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ABSTRACT 

The automotive industry is being transformed by the 
application of artificial intelligence and big data analysis. In 
particular, predictive analytics is becoming a powerful tool 
for anticipating component failure. This key area of research 
provides automotive industry manufacturers with lower 
warranty expenses and incremental service parts revenue 
while rewarding customers with higher uptime. These 
benefits are particularly important for commercial vehicles 
operations such as bus and truck fleets, since analytics led 
predictive maintenance can prevent inconvenient and costly 
interruptions of vehicle mission.  Accurate prediction models 
for component failures are especially challenging. This paper 
describes one such effort for failure prediction of transit bus 
NOx (Nitrogen Oxides) sensors.   

Stringent emissions regulations have made diesel exhaust 
aftertreatment systems mandatory in nearly all global 
markets, and NOx sensors play a critical role in control and 
diagnostic algorithms used by these systems.  NOx is 
measured before and after the SCR (Selective Catalytic 
Reduction) system with two different components namely 
Engine out (EO) NOx and System out (SO) NOx. Due to 
differences in operating conditions and failure rates these two 
components were studied separately. The results of different 
Machine Learning algorithms were obtained and compared 
to get the optimal predictions. Moreover, early life and late 
life failures were also studied separately to differentiate 
between random and wear-out failure modes. Highlights of 
the paper are: - the data collection process, feature 
engineering and feature selection process, as well as 
explainable AI (Artificial Intelligence) built on top of the 
machine learning model. Efforts were also taken to keep the 

approach generic and not become too component specific so 
that it can easily be replicated for predicting other failures on 
other product lines or of different components. 

1. INTRODUCTION 

Commercial vehicles are rapidly transforming from reactive 
repair to proactive maintenance with the help of Artificial 
Intelligence (AI) and high-performance computing cloud 
systems. Timely maintenance ensures reliable vehicle 
operation and avoids sudden breakdowns and interruption of 
vehicle mission. Moreover, significant financial benefits to 
the customer and manufacturer can be realized through 
reductions in repair and downtime costs. 

Realization of these benefits, however, requires accurate 
failure predictions with sufficient advance notification, Over 
the last decade, with increasing applications/importance of 
predictive analytics, initial attempts have been documented 
in the literature. The Prognostics and Health Management 
Society (PHM Society) enables the advancement of these 
methods through shared research and application of PHM as 
an engineering discipline. Within this body of work, two 
different approaches have emerged: (a) physics-based 
models; and (b) data-driven models.  This paper presents a 
data-driven approach for predicting failure of one of the 
crucial components related to aftertreatment which is NOx 
sensor of transit bus. (physics based (Daigle & Goebel, 2011) 
(Bolander, Qiu, Eklund, Hindle, & Rosenfeld, 2009) data-
driven approach (Si, Wang, Hu, & Zhou, 2011) (Gurung, 
Lindgren, and Bostrom, 2017). 

Although AI has been considered a black-box approach for 
relating key driving parameters to a predicted value of 
interest (in this case failure probability), there is immense 
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value in breaking the black-box paradigm.  The resulting 
model is not simply the key to unlocking the financial 
benefits mentioned above.  Rather, the sensitivity and 
importance of each parameter or feature to the predicted 
value is its own valuable and rich source of knowledge.  
Explainable AI and Shapley plots are shown in this paper to 
be vital tools for attaining this insight, which can be leveraged 
in several ways. First, it allows model results to be compared 
to the experience of subject matter experts.  This can lead to 
the discovery of new insights as well as to new and improved 
models.  Second, these insights can inform how vehicle usage 
may be adjusted to delay failure.  Third, the identification of 
factors influencing failure can be used to improve both the 
product and the product validation process. 

2. PROBLEM STATEMENT 

Due to their durability and fuel economy, diesel engines are 
the power-plant of choice for commercial vehicles such as 
trucks and buses.  However, high temperature zones during 
the combustion process lead to the formation of NO and NO2.  
In response to health effects studies, permissible levels of 
these pollutants on new engines has been reduced by roughly 
two orders of magnitude.  Aftertreatment systems 
downstream of the engine play a key role in emissions 
reduction, and typically lower emissions levels by factors of 
10 to 20.  The most common NOX aftertreatment system is 
ammonia-based selective catalytic reduction (SCR) in which 
a urea-water solution, called diesel exhaust fluid (DEF), is 
injected into the exhaust upstream of a catalyst.  The urea 
decomposes into ammonia (NH3) which is adsorbed on the 
catalyst, where it reacts with NOX and is converted to 
harmless nitrogen (N2). 

NOX sensors are installed upstream and downstream of the 
SCR system to measure the conversion efficiency of NOX to 
N2.  This measured value is a key input to control algorithms 
that command the injection rate of urea-water solution at each 
instant of time, as engine conditions dynamically vary in 
response to the driver’s commands of throttle position and 
gearing.  Sensor errors lead to DEF injection rate being higher 
or lower than intended.  A higher than intended rate can lead 
to ammonia emissions, which irritate the lungs.  A lower than 
intended rate can lead to excessive NOX emissions and their 
subsequent health effects.  As a preventative measure, 
regulatory agencies require on-board diagnostics that nearly 
continuously monitor conversion efficiency.  Given the 
central role of NOX sensors in conversion efficiency 
estimation and SCR system control, separate on-board 
diagnostics that monitor proper operation of both sensors are 
also required.   

Should these diagnostics detect a problem with either sensor, 
the driver is alerted through a lamp on the dashboard and fault 
codes are recorded in the engine’s electronic control module.  
To encourage replacement of the faulty sensor, some 

regulators require than the engine’s power be reduced.  The 
bus or truck journey is terminated, in some cases nearly 
immediately.  Costs associated with unexpected repairs, lost 
revenue due to interrupted operation, and the need for 
additional staff and vehicles to serve (in some cases for 
several days) in place of the failed vehicle all are powerful 
motivations to avoid these unexpected repairs.   

If instead the failure can be anticipated, and the sensor is 
replaced as part of a pre-planned maintenance event, the 
added costs and pain of the corresponding repair can be 
greatly reduced.  This is a challenging problem since the 
sensor has multiple failure modes.  For example, one failure 
mode is cracking caused by liquid water on the sensor during 
its warm-up cycle.  This ‘random event’ failure can be 
sensitive to ambient humidity and exhaust gas temperature 
shortly after the engine is started.  Because it is a random 
event failure, it is very prevalent in early-life failures.  
Moreover, there are also several late-life failure modes due to 
degradation of the sensor body heater and build-up of 
contaminants on the sensor probe.  Sensor life for ‘wear out’ 
failures would be expected to be functions of the age of the 
sensor, the duty cycle to which the sensor is exposed, and 
noise factors such as ambient conditions and installation 
differences between different truck and bus models. 

It is therefore not surprising that sensor failure rates can vary 
by a factor of two or more between fleets.  As such, it is 
neither practical or desirable to choose a common 
maintenance interval.  Rather, the ability to determine sensor 
failure probability for a given fleet, and to use that to choose 
the best maintenance interval, would be highly preferable.  
This determination would be best accomplished as a 
prediction rather than an analysis of failures already 
experienced by a particular fleet, so that time and pain 
associated with determining the maintenance interval can be 
minimized.  Moreover, the predictive model needs to be very 
efficient, since there are hundreds of major bus and truck 
fleets in the United States alone.  These objectives, combined 
with the complexity and multiplicity of failure modes, 
suggest this problem as an ideal opportunity for machine 
learning. 

In this paper explains efforts around identifying the NOx 
sensor failure within warranty. For engines which are out of 
warranty, estimating engines Remaining Useful Life (RUL) 
would be appropriate (Si, Wang, Hu, & Zhou, 2011). We 
intend to publish effort around RUL separately followed by 
this paper.  

3. DATA COLLECTION & DATA PREPARATION 

In this study, three main sources of data are used.  They are: 
(a) reliability data; (b) Engine snapshot data; and (c) ambient 
condition data.  These data sources and their original 
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purposes are described below, followed by the specific 
features used by the predictive model. 

Reliability data was originally collected for the purpose of 
warranty claim filing and payment (Lawless, J., Hu, J., & 
Cao, J. (1995).  It includes a description of the engine (e.g. 
type, date of manufacture, serial number, date entered in 
service, vehicle identification number), the name of the 
owner, and all warranty claims for each engine (e.g. date of 
repair, odometer reading at repair, type or repair, parts 
replaced, location of repair shop, service technician 
narrative).  The utility of this data is that it identifies which 
particular engines have experienced either an engine out or a 
system out NOX sensor failure, and when these failures 
occurred.  It also identifies which engines are owned by a 
particular bus or truck fleet. 

Engine snapshot data was collected from the engine’s 
electronic control module (ECM) during repair events, and 
its original purpose was to assist the service technician in 
troubleshooting the problem with the engine.  To that end, it 
includes a list of active and inactive fault codes and the 
number of times they were triggered as well as the number of 
times the control system entered ‘engine protection’ mode 
(e.g. high coolant temperature, high intake air temperature).  
Snapshot content also includes data used by the manufacturer 
to associate failures with duty cycle effects.  Some of the duty 
cycle parameters available include histograms of engine 
speed – engine load combinations, metrics of vehicle speed, 
and similar other ones. Availability of these snapshot is 
subject to connecting the ECM device at authorized 
workshop. 

Ambient condition data was originally collected to provide 
an almanac of weather data for use by the public.  The 
particular data source used in this study was taken from the 
National Oceanic and Atmospheric Administration (NOAA) 
which compiles meteorological data (e.g. ambient 
temperature, ambient pressure, relative humidity) for 
numerous sites across the United States for each hour of each 
day and has done so for several years.   

A novel approach was used to associate ambient condition 
data to individual engines by combining it with reliability 
data.  Specifically, the repair location was used to find the 
closest NOAA weather site, and hourly data was combined 
over the time span from the date entered into service until 
either the failure date or the latest ECM snapshot on record.  
Moreover, the scope of the analytics effort was restricted to 
transit buses, which are primarily operated locally.  In this 
way, it was possible to introduce ambient condition features 
which were not directly measured on the vehicle (humidity 
and ambient pressure) but which were found to be important. 

 
Figure 1. Three main sources of data used in the study 

Features Related to Duty Cycle:  

Duty cycle is expected to affect both random event failures 
as well as wear-out failures.  Random event failures would be 
sensitive to the number of key cycles (on-off events), which 
increase the potential for this failure to occur.  Heater failures 
would be sensitive to time spent at low exhaust temperature, 
where the electrical current must be increased to maintain 
sensor temperature.  Since exhaust temperature is not 
recorded in any of the data sources, the model must use 
surrogate values for it.  This is mainly evinced as operation 
at light load and at idle.  A partial list of duty cycle features 
includes: 

Load – Light and Heavy load time for an engine 
Torque time – High Torque and Low torque time 
Vehicle Speed – Ranges from 0 to max to 120 miles 
Engine Speed – Speed of the engine 
Coolant temperature 
Key switch Cycle 
Manifold Air temperature 
Distance covered in top gear 
Power – Averaged out of that engine 
Coast Distance converted (in Km.) 
Idle fuel used  
DEF used in liters 

Features Related to Age or Usage:  

Age is expected to affect random event failures since the 
number of chances for a random failure would be expected to 
increase over time.  Moreover, age should also be important 
for wear-out failures as contamination and damage 
accumulate over time.  A partial list of age or usage features 
includes: 

Engine Age – Calculated from Engine in service till latest 
date for non-failures and till failure date for failures 
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Engine Miles & Hours per month – Utilization parameters 

Features Related to Ambient Conditions:  

Ambient conditions have a complex impact of failure modes 
in that they can affect the amount of water in the exhaust gas 
and therefore the chance of a random cracking failure.  
Ambient temperature and pressure also have impacts on 
exhaust temperatures. Furthermore, extreme cold or heat can 
lead to increased idle time and / or idle engine speed for either 
warming up or cooling down the passenger compartment 
(Aliramezani, M., Ebrahimi, K., Koch, C. R., & Hayes, R. E. 
(2017)).   

As mentioned above, ambient condition variables for a 
specific engine are taken from a nearby location and they are 
cumulative in nature over time.  Account must also be made 
for variation, and in this study we use histograms with three 
bins.  This same approach is used for ambient temperature, 
ambient pressure, and humidity.  The limits for the three bins 
were iterated to find break points that were indicative of 
failure probability. 

For example, if a variable considered is ambient temperature, 
it is represented in 3 bins where each bin would have a count 
for how long the truck operated under that 
particular temperature range. We call the exposure that 
engine had in that specific temperature range. The count of 
ambient temperature variable is always increasing for an ESN 
for every snapshot taken after the another. This means that 
different exposure hours for the same engine often is highly 
correlated.  However, for our purposes, we will only select 
one datapoint per engine. Rather than choosing a random 
datapoint, we want the datapoint to be the most informative 
and closer to the NOx sensor failure. So, the cumulative 
exposure in a specific temperature bin for that particular 
engine will be the last snapshot taken before the breakdown 
occurred is considered. If for example for ambient 
temperature, the 1st bin would correspond to hours of 
operation in cold (warm) weather, 2nd bin in moderate 
weather and 3rd bin in warm weather. We also thought about 
representing these 3 bins as separate numeric attributes but 
increasing dimensionality had a negative impact on 
predictive performance. End goal for including ambient 
conditions was to analyze the impact of the condition on the 
failure.  For example, if bin 1 gives a good separation for 
ambient temperature for engines with faulty and healthy NOx 
sensors; then the operation in cold weather can be considered 
to be a useful factor for predicting failure.  
We have used the repair location and the last snapshot date 
as the parameters to get the cumulative exposure for a 
particular engine. We would have preferred the actual failure 
location, but we did not have the data for the failure location 
and repair location was the closest that we depended on. For 
instances where the repair location was not available we have 
taken registration location for those specific engines. For 

engines where no datapoint related to its location was 
available, for such engine’s location was imputed basis its co 
relation with the fleet owners. Rest of the engines where no 
data was available, such instances were dropped from the 
study. We have considered below 5 ambient variables. Each 
variable was divided into 3 bins. Temperature, Pressure, 
Humidity, Absolute Humidity & Dewpoint. 

Transit bus engines from Untied States which are still within 
warranty are considered for this study. As one engine can 
have multiple snapshots with varying intervals, latest 
complete engine snapshot is selected for analysis. In 
particular, for failed engines, snapshot prior to NOx sensor 
failure is desirable. This adds predictive capability to NOx 
sensor failure model we intend to develop.  

Features Related to System Interactions:  

NOX sensors are a key component of the engine’s 
aftertreatment and emission control systems.  As such, their 
failure may be related to interactions with these rather 
complex systems.  Engine history (i.e. various failure codes 
for warranty claims and fault codes recorded in the engine 
control module) over the last 3 months (90 days) are expected 
to provide important clues to these effects. One specific 
finding was that SONOx sensor failure occurred quite 
frequently within 2-3 months after EONOx sensor failure. In 
addition, active and in-active fault codes triggered also had 
some association with NOx sensor failure and were added to 
the model as features. 

Exploratory Analysis and Hypothesis Testing: 

Once the data sources were identified, exploratory analysis 
was conducted to gain insights as to the few factors most 
informative of NOx sensor failures. This effort revealed 
interesting points of immediate help to project stake holders. 
Univariate as well as multivariate analysis were employed to 
identify new features to be engineered. During this phase of 
the project there was strong collaboration between data 
scientists and engineers, sensor experts, and reliability 
engineers. 

Some key findings are as follows.  First, near 4600 engine 
hours, there is a transition to a much higher failure rate.  This 
can be attributed to the onset of late-life wear-out failure 
modes. We also found that most of the time the EONOx 
sensor fails before the SONOx sensor fails. Using feature 
engineering concepts, we created a new feature that indicates 
prior EONOX sensor failure for the SONOX sensor.  In 
addition, significant trends could be driven by fleet or 
location differences, or by the number of units in each 
location.  Maximum vehicle speed was one such parameter 
where lot of research was done, and we found out that this 
parameter is somewhat lower on units with failures.  This 
may indicate operation exclusively in urban environments. 
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As the analysis was done separately for EONOX and 
SONOX sensor, we also found differing insights when the 
failure populations were compared. For example, the average 
heater duty cycle (therefore the heater power) is higher on the 
EONOX sensor than the SONOX sensor and this contributes 
to its shorter life due to heater degradation. Similar studies 
were done on 40 parameters.   

• What Features – Snapshot, fail code & fault code, 
reliability, ambient (no histogram, just high medium and 
low bucketing basis distribution), etc.  

4. MODELING APPROACH  

 
Figure 2. Model Building Process Followed 

Machine Learning has become popular in recent times 
because of its accuracy and learning dimensionality. 
Performance of a machine learning algorithm purely depends 
upon the training data given to the algorithm.  When it comes 
to multivariate analysis as a binary classification problem, 
where in this case the target variable is a failure or non-
failure, XG boost gives a better performance over multiple 
machine learning method (Zhou, & McArdle, (2015), 
Ishwaran, Kogalur, Blackstone, & Lauer, (2008)).   

XGBoost is a highly optimized implementation of a gradient 
boosted tree algorithm (Ridgeway, G. (2007), Ye, J., Chow, 
J. H., Chen, J., & Zheng, Z. (2009, November)), which 
involves training a sequence of increasingly predictive 
decision trees. At each “boosting” step, a new model is 
trained by fitting to the residuals from the previous step. The 
algorithm has proven its mettle in terms of speed and 
performance since its introduction in 2014. (XGBoost: A 
Scalable Tree Boosting System Tianqi Chen, University of 
Washington Carlos Guestrin, University of Washington) 

In XGBoost, there is a good tradeoff between high 
performance and efficiency. As it can handle missing values 
in data, it eliminates the need for imputation or removal of 
entire sets of rows/columns. Being a tree ensemble-based 
algorithm (Johansson, Boström, & Löfström(2013, 
December)), it is interpretable but sometimes optimization 
can be tricky due to the presence of many hyper-parameters 
that need to be tuned. 

In this study, we had some important variables with 20% 
missing values. Removing them from the data would have 
been undesirable. Instead, XGBoost naturally admits sparse 
features for inputs by automatically learning best missing 
values depending on training loss and handles different types 
of sparsity patterns in the data more efficiently. It also 
employs the distributed weighted Quantile Sketch algorithm 
to effectively find the optimal split points among weighted 
dataset as well as it is designed to make efficient use of 
hardware resources. As the solution was being developed on 
a Data Science Virtual Machine, efficient use of hardware 
was one of the key points in using this algorithm.  

We also needed better interpretability which can be provided 
by a tree-based model (Shrikumar, Greenside, & Kundaje. 
(2017, August)).  Due to these considerations we decided to 
use the XGboost technique to build the classification model. 
In order to tune the hyperparameters, we have used the cross-
validation function from XGBoost  

5. MODEL RESULTS 

While building the model the data was divided into train 
(70%) and test (30%) and the results for the training set and 
testing set were examined separately.  

We have used multiple techniques/metrics to analyze the 
results. Listing two important and effective metrics below 
that we get from a sci-kit learn package in python (Pedregosa, 
Varoquaux, Gramfort, Michel, Thirion, Grisel & Vanderplas 
(2011).).   

Confusion Matrix:  

A confusion matrix shows the number of correct and 
incorrect predictions made by the classification model 
compared to the actual outcomes (target value) in the data 

ROC (Receiver Operating Characteristic): 

The ROC chart provides a means of comparison between 
classification models. The ROC chart shows false positive 
rate (1-specificity) on X-axis, the probability of target=1 
when its true value is 0, against true positive rate (sensitivity) 
on Y-axis, the probability of target=1 when its true value is 
1. Ideally, the curve will climb quickly toward the top-left 
meaning the model correctly predicted the cases. 

Here are the results for Engine Out NOX sensor:  
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Table 1. Confusion Matrix for EONOX failure predictions on 
train data 

 

 
Table 2. Train Data Model Performance Metrics 

Train Data - model performance metrics 

Precision 0.92 

Recall 0.86 

Accuracy 0.91 

ROC 0.84 

Table 3. Confusion Matrix for EONOX failure predictions 
on test 

 
 
Table 4. Test Data Model Performance Metrics 

Test Data - model performance metrics 
Precision 0.88 
Recall 0.82 
Accuracy 0.88 
ROC 0.79 

We calculated accuracy, precision, recall and specificity 
using the confusion matrix listed above. We can see that the 
results for train and test are nearly same. The mis 
classification rate for train and test is also nearly same 
suggesting that the model is not an overfit.  

 
Figure 3. ROC Curve - to indicate model performance	

Deciling, Gain and lift charts 
Classification model’s performance can be measured in 
number of ways. We selected a visual way to get an idea of 
how well a model is fitting the data by taking a look at the 
decile analysis  

Decile analysis is a visualization technique that divides the 
data into 10 equal parts. In our case this division is performed 
as follows: 

1. NOx sensor failure probability model is developed on 
training data 

2. Holdout sample or test data is scored with probability 
between 0 and 1 using this model 

3. The engines are then sorted in descending order of 
failure probability and then divided into 10 equal groups 
called deciles. Top decile has engines with high 
probability of failure and bottom decile with lowest 
probability of failure. 

Decile proves to be a very efficient technique, when targeted 
intervention or predictive maintenance are done with budget 
constraint.   It helps to select the engines which are highly 
likely to fail. i.e. by targeting say, top 3 deciles we can cover 
maximum failures. The deciles and their actual response rates 
are tabularized Return on investment can also be useful to 
decide the cut-off for targeting engines. This can be done by 
associating costs of recalling and maintenance for engines 
and saving with warranty and / or downtime cost one could 
avoid by recalling these engines which are highly likely to 
fail in near future. 

 

NOX Not Failed NOX Failed
NOX Not Failed 77% 2%
NOX Failed 6% 15%

Train Data Confusion Matrix - EONOX

True Label

Predicted Label

NOX Not Failed NOX Failed
NOX Not Failed 76% 3%
NOX Failed 9% 12%

Test Data Confusion Matrix - EONOX
Predicted Label

True Label
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Table 5 . Decile Analysis of EONOX failures 

	

Table  is the decile table for our model results.  

The decile analysis is suggesting that the model is “binning” 
the elements correctly from most likely to fail to least likely 
to fail. Our model exhibiting a good staircase decile analysis 
and can be considered to score the entire population. We also 
derived two metrics Gain and Lift to showcase the confidence 
in our model.  

Gain or lift is a measure of the effectiveness of a classification 
model calculated as the ratio between the results obtained 
with and without the model. Gain and lift charts are visual 
aids for evaluating performance of classification models. 
However, in contrast to the confusion matrix that evaluates 
models on the whole population gain or lift chart evaluates 
model performance in a portion of the population. The lift 
chart shows how much more likely we are to get more failures 
in the top 3 deciles according to the model instead of a 
random selection of a sample.  Below lift chart show that 
model performance is 5 times better than random selection.  

 
Figure 4. Lift Chart showing model performance is 5 times 
better than random selection 

 
Figure 5. Gain chart showing amount of gain model gives 
relative to random model 
Explainable AI and SHAP 

As machine learning becomes our go to method to solve 
business critical problems, interpretability of a machine 
learning model becomes an important consideration.  For 
models like XGBoost, where we usually have a robust 
accuracy metric, it becomes necessary to make the model 
more interpretable to identify factors that contribute directly 
towards the metric.   

When the model is about enter production the bare minimum 
expectation out of a machine learning model is to work as 
expected and produce transparent explanations and reasons 
for decisions that are made.  

Explainable AI, also known as XAI, is an emerging field in 
machine learning that aims to address interpretability of 
machine learning models. This area inspects and tries to 
understand the steps and models involved in making 
decisions. XAI answers some important questions like:  

- On what basis did the algorithm decide to make a 
specific prediction?  

- Does the algorithm give enough confidence in the 
decision? 

- How can the errors be corrected?  

Specifically, we used the recently introduced SHAP package, 
which utilizes techniques from Game Theory, to quantify 
feature importance at a highly granular level. SHAP (Shapley 
Additive exPlanations) provides a unified solution for all of 
our interpretability requirements. (Lundberg & Lee, 2017). 
We have used the term interpretability to indicate an extent 
to which a cause and effect can be observed within a system. 
We have used the term explainability when we wanted to 
indicate importance of feature values in relation to model 
prediction 

Decile Non-Fail Fail Total % Failure Model No Model Lift
1 1% 45% 10% 99.1% 46% 10% 4.6
2 5% 29% 10% 63.7% 75% 20% 3.8
3 8% 12% 10% 24.9% 87% 30% 2.9
4 10% 7% 10% 14.8% 93% 40% 2.3
5 11% 3% 10% 8.3% 97% 50% 1.9
6 12% 2% 10% 3.7% 99% 60% 1.7
7 13% 1% 10% 1.2% 100% 70% 1.4
8 13% 1% 10% 0.3% 100% 80% 1.2
9 13% 0% 10% 0.6% 100% 90% 1.1
10 13% 0 10% 0.0% 100% 100% 1.0

0,0

2,0

4,0

6,0

8,0

0 2 4 6 8 10

Lift	Chart

0%

20%

40%

60%

80%

100%
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Gain	Chart

Model No	Model
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Shapley is one of the XAI techniques that is based on 
Interaction based method for explanation. It has optimized 
functions for interpreting tree-based models and a model 
agnostic explainer function for interpreting any black-box 
model for which the predictions are known. The Shapley 
value is the average marginal contribution of a feature value 
across all possible coalitions. the Shapley value for each 
variable (payout) is basically trying to find the correct weight 
such that the sum of all Shapley values is the difference 
between the predictions and average value of the model. In 
other words, Shapley values correspond to the contribution of 
each feature towards pushing the prediction away from the 
expected value.  

SHAP is a measure of feature importance which is backed by 
theoretical guarantees of the following desirable 
interpretability objectives: 

1) A consistent metric to assess feature importance. 

2) Ability to visualize the marginal dependence of a given 
feature at a more granular level. (at unique engine level). 

3) Ability to visualize interaction effects between chosen 
features at the level of individual observations. 

The SHAP metric attributes feature importance locally (for 
each individual observation (Engine Unique number) in the 
training dataset) based on the Shapley value from Game 
theory. It is based on the underlying assumption of features 
to be playing a cooperative game where the payoff is the 
multivariate output (likelihood of being an issue), which then 
needs to be distributed fairly among the features. This 
approach has been shown to yield consistent results as well 
as provide insights into the failure dynamics with a high level 
of granularity, since it estimates feature importance at the 
level of each individual engine in the training data. For a 
given incident (observation), a positive SHAP value for a 
feature indicates that including that feature increases the 
likelihood of the incident being an issue, while a negative 
SHAP value indicates that the feature decreases the 
likelihood of being an issue. 

The SHAP plots for our analysis are shown below. These 
plots give feature rank of 8 sensor values and its 
discriminatory power to determine the probability of target 
variable. Plot 1 Figure 6 suggests how is the relation of the 
features with the target. Red color means the feature has 
positive impact and blue color means the feature has negative 
impact. Only feature 0 has negative impact over NOx sensor 
failure but the other features have negative impact. Features 
– maximum vehicle speed, DEF used in liters, Low speed 
Medium & High Torque Time, Idle fuel used have negative 
impact on the target variable i.e. higher value increases 
failure rate.  

 
Figure 6. SHAP - feature importance chart for EONOX 
model with negative and positive effect of every explanatory 
variable on NOx Sensor Failure 

The above plot (Figure 6) gives the feature importance that is 
different from the feature importance given by the XGBoost 
plot. For XGBoost the feature importance is defined by the 
weight / gain or coverage parameter. But, feature importance 
in SHAP has two benefits.  

First one is global interpretability — the collective SHAP 
values can show how much each predictor contributes, either 
positively or negatively, to the target variable. This is like the 
variable importance plot, but it can show the positive or 
negative relationship for each variable with the target  

Second benefit is local interpretability — each observation 
gets its own set of SHAP values (see the individual SHAP 
value plot below). This greatly increases its transparency. We 
can explain why a case receives its prediction and the 
contributions of the predictors. Traditional variable 
importance algorithms only show the results across the entire 
population but not on each individual case. The local 
interpretability enables us to pinpoint and contrast the 
impacts of the factors 

The reason we thought that SHAP was more appropriate in 
this analysis w.r.t. other competitors such as LIME was 
because we also wanted to see if how the explanatory 
variables were affecting the failures. For example, we know 
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that engine speed is an important variable to classify failures 
and non-failures. But the interest was to see if high engine 
speed was the causing failures. We get this kind of 
association score in SHAP. SHAP value guarantees a fair 
distribution of contribution for each of the variables and is 
optimized for tree-based prediction algorithms where things 
run very fast and the output is accurate and reliable. In 
contrast, LIME does not guarantee to perfectly distribute the 
effects. It builds sparse linear models around each prediction 
to explain how the black box model works in that local 
vicinity. LIME seems to be subset of SHAP. There are two 
important benefits which made us use SHAP instead of any 
other library - 

 
Figure 7. SHAP plot quantifying impact of every explanatory 
variable on model output 

According to Figure 7, we can easily interpret the plot and it 
seems evident that features Engine Age, Engine Speed, 
Coolant Temperature, Maximum vehicle speed have greater 
discriminatory power which is useful for our predictions.   
Moreover, the plot also suggests the direction of impact. Red 
color represent high value of feature and X-axis represent the 
impact of feature on NOx failure(outcome). For example, 
higher the Engine Age (DEF usage) lower the risk of NOx 
failure. On the other side, high Coolant temperature has high 
risk on NOx failure. Feature at the bottom of the chart has 
relatively less impact on NOx failure as the SHAP impact is 
close to 0.  

The results mentioned above are for Engine Out NOx sensor 
failure. We also followed similar approach to get feature 
importance for System Out NOx sensor as shown in Figure 
8. 

 
Figure 8. Regular feature importance chart with negative and 
positive effect on SONOX Failure	
 

6. CONCLUSION 

The objective of this study was to demonstrate that EONOX 
sensor or SONOX sensor failure during the warranty period 
could be accurately predicted using available data.  The 
results mentioned above show that this has been 
accomplished, setting the stage for preventive replacement of 
sensors using either unit specific intervention or fleet specific 
maintenance intervals. 

This was a challenging task, since NOX sensors have 
multiple failure modes, some of which are due to random 
events.  Keys to success included: 

- Minimizing the influence of random failures, which 
comprise about 10% of all failures during the warranty 
period, by screening out failures occurring prior to 4600 
engine hours.  This allowed model training to focus on more 
predictable wear-out failure modes. 
- Using exploratory analysis in conjunction with subject 

matter expertise to rapidly accelerate feature engineering 
and the screening of features to be included in the model. 

- Utilizing public site weather data to include new, 
important features to the existing data set and combining 
it with repair location to associate weather data to 
specific engines. 

- Including system interactions through the consideration 
of prior failures (warranty claim fail codes and fault 
codes). 



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020 

10 

- Employing the Xtra Gradient Boost machine learning 
technique to train the model. 

- Sharing SHAP plots with project stakeholders to screen 
for model interpretability and rationality.  

Next steps include preparing the model for production so that 
business benefits can be achieved and developing a 
remaining useful life model which can provide a more precise 
estimate of failure timing.  The techniques developed and 
proven here will also be reapplied to other key engine 
components. 
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NOMENCLATURE 

XGBoost -   eXtreme Gradient Boosting 
NOX / NOx- Nitrogen Oxide 
EONOx – Engine Out NOx 
SONOx – System Out NOx   
SHAP - Shapley Additive exPlanations  
XAI – Explainable AI 
AI – Artificial Intelligence 
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