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ABSTRACT

The degradation of rolling-element bearings is mainly
stochastic due to unforeseeable influences like short term
overstraining, which hampers the prediction of the remain-
ing useful lifetime. This stochastic behaviour is hardly de-
scribable with parametric degradation models, as it has been
done in the past. Therefore, the two prognostic concepts pre-
sented and examined in this paper introduce a nonparametric
approach by the application of a dynamic Gaussian Process
(GP). The GP offers the opportunity to reproduce a damage
course according to a set of training data and thereby also esti-
mates the uncertainties of this approach by means of the GP’s
covariance. The training data is generated by a stochastic
degradation model that simulates the aforementioned highly
stochastic degradation of a bearing fault. For prediction and
state estimation of the feature, the trained dynamic GP is
combined with the Unscented Kalman Filter (UKF) and eval-
uated in the context of a case study. Since this prognostic ap-
proach has shown drawbacks during the evaluation, a multi-
ple model approach based on GP-UKF is introduced and eval-
uated. It is shown that this combination offers an increased
prognostic performance for bearing fault prediction.

1. INTRODUCTION

Forecasting the remaining useful lifetime (RUL) of line-
replaceable units (LRUs) with a high accuracy is one of the
main issues in aviation to avoid unnecessary maintenance cy-
cles and, therefore, to reduce aircraft life cycle costs. One
component of those LRUs can be rolling-element bearings,
whose RUL is of great interest and are therefore in the centre
of this enquiry.
Rolling-element bearings ensure the functionality of rotating
assembly parts in case of varying loading and frequency. Dur-
ing their life cycle, bearings degrade in two different ways
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according to the amount, duration and the nature of loading
and other influences. Those are e.g. contaminants or con-
structive incertitudes that can affect the tribological system
of a bearing. Overstraining and solid friction caused by a
high cyclic stress and a lack of lubricant, respectively, leads
to a rapid degradation of the bearing, as in case of calculated
strains like wear and tear or fatigue, the course of damage in-
creases continuously. A degradation process of a real bearing
results from both kinds of strains and, therefore, has a strong
stochastic character (Sturm, 1986).
To simulate this behaviour, several approaches of degrada-
tion models (DMs) have been developed in the past. Most
of them base on the Paris-Erdogan law that describes a rela-
tion between crack growth rate and effective stresses in the
examined material. By adjusting this law to existing test re-
sults of real bearings, several enhancements were formulated
and evaluated, as Choi et al. did in (Choi & Liu, 2006b)
and (Choi & Liu, 2006a), respectively. Other DMs are based
on the Lundberg-Palmgren model that describes the correla-
tion between the probability of survival and among others the
maximum shearing stress. Yu et al. refined this approach by
adding a more precise geometrical description of the contact
surface in (Yu & Harris, 2001).
All aforementioned models describe the degradation to de-
pend on the application of external load difference, as a non-
loaded bearing would not degrade at all. In reality, the degra-
dation is also a function of the current degradation, since de-
tached particles can lead to solid friction. The DM in this
paper that is applied to generate reliable degradation courses
considers both the degradation rate due to loading and due to
the state of degradation itself.
Most of these DMs are used as prognostic models (PMs) in
combination with state estimation. Usually particle filters
based on the aforementioned Paris-Erdogan model are imple-
mented, as done in (Orchard & Vachtsevanos, 2009). Other
prognostic concepts are based on the Archard wear equation.
Daigle et al. presented a model-based prognostic approach by
estimating the RUL of a pneumatic valve with a fixed-lag par-
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ticle filter (Daigle & Goebel, 2010). The appropriated model
relates the current degradation to the wear of material based
on the Archard equation.
Besides a DM that accounts for the current degradation state,
Orsagh et al. presented a prognosis approach of a rolling-
element bearing (Orsagh, Sheldon, & Klenke, 2003). By
measuring several features like e.g. the oil debris of the bear-
ing or the vibration signal, they predicted the RUL depending
on the measured fused features by correlation with the current
state of degradation. The RUL was then forecast according to
the applied PM.
The prognostic concept at hand attempts another approach,
as it is not based on a physical model. Therefore, a dynamic
Gaussian Process (GP) model is trained on a degradation pro-
cess and combined with the Unscented Kalman Filter (UKF)
for state estimation. Ko et al. analysed this dynamic prognos-
tic model in (Ko, Klein, Fox, & Haehnel, 2007) by tracking
an autonomous micro-blimp. Additionally, the expected ben-
efits of the GP-UKF concept in combination with a multiple
model approach is examined.
This paper is divided into four parts. In Section 2 the ap-
propriated DM of a rolling-element bearing is presented. The
prognostic approach with a short introduction in the two com-
ponents UKF and GP and the multiple model approach are
described in Section 3 and in Section 4 the two concepts are
tested and evaluated in the context of a case study.

2. BEARING FAULT DEGRADATION

As the objective of this paper is to forecast the degradation
of a bearing, a feature has to be identified that directly corre-
sponds to the current state of degradation. One variable is the
surface of pitting A, i.e. excavation of macroscopic particles
caused by material fatigue, either in rolling-elements or in the
inner- or outer-race. As one pitting does not immediately lead
to the failure of a bearing, its functionality remains. However,
this fault produces single impacts due to the geometrical ir-
regularity to the assembly group directly contacting the bear-
ing. Depending on the location of the fault, these impacts
appear with certain frequencies as a function of the rotation
speed Ω of the shaft, the number of rolling elements n and ge-
ometric magnitudes, summarised by Antoni et al. in (Antoni,
2007) and depicted in Table 1.

Inner-race fault n
2 Ω(1 + d

D cos θ)
Outer-race fault n

2 Ω(1− d
D cos θ)

Rolling-element fault DΩ
d (1− ( dD cos θ)2)

Cage fault Ω
2 (1− d

D cos θ)
Inner-race modulation Ω
Cage modulation Ω

2 (1− d
D cos θ)

Table 1. Ω = speed of shaft; d = bearing roller diameter;
D = pitch circle diameter; n = number of rolling elements;
θ = contact angle

These impacts produce a structure-borne noise and by using
an acoustic emission sensor, the frequency and the amplitude
of the impacts generated by the rotating fault can be detected.
Herewith the location of the fault (according to the frequency
and Table 1) and the degree of degradation can be determined
as the acceleration amplitude is assumed to correlate with
the pitting surface and, therefore, the current condition of the
bearing.
The degradation of a real rolling-element bearing results from
two different courses of damage, as described in the introduc-
tion: a continuously rising damage caused by material fatigue
that is interrupted by abrupt steps as a result of overstraining.
Both effects can be mathematically described in the appropri-
ated DM by the following differential equation of the degra-
dation, i.e. pitting surface A

∆Ai = kA ·Ai−1 + ku ·∆ui−1, (1)

where ∆ui is the external loading difference of the bearing
during one cycle and kA ∼ W(λ′(Ai−1), k′(Ai−1)) is a fac-
tor drawn from a Weibull distribution, whose scaling param-
eter k′ and shape parameter λ′ are expected to be functions
of the previous degradation Ai−1. The product kA · A rep-
resents the influence of the degradation on the transition rate.
Analogously, ku ·∆u stands for the increased degradation rate
caused by loading, as ku ∼ E(µ(Ai−1)) is drawn from an ex-
ponential distribution, whereas the mean µ is also a function
of Ai−1. Both coefficients kA and ku realise the stochastic
character of the degradation. Therefore, the current degrada-
tion in cycle i can be calculated as

Ai = Ai−1 + ∆Ai. (2)
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Figure 1. (a) three different degradation courses as the result
of Equation (1), (b) applied normalised load spectrum
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In Figure 1, three different damage courses generated by the
DM and the applied normalised loading are depicted. Fig-
ure 1a clearly shows the stochastic character of a real degra-
dation, as the RUL of all courses differ strongly and the
mainly continuous course is interrupted by steps in case of
high strain. The correlation between the applied loading in
Figure 1b and the degradation rate is obvious, as the load dif-
ference between cycle 100 and 125 is zero and the degrada-
tion in this range is quite flat. Thus, the applied DM is as-
sumed to reproduce the damage course of a faulty bearing for
the use of this paper instead of real test rig measurements.

3. PROGNOSTIC APPROACH

The applied prognostic concepts are introduced in this sec-
tion. The UKF is used for state estimation and prediction of
the degradation. Instead of a parametric model, the UKF is
founded on a trained dynamic GP. The basics of both prog-
nostic tools are presented in the following subsections. Sub-
section 3.1 is based on (Ko et al., 2007), (Ko & Fox, 2011)
and (Rasmussen & Williams, 2006). In Subsection 3.3, a
multiple model approach that promises an increased prognos-
tic performance is explained.

3.1. Dynamic Gaussian Process for Fault Degradation

The GP offers the feasibility of learning regression function
from sample data without any parametric model. Rasmussen
et al. describe the GP in (Rasmussen & Williams, 2006) as
defining a Gaussian distribution over a function. In other
words, the GP establishes a function f out of a given train-
ing data set D = {(x1, y1), (x2, y2), ...(xn, yn)} according to
a given noisy process

y = f(X) + ε, (3)

where X = [x1, x2, ..., xn] is a n × m input matrix with m
the number of inputs and n the length of the single input vec-
tor xi. y is a n-dimensional vector of scalar outputs and ε
represents a noise term, which is drawn from a Gaussian dis-
tribution N (0, σ2).
A Gaussian distribution is basically defined by its mean µ and
covariance Σ. Therefore, the GP defines a zero-mean joint
Gaussian distribution over the given outputs y of the training
data D, as follows

p(y) = N (0; K(X,X) + σ2
nI). (4)

The covariance of this joint distribution consists of the ker-
nel matrix K(X,X) that represents the deviation of the in-
puts among each other and the term σ2

nI for the Gaussian
noise caused by ε. The entries of K are the kernel functions
k(xi, xj), where the squared exponential

k(xi, xj) = σ2
f exp(−1

2
(xi − xj)W(xi − xj)T ). (5)

is a standard kernel function. Here, σ2
f is the signal variance

and W is a diagonal matrix that contains the distance measure

of every input.
To calculate the mean GPµ and the covariance GPΣ out of a
given test input x∗ and test output y∗ w.r.t. the training data
D, the following expression can be applied

GPµ(x∗, D) = kT∗ [K + σ2
nI]−1y (6)

for the mean and

GPΣ(x∗, D) = k(x∗, x∗)− kT∗ [K + σ2
nI]−1k∗ (7)

for the covariance. Here, the compact form K(X,X) = K
and k∗ the covariance function between the test input x∗ and
the training input vector X is used. Obviously, the mean
prediction in Equation (6) is a linear combination of the
training output y and the correlation between test and training
input. The covariance is the difference of the covariance
function w.r.t. the test inputs and the information from the
observation k(x∗, x∗).
The GP possesses three so-called hyperparameters
θ = [W σf σn] from the kernel function and the pro-
cess noise. Optimal hyperparameters θ can be found by
maximising the log likelihood

θmax = arg max
θ
{log(p(y|X, θ))} . (8)

Considering a stochastic dynamic degradation process, Equa-
tion (3) can be written as

rk+1 = rk + ∆rk + εk. (9)

Therefore, the state transition ∆rk is trained with the GP. The
generated training data set Dr = {X,X ′} consists of the in-
puts X = [(r1,∆u1), (r2,∆u2), ..., (rn,∆un)] and the state
transition X ′ = [∆r1,∆r2, ...,∆rn], which is calculated as

∆rk = rk − rk−1 (10)

or w.r.t. the mean of the dynamic GP of Equation (6)

rk = rk−1 +GPµ(uk−1, rk−1, Dr) (11)

and the covariance GPΣ(uk−1, rk−1, Dr), both fully de-
scribe the Gaussian distribution of the GP. The additional ben-
efit generated by this approach is the time invariance caused
by the transition from a static to the dynamic system and
the ability to capture different kinds of degradation processes
without physical knowledge of the actual process.

3.2. Combining GP and Unscented Kalman Filter

In case of a nonlinear dynamic system, the application of the
UKF is the appropriate choice, because it estimates the state
of nonlinear systems by means of observation z and system
inputs u. As the presented prognostic approach intends to
omit a physical degradation model, the Extended Kalman fil-
ter is also inapplicable, since an analytic model is required
due to the linearisation step.
In general, a nonlinear dynamic system in kth time step can
be described as

xk = G(xk−1,uk−1) + εk (12)
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with the state transition function G, the n-dimensional
state vector x, the input vector u and an additive Gaussian
noise term ε drawn from a zero-mean Gaussian distribution
ε ∼ N (0, Qk) with the process noise Qk as covariance.
An analogue description of the observation zk can be formu-
lated as

zk = H(xk) + δk. (13)

Here, H relates the state to the observation and δ is also an
additive noise term δ ∼ N (0, Rk), where Rk is the measure
noise.
Through the scaled unscented transformation by Julier et al.
(Julier, 2002) sigma points χ[i] are defined according to the
covariance Σ and the mean µ of the previous time step

χ[0] = µ
χ[i] = µ+ (

√
(n+ λ)Σ)i for i = 1, ..., n

χ[i] = µ− (
√

(n+ λ)Σ)i−nfor i = n+ 1, ..., 2n,(14)

where λ is a scaling parameter that, in case of the scaled un-
scented transformation, is defined as

λ = α′2(n+ κ)− n. (15)

Here, α′ and κ are further scaling parameters to determine the
spread of the sigma points. These sigma points according to
the standard UKF are transformed depending on function G
to generate a new distribution with mean and covariance.
As the applied UKF contains the dynamic GP, this state tran-
sition functionG is replaced by the Gaussian predictive distri-
bution of Equation (6) and thereby defines a new set of sigma
points

χ̄
[i]
k = GPµ(χ[i], D). (16)

Similarly, the process noise QK is defined by Equation (7).
With this information, a priori mean and covariance can be
generated by

µ̃ =

2n∑
i=0

w[i]
m χ̄

[i]
k

Σ̃ =

2n∑
i=0

w[i]
c (χ̄

[i]
k − µ′)(χ̄

[i]
k − µ′)T+

+ GPΣ(x∗, D) (17)

with weights wm and wc set up in (Julier, 2002).
The whole applied GP-UKF algorithm is depicted in Table 2.
In comparison to Equation (16), the new sigma points in line
3 are generated by χ̄[i]

k = χk−1 +GPµ(uk−1, χ
[i]
k−1, DG), as

the applied GP is trained according to Equation (9). The pre-
diction of the mean and covariance in time step k described
in Equation (14) to (17) takes places from line 1 to 5. A priori
estimation is corrected according to the measured observation
zk from line 7 to 13. This correction step proceeds similarly
to the prediction.
In line 6 the transformed sigma points of line 3 χ̄k are used
as observation Ẑ [i]

k . Line 8 is comparable to line 5 and in line

1: Inputs µk−1, Σk−1, uk−1, zk, Rk
2: χk−1 = (µk−1, µk−1 + γ

√
Σk−1, µk−1 − γ

√
Σk−1)

3: for i = 0, ..., 2n :

χ̄
[i]
k = χk−1 +GPµ(uk−1, χ

[i]
k−1, Dg)

Qk = GPΣ(uk−1, µk−1, Dg)

4: µ̃k =
∑2n
i=0 w

[i]
m χ̄

[i]
k

5: Σ̃k =
∑2n
i=0 w

[i]
c (χ̄

[i]
k − µ̂k−1)(χ̄

[i]
k − µ̂k)T +Qk

6: Ẑ [i]
k = χ̄

[i]
k

7: ẑk =
∑2n
i=0 w

[i]
m Ẑ [i]

k

8: Sk =
∑2n
i=0 w

[i]
c (Ẑ [i]

k − ẑk)(Ẑ [i]
k − ẑk)T +Rk

9: Σ̂x,zk =
∑2n
i=0 w

[i]
c (χ̄

[i]
k − µ̃k)(Ẑ [i]

k − ẑk)T

10: Kk = Σ̂x,zk S−1
k

11: µk = µ̃k +Kk(zk − ẑk)

12: Σk = Σ̃k −KkSkK
T
k

13: Outputs µk,Σk

Table 2. Applied GP-UKF Algorithm

9 the cross-covariance of prediction and observation is deter-
mined. Depending on both, the Kalman gain Kk is generated
in line 10 and based on this, the new mean and covariance in
time step k are defined in line 11 and 12, respectively.

3.3. Multiple Model Approach

Selecting one model to predict the RUL of bearing faults ig-
nores the uncertainty due to the stochastic nature of the degra-
dation process. To take the uncertainties into account, more
prognostic models (PMs) are needed to improve the predic-
tion. A Bayesian formalism is used to combine the knowl-
edge of a setM of PMs, by weighting each model to be the
correct one, as demanded by Li et al. in (Li & Jilkov, 2003).
Therefore, the Interacting Multiple Model (IMM) estimator,
which bases on the Autonomous Multiple Model (AMM), is
applied. In contrary to latter, the IMM belongs to the group
of cooperating multiple model approaches, since every model
mi ∈ M interacts with the other. Thus, the multiple model
filters are reinitialised during every time step k according to
information of the previous time step.
Consider Equations (12) and (13) with one PM. Then the ex-
tension to the multiple model approach follows as

xk = G(xk−1,uk−1,m
i) + εk

zk = H(xk,mi) + δk (18)

according to (Schaab, 2011).
The first steps of the IMM algorithm consist of a reinitialis-
ing step with a calculation of a mode probability of every ith
model

µ
(i)
k|k−1 = P (m

(i)
k |y1:k) for i = 1, ..., nz

=

nz∑
j=1

hijµ
(j)
k−1 (19)

with the entries hij = P
{
mk = mj |mk−1 = mi

}
of the

transition matrix H according to Markov. The application of

4



European Conference of the Prognostics and Health Management Society, 2012

the transition matrix H prevents the prognostic approach of
insisting on one model, as it offers the possibility of a change
from model i to j during every time step. Therefore, the tran-
sition matrix H describes a Markov chain, whereas H is as-
sumed to be time invariant.
By using the information of the previous time step and
µ

(i)
k|k−1, a weighting factor according to

µ
j|i
k−1 = P (m

(i)
k−1|y1:k−1,m

(i)
k )

=
hj|iµ

(j)
k−1

µ
(i)
k|k−1

(20)

is calculated. Herewith an individual reinitialising value for
every filter

x̄
(i)
k−1|k−1 = E[xk−1|y1:k−1,m

(i)
k ]

=

nz∑
j=1

x̂
(j)
k−1|k−1µ

j|i
k−1 (21)

and similarly a covariance P̄ (i)
k−1|k−1 (s. Table 3) is computed.

After the reinitialising of the models, these initial values are
provided to the applied filters, which are in case of the appro-
priated prognostic approach GP-UKFs with different PMs.
According to the likelihood L

(i)
k , which depends on the

residuum e
(i)
k = z

(i)
k − ẑk

(i) and indicates the probability
that i is the correct model, the state probability of model i is
calculated as

µ
(i)
k =

µ
(i)
k|k−1L

(i)
k∑nz

j=1 µ
(j)
k|k−1L

(j)
k

. (22)

Finally, the results of the single i filters are fused to the state
x̂k|k and covariance estimation Pk|k by means of the mini-
mum mean squared error (MMSE) weighted with the state
probability of Equation (22)

x̂k|k =

nz∑
i=1

x̂
(i)
k|kµ

i
k

Pk|k =

nz∑
i=1

[P
(i)
k|k + (x̂k|k − x̂(i)

k|k)(x̂k|k − x̂(i)
k|k)T ]µ

(i)
k .(23)

The entire algorithm is depicted in Table 3.

4. CASE STUDY

The previously defined prognostic concepts are tested and
evaluated for the case of a degrading rolling-element bear-
ing according to the DM of Section 2. Since the training data
of the GP are computer-generated, the appropriated vibration
model (VM) is defined and described. Afterwards, the results
and problems of the GP-UKF approach and the IMM prog-
nostic approach are presented.

1: Inputs µ(i)
k−1, x̂k−1|k−1, Pk−1|k−1

2: µ
(i)

k|k−1 =
∑nz
j=1 hijµ

(j)
k−1, for i = 1, ..., nz

3: µ
j|i
k−1 =

hj|iµ
(j)
k−1

µ
(i)
k|k−1

4: x̄
(i)

k−1|k−1 =
∑nz
j=1 x̂

(j)

k−1|k−1µ
j|i
k−1

5: P̄
(i)

k−1|k−1 =
∑nz
j=1[P

(j)

k−1|k−1 + (x̄
(i)

k−1|k−1 − x̂
(j)

k−1|k−1)

(x̄
(i)

k−1|k−1 − x̂
(j)

k−1|k−1)T ]µ
j|i
k−1

6: s. Table 2, Inputs: x̄(i)

k−1|k−1, P̄
(i)

k−1|k−1, yk, R
(i)

Outputs: e(i)
k = z

(i)
k − ẑk

(i), x̂
(i)

k|k, P
(i)

k|k

7: L
(i)
k = P (e

(i)
k |m

(i)
k , y1:k) = N (e

(i)
k ; 0, S

(i)
k )

8: µ
(i)
k =

µ
(i)
k|k−1

L
(i)
k∑nz

j=1 µ
(j)
k|k−1

L
(j)
k

9: x̂k|k =
∑nz
i=1 x̂

(i)

k|kµ
i
k

10: Pk|k =
∑nz
i=1[P

(i)

k|k + (x̂k|k − x̂(i)

k|k)(x̂k|k − x̂(i)

k|k)T ]µ
(i)
k

11: Outputs µ(i)
k , x̂k|k, Pk|k

Table 3. IMM Algorithm

4.1. Simulation of Structure-borne Noise

The aim of this subsection is to generate a vibration signal of
a faulty bearing, as it could be measured in reality. There-
fore, a combination of a later on set up VM and a DM is
required, since the latter creates a monotonically rising ac-
celeration amplitude of impulses, as described in Section 2,
which are modulated by the VM. By this means, a vibration
signal is generated and can be evaluated in frequency range
to detect the state of degradation.
The impulses in the area of the bearing can be measured by
an acoustic emission sensor. Antoni et al. determined in
(Antoni, 2007) that this measured vibration signal consists of
several modulations of the initial impulses and can be sum-
marised in a VM in time domain as

x(t) =

+∞∑
i=−∞

h(t− iT − τi) q(iT )Ai + n(t). (24)

Here, τi and Ai represent the uncertainties of the measured
signal in the arrival time and the amplitude of the ith impact,
respectively, as e.g. the penetration of the rolling-element into
the pitting of an inner-race is a stochastic process. The trans-
mission behaviour of the surrounding machine parts up to
the acoustic emission sensor is considered by the impulse re-
sponse function h(t) with the inter-arrival time iT of two con-
secutive impulses. The amplitude modulation q(t) is caused
by the cage frequency and n(t) represents the additive back-
ground noise.
The applied VM is based on Equation (24). For a more re-
alistic signal, it is assumed that there is another additive im-
pulse sequence caused by other mechanisms in the LRU. For
example a rotating systems with a rotating-frequency is also
measured by the acoustic emission sensor and its amplitudes
outclass those of the fault. The resulting vibration signal x(t)
in time range and its power spectral density (PSD) is depicted
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Figure 2. (a) vibration signal x(t) in time range, (b) PSD of
x(t) with the marked fault frequency ff = 127Hz, (c) PSD
of the envelope of x(t)

in Figures 2a and 2b, respectively. In Figure 2b, there is a
mark at the fault frequency ff = 127Hz, as a fault was as-
sumed to be localised at the inner-race.
The vibration signal in time range is dominated by the back-
ground noise and the impact sequence of other mechanisms
with a frequency of fo = 20Hz. In Figure 2b the as-
sumed system behaviour of a second-order lag element with
an eigenfrequency of fSB ≈ 1600Hz representing the path
between the bearing and the sensor is clearly visible in con-
trast to the impulses caused by the fault, which are almost
overshadowed by the background noise.
By the application of an envelope xenv of the original vibra-
tion signal, the influence of the system behaviour is reduced,
as depicted in Figure 2c. Besides the impulse sequence and its
modes, the amplitude of the fault frequency can be scanned.
The amplitude of the PSD at the fault frequency is related
to the amplitude given by the DM and therefore is an appro-
priate feature for the prognostic process, as it determines the
current state of degradation. In addition the sidebands caused
by the cage modulation q(t) at the frequency f = ff ± fc
with an expected cage frequency fc = 20Hz get visible.
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Figure 3. simulated degradation of a rolling-element bearing
(a) real degradation as the result of Equation (1), (b) measured
normed degradation of sampling the PSD generated by the
previously set up VM at the fault frequency

The comparison of the real degradation of the applied DM
in Equation (1) and the feature rfeat is depicted in Figure 3,
whereas the applied loading is given in Figure 1b. The mea-
sured degradation is quite noisy due to the background noise
that dominates the PSD of the vibration signal in lower fre-
quency range. It indicates a different course compared to
the real degradation due to the frequency analysis, but as it
also denotes the monotonically rising character, the measured
amplitude directly correlates with the pitting surface in Fig-
ure 3a, i.e. the current degradation.
The prognostic range is set within the normed feature bound-
ary rfeat ∈ [0.001, 1], which is related to a pitting surface
range of A ∈ [5µm2, 70µm2]. So this measured degradation
course is applied for training and testing the GP-UKF prog-
nostic concepts.

4.2. Applied Performance Metrics

To analyse the prognostic performance, several performance
metrics have to be applied. Those metrics can be one single
analytical characteristic for the entire prediction or a graphi-
cal depiction of every prediction step. Selected performance
metrics are summarised by Saxena et al. in (Saxena et al.,
2008), whereas a few of these are used for evaluation of the
appropriated prognostic concept in the following sections.
Some notations of the metrics domain are given in the follow-
ing glossary:

UUT Unit under test
EOL End of life

6
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EOP End of prediction - predicted failure feature
crossed threshold

i Time index
l Number of UUT index
P Time index of the first prediction
L Total number of predictions
λ Normed time range of the entire prediction
rl(i) Estimation of RUL at time step ti for the lth

UUT
rl∗(i) Real RUL at time step ti

In the following subsections the applied performance metrics
are defined.

4.2.1 Error

The error ∆l(i) indicates the difference between the predicted
RUL and the true RUL in time step i

∆l(i) = rl∗(i)− rl(i) (25)

The error is one of the basic accuracy indicators and is, there-
fore, included directly or indirectly in most of the selected
metrics.

4.2.2 Average Bias

By averaging the error w.r.t. the entire prediction range, the
average bias AB of lth UUT is defined as

ABl =

∑EOP
i=P ∆l(i)

EOPl − Pl + 1
(26)

Thus, the perfect score of ABl is zero.

4.2.3 Mean absolute percentage error

The Mean Absolute Percentage Error (MAPE) can be written
as

MAPE(i) =
1

L

L∑
i=1

∣∣∣∣100∆l(i)

rl∗(i)

∣∣∣∣ . (27)

As it contains the error w.r.t. the actual RUL, derivations in
early states of prediction are not as weighted as those near the
EOP.

4.2.4 Mean squared error

One most commonly used metric is the Mean Squared Error
MSE, since it averages the squared error w.r.t. the number
of predictions L

MSE(i) =
1

L

L∑
i=1

∆l(i)2 (28)

An advantage in comparison to the average bias is that the
MSE considers both negative and positive errors, as the
average bias decreases at the appearance of positive and
negative derivations within one prediction.

4.2.5 Prognostic horizon

The Prognostic horizon PH describes the difference between
the EOP and the current time step i

PH(i) = EOP − i, (29)

whereas the PH can be dictated to fulfill certain specifica-
tions. Those are e.g. to remain within a given constant error
bound depending on an accuracy value α, i.e.

[1− α] · rl∗ ≤ rl(t) ≤ [1 + α] · rl∗, (30)

comparable to the metrics in the following last subsection.
Throughout the whole expectations the accuracy value is α =
0.05.

4.2.6 α - λ Performance

Similarly to the PH, the α - λ Performance describes the time
span, when the predicted RUL remains within a given error
bound. In comparison to the PH, the bound decreases linearly
according to

[1− α] · rl∗(t) ≤ rl(t) ≤ [1 + α] · rl∗(t). (31)

Like the MAPE of Equation (27), this metric favours early
predictions at λ ≈ 0 and tightens the demands for predictions
near EOP (λ ≈ 1). Throughout the whole expectations the
accuracy value α of the α - λ accuracy is α = 0.20.

4.3. Prognostic Results of GP-UKF Approach

The aim of this section is to evaluate the GP-UKF approach.
In Figure 4, four different test trials are depicted, whereas all
courses were generated by the DM in Equation (1). How-
ever, the difference especially between trial 1 and 4 in terms
of RUL at the beginning of the observation is obvious. There-
fore, trial 2 has a similar course to trial 3 with nearly the same
life cycle.
In Figure 4b, the corresponding features scanned at the fault
frequency ff = 127Hz in the PSD are given, which show a
slightly different character in comparison to the real degrada-
tion. The noise increases at higher degradation and is filtered
by a low-pass filter with regard to the GP training. In Figure 5,
the results of the GP training using trial 3 is shown, whereas
the estimated training and the real degradation is overlaid by
the estimated test degradation.
The results of both the state estimation and the prediction of
data set 2 and 3 using the UKF are presented in Figure 6.
To compare the state estimation performance, the real feature
course is also plotted. The first prediction started at cycle 2,
whereas the following predictions began every 10 cycles later.
The state estimation of data set 2 matches the real course rec-
ognizably. But also the predictions show a high accuracy with
an initial error ∆(2)(i = 2) ≈ 2 cycles. In sum, all predic-
tions represent the behaviour of the damage course of trial 2.
When the GP-UKF is trained and tested with data set 3, the
prediction performance becomes slightly worse, as the error

7
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Figure 4. four applied data sets, (a) real degradation, (b) fea-
ture

of the forecast RUL of early predictions is about 20 cycles
lower than the real RUL. However, later predictions (≈ 6th)
match the real degradation with an accuracy allowing the pre-
diction of the RUL.
The same aforementioned behaviour is depicted in several
performance metrics, summarised in Table 4. The two simi-
lar metrics PH and α-λ accuracy are given as fractions of the
normed prediction range λ to indicate the time range, when
the predictions fulfill the specifications until the EOP. Addi-
tionally, the RUL is also normed to allow comparison of the
four trials with different RUL.
In general, the predictions of all four trials show a high ac-
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Figure 5. training of the GP with data set 3
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Figure 6. the state estimation and prediction of (a) data set 2
and (b) data set 3 in comparison to the real degradation course

Performance AB MSE MAPE α - λ PH
Metric

Data Set 1 −0.21 21.79 19.52 1 0.86
Data Set 2 0 10.87 13.11 1 1
Data Set 3 −3.48 78.71 24.55 1 0.81
Data Set 4 −2.28 56.44 23.86 1 0.84

Table 4. performance metrics of the four trials tested with
themselves

curacy, since every trial remains within the given α-λ error
bound during the entire prediction range and also satisfies the
tighter specification of the PH after 20% of the normed pre-
diction range λ, as displayed in Figure 7. Therefore, every
trial converges to the actual RUL with only slight deviations
at 0.3 λ. Additionally, all predictions indicate a rather conser-
vative character, since the AB of all trials is mainly negative.
In sum, the selected metrics correspond with the graphical
results of Figure 6. The appropriated GP-UKF prognostic
concept offers a high accuracy for long turn prediction of a
rolling-element bearing, in case of the degradation following
the model the filter is trained with.

4.4. Generalisation of the Prognostic Approach

Now the prognostic results of a GP-UKF that is tested with
a degradation course, which differs from the training set, are
discussed as it occurs in real applications. Figure 8a and 8b
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Figure 7. (a) prognostic horizon of the four given trials at
α = 5%, (b) α-λ accuracy at α = 20%

show the results of the state estimation and prediction of trial
1 and 4, respectively, when the prognostic model is trained
with the data of trial 2. Additionally, the real degradation
is plotted. The state estimation of both sets is satisfactory,
since there are only slight deviations over the whole prognos-
tic range. The predictions generally indicate the course of
the training data set 2 with a progressive degradation at the
beginning and a flat degradation rate at the end of the life cy-
cle, whereas both characteristics differ from the tested sets.
Therefore, the forecast degradations are not as convincing as
in comparison to Section 4.3, according to expectations.

Performance AB MSE MAPE α - λ PH
Metric

Data Tr 2 Test 1 44.64 3522.93 242.65 0 0.07
Data Tr 2 Test 4 8.64 544.8 116.60 0 0.04
Data Tr 3 Test 1 22.79 1514.79 151.34 0 0.071
Data Tr 3 Test 4 −28.12 1172.28 149.59 0 0.28

Table 5. performance metrics of different test data sets, when
GP is trained with data set 2

The performance is analysed again by means of the metrics
in Table 5. Additionally, the prognosis performance in case
of training data set 3 is depicted. Compared to the results of
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Figure 8. the state estimation and prediction of (a) data set 1
and (b) data set 4 with the GP trained with data set 2

the previous section, all metrics increased considerably due
to both aforementioned causes of different degradation be-
haviour of test and training sets and slightly inaccurate state
estimation. Hereby the predictions from cycle 60 to 90 (cor-
responds to λ ≈ 0.5) of test data set 1 and at the end of data
set 4 are not able to predict the real damage course. These de-
viations are also depicted in the graphical metrics in Figure 9,
whereas neither the specifications of α-λ accuracy nor of the
PH are fulfilled satisfactory.
In comparison to training data set 3, the predictions with a dy-
namic GP trained with data set 2 show beneficial prognostic
results in case of test data set 4 according to Table 5, whereas
w.r.t. test data set 1 the third data set is advantageous. There-
fore, a combination of both training data sets through a mul-
tiple model approach is assumed to exhibit benefits in com-
parison to the GP-UKF with only one set of training data.

4.5. Improvements by means of Multiple Model Approach

The prediction performance of an IMM approach with two
different GP-UKFs is discussed in this section. The two mod-
els are the GP-UKF trained with trial 2 and 3, respectively, as
the combination of both is supposed to indicate the benefits
of the IMM approach.
In Figure 10, the state estimation and prediction results of
test set 1 and 4 are depicted. The real degradation of both
test cases is estimated very accurately with only a slight devi-
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Figure 9. (a) prognostic horizon of the two tested data sets 3
and 4 with training data set 2 (α = 5%), (b) α-λ accuracy at
α = 20%

ation in Figure 10a between cycles 50 and 60. At first sight,
the prediction results show a similar performance comparable
to the GP-UKFs of Section 4.4. Especially the first predic-
tions determine the RUL rather inaccurately, since the error
|∆(i = 2)| amounts in both cases about 60 cycles. As de-
scribed in the previous section, both test sets differ from the
applied training sets, which causes poor reproduction of the
damage course. The mode probability of trial 1 in Figure 10b
indicates the same reason, since especially at the beginning
of the prediction neither of both training sets replicate the real
degradation to satisfaction and therefore the model probabil-
ities µ(1)

k and µ(2)
k are about 0.5. In comparison to Figure 8a,

the later predictions of the MM approach in Figure 10a indi-
cate a more accurate RUL estimation due to the domination
of training set 3 that reproduces the test set 1 more precisely.
In Table 6, the performance metrics of the IMM approach are
shown. Due to the inaccurate forecasts at the beginning of the
prognosis, the metrics values are comparable to Table 5.
To identify the advantages of the IMM approach, the net dia-
grams in Figure 12 give an overview of the collected results.
They show the metrics normalised to the major value within
a test trial. Since most metrics describe an inaccurate RUL
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Figure 10. prediction results of training sets 2 and 3 tested
with (a) trial 1 and (b) mode probability of training sets 2 and
3 during prediction of trial 1

Performance AB MSE MAPE α - λ PH
Metric

Data Tr 2,3 Test 1 25 1841.14 160.54 0 0.07
Data Tr 2,3 Test 4 −7 895.32 132.99 0.04 0.12

Table 6. performance metrics of IMM with training set 2 and
3 testing set 1 and 4

estimation with large values, the time range, when the pre-
dictions fulfill the specifications of the α-λ and the PH error
bound, is exchanged for the time range those specifications
are not met, i.e. PHnet = 1− PH .
The diagrams show the advantage of the IMM approach, as all
measured performance metrics lie between the metrics of the
GP-UKFs trained with one data set. That means this approach
increases the robustness of a bearing’s RUL prediction, as it
provides the possibility of discarding inaccurate models de-
pending on the mode probability.
However, since the MM approach consists of the two PMs,
which both differ from the test sets, the prognostic perfor-
mance is still hardly able to outperform the results of both
GP-UKFs with reference to Table 5 and Table 6. Especially
the α - λ accuracy and PH of trial 1 (Figure 12a) of both
GP-UKFs indicate the same behaviour and, thus, an IMM
approach based on those models is not able to increase this
performance.
The great benefit of the increased robustness is assumed to
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Figure 11. prediction results of training trials 2 and 3 tested
with trial 4

raise by including more models with different degradation
courses. Especially a progressive degradation rate at the be-
ginning of the prediction range in case of forecasting test set
1 is expected to be beneficial concerning the prognosis per-
formance.

(a)

(b)

Figure 12. comparison of the single performance metrics of
(a) test data 1 and (b) test data 4

5. CONCLUSION

Two prognostic concepts based on the GP-UKF approach to
predict the RUL of a rolling-element bearing were examined
in the context of a case study. The results showed that a dy-
namic GP in combination with an UKF estimates the RUL

of a bearing very accurately, when the applied training data is
equal to the trial data. If the training data differs from the trial
data, the GP-UKF is not able to forecast the degradation pre-
cisely, but mainly insists on the characteristics of the trained
damage course. To solve this problem, an IMM approach
based on two different GP-UKF models has been evaluated. It
was assumed that the IMM algorithm, restoring several prog-
nostic models, is more likely to forecast a damage course of
an unknown trial. The results proved these expectations, since
the robustness of the predictions was highly increased by the
approach.
By incorporating more prognostic models into the IMM ap-
proach, which should mainly differ from the applied GP-
UKFs, this approach is expected to even outperform the prog-
nostic results of a single GP-UKF. This will be in the focus
of further research.

NOMENCLATURE

Symbols

A Pitting surface
∆Ai Increase of surface during cycle i
∆ui Loading difference during cycle i
kA, ku Coefficients of applied degradation model
λ′, k′ Shape/scaling parameter of Weibull

distribution
µ′ Expected value of Exponential distribution
D Data set
xn Inputs of GP
X Input matrix
yn Outputs of GP
y Output matrix
ε Noise term
µ Mean of model
Σ Covariance of model
K Kernel matrix
σn Noise term
k(xi, xj) Kernel function
σf Signal variance of Kernel function
W Distance measure weighting matrix
GPµ Mean of GP
GPΣ Covariance of GP
x∗ Test input
θ Hyperparameters of GP
rk Degradation at kth time step
∆rk Degradation rate at kth time step
X ′ Degradation rate matrix
Dr Training data set
G Transition function
Qk Process noise
H Observation function
zk Observation at kth time step
Rk Measure noise
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δk Noise Term
χ[i] Sigma points
α′, κ Scaling parameters of UKF
µ̃, Σ̃ A priori mean/covariance
wm, wc Weights of mean/covariance
Ẑ [i]
k Observation

Kk Kalman gain
M Prognostic model set
mi Prognostic model i
µ

(i)
k|k−1 Mode probability
hij Entries of transition matrix H
x̄

(i)
k−1|k−1 Reinitialising state of IMM

P̄
(i)
k−1|k−1 Reinitialising covariance of IMM

L
(i)
k Likelihood of model i

e
(i)
k Residuum
µ

(i)
k State probability of model i
x(t) Total vibration signal
h(t) Impulse response
τi, Ai Uncertainties of arriving impulse response
q(t) Amplitude modulation
n(t) Background noise
ff Fault frequency
fo Frequency of other mechanisms
fSB Eigenfrequency of system behaviour
xenv Envelope of x(t)
fc Cage frequency
rfeat Degradation of feature
∆l(i) Error of RUL prediction
ABl Average Bias of lth UUT
MAPE(i) Mean absolute percentage error
MSE(i) Mean squared error
PH(i) Prognostic horizon
α Accuracy value

Shortcuts

RUL Remaining Useful Lifetime
LRU Line-replaceable Unit
DM Degradation Model
PM Prognostic Model
GP Gaussian Process
UKF Unscented Kalman Filter
IMM Interacting Multiple Model
VM Vibration Model
PSD Power Spectral Density
Tr Training

(See also Glossary in Section 4.2)
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