacitance parameter value is as a result
of the decrease in electrolyte volume due to evaporation under
thermal overstress condition. This relationship between de-
crease in capacitance with electrolyte volume is explained by
Eq. (8). Similarly increase inESR is given by the increase in
the electrolyte resistance (RE) as explained by Eq. (9). With
decrease in the electrolyte due to thermal overstress, the aver-
age liquid path length is reduced, which increases PE . Under
normal circumstances when the capacitors are stored at room
temperature or below rated temperatures, no damage or de-
crease in the life expectancy is observed. But in cases where
the capacitors are stored under thermal stress conditions per-
manent damage is observed.

In the thermal overstress experiments, the capacitors we char-
acterized periodically and after 3400 hours of operation it was
observed that the average capacitance (C) value decreased by
more than 8-9% while increase in the ESR value was ob-
served around 20 - 22%. From literature (60068-1, 1988)
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under thermal overstress conditons higher capaitance degra-
dation is observed and minor degradation in ESR which cor-
related with the data collected. The failure thresholds under
storage conditions for capacitance (C) is 10% while that for
ESR is around 280- 300% of the pristene condition values
(60384-4-1, 2007; Kulkarni, Biswas, et al., 2011b). Based on
the degradation observed from the experiments capacitance
degradation was considered as a precursor to failure to esti-
mate the current health condition of the device.

5. DEGRADATION MODELING

In our earlier work (J. Celaya et al., 2011b, 2011a; Kulkarni
et al., 2012) an implementation of a model-based prognostics
algorithm based on Kalman filter and a physics inspired em-
pirical degradation model has been presented. The physics
inspired degradation model was derived based on the capaci-
tance degradation data from electrical overstress experiments.
This model relates aging time to the percentage loss in capac-
itance and has the following form,

C(t) = eαt + β, (10)

where model constants α and β were estimated from the ex-
perimental data. Here the exponential model was linked to the
degradation data and parameters were derived based on this
data. The exponential empirical model derived in Eq. (10)
was further updated and as discussed in section (4.1.1) we
developed a first principles based generalized model to be im-
plemented for different capacitor types and operating condi-
tions. In this work we looked into the degradation data under
thermal overstress as discussed earlier and use Eq.( 8) to build
the physics based model based on following equation:

Here in this section we will discuss the parameter estima-
tion work done and study how well the developed degradation
model, D1 behaves based on the estimated static parameters.
As an initial step we implement a nonlinear least-squares re-
gression algorithm to estimate the model parameters.
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Figure 5. Estimation results for Volume decrease

Decrease in capacitance parameter is used as a precursor of
failure. Based on the experiments, capacitance parameter val-
ues are computed by characterizing the capacitors as shown
in plots of Fig. 2. From the degradation model, D1 given a
certain type of capacitor all the values in Eq. (8) can be com-
puted except the dispersion volume V . Therefore dispersion
volume V is computed based on the available data and used
to build a physics based model, D1 of the degradation phe-
nomenon. Initial electrolyte volume Vo at pristine conditions
is approximately computed from the physics and geometry of
the capacitor. From the experimental data the estimated vol-
ume computed decreases almost linearly through the initial
phase of degradation. Hence in this work we propose a lin-
ear dynamic model, which relates aging time to loss of elec-
trolyte volume. The loss in electrolyte is linked to decrease
in capacitance through Eq. (8) and has the following form,

Vk = θ̂1 + θ̂2 tk + θ̂3 tk
2 (11)

where θ̂1, θ̂2 and θ̂3 are model constants for decrease in vol-
ume V , which is estimated from the experimental data of ac-
celerated thermal aging experiments. In order to estimate the
model parameters, 14 capacitors out of the 15 were used for
the experiment, (labeled capacitors #1 through #15), and the
remaining capacitor is used to validate the model against ex-
perimental data. A nonlinear least-squares regression algo-
rithm is used to estimate the model parameters.
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Figure 6. Residuals

The experimental data is presented together with results from
the linear fit function of Eq. (11) and Eq. (8), as shown in
Fig. 5. It can be observed from the residuals of Fig. 6 that the
estimation error increases with time. This is to be expected
since the data takes a concave path after approximately 2500
hours of operation, a dip is observed in the linear degrada-
tion and hence we observe higher residuals values. This in-
dicates that the phenomenon of volume decrease is not linear
and we are working towards updating the model in Eq. (11).
The updated model will include additional degradation phe-
nomenons in addition to the current model explained which
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will take into consideration the dipping in the volume param-
eter during the later stages of aging as observed.
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The updated degradation model is used as part to estimate
the capacitance based on the estimated decrease in volume.
In Fig.7, based on the data from capacitors other than capaci-
tor #4, volume parameters were estimated. This was validated
against the change in volume of capacitor #4, and the model,
D1 was validated for decrease in capacitance.

Case θ̂1 θ̂2 θ̂3 MSE
1 523.6123 -0.01613 3.7100*10−7 685.6593
2 523.6122 -0.01613 3.7099*10−7 685.0815
3 523.6159 -0.01614 3.9403*10−7 684.3579
4 523.6109 -0.01609 3.8072*10−7 687.3755
5 523.6128 -0.01614 3.8428*10−7 688.3824
6 523.6100 -0.01613 3.7867*10−7 690.6146
7 523.6081 -0.01614 3.7269*10−7 688.1003
8 523.6089 -0.01613 3.7988*10−7 691.7173
9 523.6111 -0.01616 3.7447*10−7 686.0799
10 523.6122 -0.01613 3.8470*10−7 687.8928
11 523.6076 -0.01611 3.7350*10−7 690.5650
12 523.6065 -0.01614 3.7313*10−7 683.0697
13 523.6147 -0.01609 3.8906*10−7 686.4739
14 523.6120 -0.01612 3.8276*10−7 689.6318
15 523.6113 -0.01616 3.8317*10−7 689.8948

X̄ 523.6112 -0.0161 3.8077*10−7 687.6598
X̃ 523.6113 -0.0161 3.8072*10−7 687.8928
S.D 0.0026 1.8748*10−5 6.9373*10−9 2.5339
C.I 523.6098 -0.01614 0.3769*10−6 686.2565

523.6127 -0.01611 0.3846 *10−6 689.0630

Table 1. Parameter Estimation Results

Table 1 shows the estimated values of the parameters for each
capacitor along with the mean square error observed for the
estimated values.

6. CONCLUSION AND DISCUSSION

This paper presents a first principles based degradation elec-
trolytic capacitor model and a parameter estimation algorithm
to validate the derived model, based on the experimental data.
The major contributions of the work presented in this paper
are:

1. Identification of the lumped-parameter model, M1 and
M2 (Fig. 3 and Fig. 4) based on the equivalent electrical
circuit of a real capacitor as a viable reduced-order model
for prognostics-algorithm development;

2. Identification of capacitance (C) as a failure precursor in
the lumped parameter model,M1 as shown in Fig. 3;

3. Estimating the electrolyte volume from structural model
of the capacitor to be implemented in the first principles
degradation model, D1;

4. Development of the first principles degradation model
based on accelerated life test aging data which includes
decrease in capacitance as a function of time and evapo-
ration rate linked to temperature conditions;

5. Implementation of parameter estimation algorithm to
cross validate the derived first principles degradation
model, D1.

The degradation model, D1 based on the first principles gives
an indication of how a specific device degrades based on its
geometrical structure, operating conditions, etc. The derived
model can be updated and developed at a more finer granular
level to be implemented for detailed prognostic implemen-
tation. The results presented here are based on accelerated
aging experimental data and on the accelerated life timescale.
In our earlier work physics inspired degradation models based
on the observed data were discussed (J. Celaya et al., 2011b,
2011a). The work discussed in this paper is a next step to gen-
eralize the degradation model and has been tested for the cur-
rent data of capacitors under constant temperature of 105◦C.
As discussed in section (5), as a first step an linear model has
been implemented for decrease in volume, V and needs to be
updated to include the operating condition variables.

The performance of the proposed first principles degradation
model, D1 is satisfactory for this study based on the quality
of the model fit to the experimental data and cross validation
performance based on the parameter estimations done. In this
work, our major emphasis was on deriving the first principles
model for degradation and validating the model with a ba-
sic non-linear regression model. Our future work will focus
on exploring a detailed implementation of the physics based
model to Bayesian approach which can then be used for mak-
ing more accurate degradation and failure predictions. The
other focus point will be on using the physics based model to
validate the capacitor data under different thermal conditions
and capacitor geometry. This will greatly enhance the qual-
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ity and effectiveness of the degradation models in prognos-
tics, where the operating and environmental conditions along
with the structural conditions are also accounted for towards
degradation dynamics.

NOMENCLATURE

εR relative dielectric constant
εO permitivity of free space
to oxide thickness
V dispersion volume at time t
VO initial electrolyte volume
jeo evaporation rate (mg min−1 area−1)
t time in minutes
ρE electrolyte resistivity
PE correlation factor related to electrolyte

spacer porosity and average liquid pathway.
rc radius of capacitor capsule
hc height of capacitor capsule
Vpaper volume of paper.
L length of the anode oxide surface
H height of the anode oxide surface
Asurface effective oxide surface area (L x H)
we volume of ethyl glycol molecule
Vc total capacitor capsule volume
dA thickness of anode strip,
dC thickness of cathode strip
C capacitance
M1 electrical lumped parameter model
M2 updated lumped parameter model
D1 capacitance degradation model
D2 ESR degradation model
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