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ABSTRACT

Small unmanned aerial vehicles (UAVs) have been increas-
ingly popular in the last years, being employed in a wide
range of applications in diverse areas, including, for instance,
military, medicine, and package delivery. These aerial vehi-
cles are commonly energized by rechargeable batteries, and,
as a result, their autonomy can be significantly affected by
several uncertainty sources, including variable ambient con-
ditions or mechanical mishaps. For this reason, the ability
to predict their electric consumption for a determined path
is critical to design UAV missions and complete them suc-
cessfully. Additionally, due to the potential occurrence of
unexpected events (e.g., mechanical failures or changes in
the weather conditions), airborne implementation of real-time
decision-making schemes for mission replanning is of utmost
importance. Hence, this paper presents an integrated Risk-
based strategy utilizing a State-of-Charge (SOC) prognostics
algorithm to quantify the risk associated with a given path
in terms of future consumption, intending to make real-time
decisions on the UAV operation. More specifically, we con-
sider a UAV mission framework with a discrete set of pos-
sible targets, where each one has costs, rewards, and failure
risks, which is characterized by calculating the total proba-
bility using sample-resampling methods. Then, we seek the
optimal choice by employing a Bayesian-Risk inspired ap-
proach whose outcome results in a compromise between risks
and rewards.

Jorge Fabry et al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

1. MOTIVATION AND PROBLEM STATEMENT

During the last decade, the utilization of Unmanned Aerial
Vehicles (UAVs) in diverse areas has increased significantly,
from civil and commercial to military applications. Technical
advances and design improvements have allowed manufactur-
ers to offer low-cost UAVs with high maneuverability. Nev-
ertheless, and independently of the specific application do-
main where the UAV is being used, flight range autonomy still
looms as a problem of great importance. In fact, the majority
of UAVs are powered by Lithium-Ion batteries; thus, depend-
ing on the application, the flight time of such vehicles may be
a serious issue that negatively impacts the mission’s reliabil-
ity. To tackle this problem, the coordination and management
of the UAV fleets are of utmost relevance. In this regard, since
prognostic algorithms have been successfully implemented in
the time of discharge prediction problems for Li-Ion batteries
(Saha et al., 2011; Saha, Quach, & Goebel, 2012; Kulkarni,
Hogge, & Quach, 2018; Sierra, Orchard, Goebel, & Kulkarni,
2019), Prognostic Decision Making (PDM) strategies arise as
a suitable platform to design and implement customized so-
lutions for UAV fleets coordination. Consequently, and as a
first step, in this paper, we explore the utilization of a real-
time PDM scheme to manage the operation of a single UAV.
The insights developed on this work will be useful as founda-
tions so that, in future efforts, we can design PDM solutions
for UAVs coordination at the fleet level, which is our ultimate
goal.

To be more specific, in this article, we explore a PDM scheme
oriented to provide, at each execution, a binary decision xt ∈
{1, 0}, namely, the UAV “should either proceed to the next

1



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

Figure 1. Path plan over O’Higgins park in Santiago, Chile.

waypoint according to the mission plan or return to base”.
The underlying idea is that the UAV has an initial flight plan
(calculated before its departure) with several waypoints, which
will be visited sequentially according to the mission path.
However, due to changes in the direction and intensity of the
wind, air turbulence, or even the occurrence of mechanical
failures, the energy consumption along the path could dif-
fer significantly from the initial guess. Therefore, comput-
ing mid-flight replanning is essential to keep the reliability
standards of the mission. To accomplish this, the proposed
decision-making algorithm must have low latency so as to
guarantee that the decision update is computed before that
new step begins.

The underlying motivation of investigating real-time sequen-
tial decisions in the UAV domain comes from 3D mapping ap-
plications similar to the one depicted in (Yamazaki, Miyazaki,
& Liu, 2018), wherein the UAV requires to scan a predefined
area, at a constant velocity, following a series of waypoints
to reconstruct a virtual three-dimensional map. Figure 1 il-
lustrates an example of a mission plan for a rotatory-wing
UAV, where the mission assigns to each waypoint a different
reward.

To detail this optimization problem and the solution proposed
in this article, the following structure is adopted. Section
2 presents a brief analysis of state of the art on prognos-
tics decision-making algorithms for mission reconfiguration
and basic theoretical background on particle-filtering-based

prognostics, which is used to predict the evolution of the bat-
tery SOC in the UAV. Section 3 introduces the proposed risk-
based methodology for mission reconfiguration. Finally, Sec-
tion 4 describes the case study that is considered in this re-
search effort, while Section 5 presents the most relevant re-
sults obtained. Section 6 summarizes the main conclusions.

2. THEORETICAL BACKGROUND

In this section, we first discuss previous advances associated
with PDM strategies (Section 2.1), and then review a tech-
nique called Particle-Filtering-based prognostic (Section 2.2),
which plays a major role in the proposed PDM approach.

2.1. Prognostic Decision-Making Algorithms for Mission
Reconfiguration

Currently, Lithium-Ion (Li-Ion) batteries are key components
from smartphones to UAVs. One of the most relevant vari-
ables into the operation of batteries is the State-of-Charge
(SOC), which is typically defined as the ratio between the
available energy and the total capacity. It is, usually, de-
scribed as a percentage (Pola et al., 2015). Consequently,
knowledge about this state variable is essential for online de-
cision making, for instance, to assess if a path can be tra-
versed or to verify which mission goal(s) can be accomplished.

Both SOC estimation and SOC prognostic strategies are fun-
damental to estimate the End of Discharge (EOD) time. Un-
fortunately, as in many other state estimation problems, the
SOC is not observable; thus, it has to be inferred from indi-
rect but partially correlated measurements (e.g., the battery
voltage, discharge current, or temperature) (Pola et al., 2015;
Diaz et al., 2020).

Even more important than estimations and predictions of SOC,
it is what to do with these results. It was not until a few years
back that literature started offering contributions that aimed
at the implementation of Post-Prognostics Decision Making
(H. Skima & Bourgeois, 2019) or Prognostics Decision Mak-
ing (PDM) (Rozas, Munos-Carpintero, Perez, Medjaher, &
Orchard, 2018) strategies. It could leverage failure prognos-
tic outcomes to efficiently make decisions about the system
operation, such as optimizing preventive and predictive main-
tenance action scheduling, mission re-planning, or mission
redesign. Although the PDM strategies have great potential
for optimizing process operation, the pace of recent develop-
ments has not coped with the actual needs imposed by con-
cepts such as Industry 4.0.

The implementation of PDM strategies into mission recon-
figuration or mission re-planning is certainly one of the most
promising applications of these decision-making schemes. In
this regard, in (Balaban & Alonso, 2012), the authors inves-
tigate PDM problems oriented to Aerospace Domain, dis-
cussing requirements and emphasizing the importance of real-
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time optimization solvers due to the need for computing de-
cisions on-board. Moreover, they tested proposed solutions
in a case study inspired on the usage of a planetary rover.
In that perspective, they consider a Probabilistic Policy Gen-
erator (PPG), as a policy optimization algorithm, and Dy-
namic Constraint Redesign (DCR), which is a methodology
with roots in the fields of Multidisciplinary Design Optimiza-
tion and Game Theory. The results shown are interesting in
terms of the computational burden for relatively small prob-
lems. However, its scalability for even greater problems is not
clear. The same research group later provides a comprehen-
sive work (Sweet et al., 2014) in which they illustrate the real-
world implementation of PDM decision making strategy for a
terrain rover, namely the K11 planetary rover prototype. This
research effort is verified by simulation on a Mobile Robot
Testbed ((Balaban et al., 2011), (Balaban et al., 2013)), where
the rover is purposely affected by different fault modes in the
middle of the mission. Therefore, PDM is implemented to
compute mission re-planning as soon as possible, incorpo-
rating information obtained from prognostic algorithms. Al-
though results seem to be promising, authors still solely con-
sidered a small network, where the decision universe is lim-
ited. In (T. Potteiger & Karsail, 2017), the authors offer a
prognostic-based scheme to manage the configuration of the
battery pack, where a PDM scheme continuously estimates
the Remaining Useful Life (RUL) for different possible cell
configurations, choosing the one with the highest RUL. In
(H. Skima & Bourgeois, 2019), the authors propound the use
of a prognostic-based strategy for electric vehicle routing un-
der stochastic traffic conditions. The main idea is to leverage
both the traffic model and route information by executing a
prognostics algorithm that allows predicting the route perfor-
mances in terms of travel time and energy consumption.

Among all the aforementioned PDM applications, mission
re-planning is probably the most challenging problem since
it requires the implementation of real-time failure prognos-
tic modules and optimization solvers. Unfortunately, there
is an inherent trade-off between solutions performance and
the computational burden. In fact, the most exhaustive op-
timization solvers, which usually lead to the best solutions,
have high computational costs; therefore, their real-time im-
plementations might be highly challenging.

2.2. Particle-filtering-based Prognosis

Prognostic schemes endeavor to estimate the probability of
failure by predicting, in the long-term, the future evolution
of fault indicators. For this purpose, the Monte Carlo (MC)
methods offer a great variety of useful tools. However, as
mentioned in the first section, one of the requirements of this
task is having low algorithm latency, and not all MC-based
methods satisfy this requirement. This is why the Particle
Filter prognostic is used; in exchange for a reasonable pre-
cision loss, a PDF of the system can be estimated with low

latency. Particularly, in the case of particle-filtering-based
prognostic algorithms (PPF) (Orchard, 2007), the underlying
concept is to model uncertainty propagation in time based on
a stochastic state-space model of the faulty system, a proba-
bilistic characterization of future operating profiles, and particle-
filter-based estimates of the state probability density func-
tion (PDF). In this regard, this paper assumes that the system
state is being monitored using a Particle Filter (PF) algorithm
(Arulampalam, Maskell, Gordon, & Clapp, 2002).

PF-based estimation algorithms aim to sequentially approxi-
mate the posterior PDF of the state by a set of weighted par-
ticles. Thus, at time k the estimate of the posterior PDF of x
is given by:

p(x(k)|y(1), · · · , y(k)) =

Np∑
i=1

wi(k)δ(x(k)− xi(k)), (1)

where {xi(k), wi(k)}Np

i=1 is a set of weighted-particles, Np

is the number of particles, xi(k) is position of particle i and
wi(k) is the weight of particle i, and δ(x) = 1 if x = 0 and
δ(x) = 0 otherwise. The estimation process is composed of
two major stages: 1) Prediction and 2) Update.

1) Prediction: each particle is propagated one time ahead:

xi(k) ∼ q(x(k)|xi(k − 1)) (2)

where q(x(k)|xi(k − 1)) is the prior conditional distribution
of the states at time k given the state at time k − 1, and is
computed using the simulation data.

2) Update: once a new measurement is available, it is utilized
to update the weight of each particle as follows:

ŵi(k) = wi(k − 1) · p(y(k)|xi(k)). (3)

Finally, the weights are normalized:

wi(k) = ŵi(k) · (
Np∑
i=1

ŵi(k))−1. (4)

Let us suppose that the prognostic algorithm is executed at
time k using as initial condition a set ofNp weighted-particles
{xi(k), wi(k)}Np

i=1. Then, these particles are propagated ac-
cording to the state transition equation. In general, to estimate
the state PDF at time k + τ , for τ ∈ {1, ..., n}, we need to
propagate the particles from k + τ − 1 to k + τ :

(5)
p (x̂(k + τ)|x̂(k + τ − 1)) ≈

Np∑
i=1

wi(k+ τ − 1) · p̂ (xi(k+ τ)|x̂i(k+ τ − 1)) .

Note that p̂ (x̂i(k + τ)|x̂i(k + τ − 1)) is related to the state
transition equations; it demands a characterization of the fu-
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tures inputs. An update that has proven particularly advan-
tageous to propagate particles for large prediction horizons
(Orchard & Vachtsevanos, 2009) is based on the regularized
PF algorithm (Musso, Oudjane, & Le Gland, 2001). By im-
plementing this, instead of updating particle weights in each
prediction step, the uncertainty is represented by a re-sampling
of the predicted state.

3. RISK-BASED STRATEGY FOR REAL-TIME DECISION
MAKING AND MISSION RECONFIGURATION

In this section, we will formally explain the proposed Risk-
based strategy for real-time decision making and mission re-
configuration.

3.1. Mission Definition: Graph and waypoints

Inspired by the 3D mapping applications (Yamazaki et al.,
2018), we consider a mission setup wherein a UAV has to
traverse a set of waypoints or nodes C = {n1, ..., nN} in or-
der to characterize a certain surface. In such a framework, we
suppose that before departure an optimization algorithm is ex-
ecuted so as to compute an initial flight plan, so-called initial
path P0 = n

′

1, n
′

2, ..., n
′

N ′ , n0. Essentially, this path estab-
lishes both the order in which the waypoints are visited and
the final visited waypoint n

′

N ′ before returning to the base
node n0. Note that 1) this path could not include all nodes
of C since the UAV autonomy is limited and that 2) the final
waypoint should be the base node.

Unfortunately, due to weather conditions changes or other
reasons, the actual energy consumption associated with P0

could differ from the initial predicted one; hence, computing
mid-flight replanning is essential to keep the reliability stan-
dards of the mission. In this context, a real-time procedure
is required to periodically decide whether the mission should
continue or not. To make this decision, we propose a Risk-
based strategy able to quickly replan the mission while taking
into account 1) the expected value of the cumulative reward,
and 2) the risks associated with both returning to the base and
covering the next nodes. The constitutive blocks of this pro-
posal are depicted in Figure 2, each of them will be explained
in detail in the next subsections.

3.2. Characterizing the UAV energy consumption

In order to make decisions regarding the UAV operation, a
suitable characterization of the UAV consumption is criti-
cal because its autonomy can constrain seriously the feasi-
ble choices. To describe energy demand along a certain path,
we propose a dynamic model that is discretized by the path
nodes. Thus, x(k) denotes the SOC when the UAV is at node
nk. As a result, the SOC evolution can be expressed as fol-
lows:

x(k + 1) = x(k)− E(k,X )

Ec
, (6)

Figure 2. Graphical abstract of the proposed mission re-
planning strategy.

whereEc is the battery capacity expressed in [J]. On the other
hand, E(k,X ) corresponds to the energy demanded to travel
from node nk to nk+1 given the environmental conditions X .

Note that, in real-world applications, X can include different
variables such as wind speed, temperature, and air pressure.
Among these variables, wind speed represents a significant
source of uncertainty for UAV energy consumption’s charac-
terization due to its complex inherent dynamic behavior and
stochasticity. In this regard, it is noteworthy that wind speed
intensity can be predicted by using both real-time measure-
ments (acquired while airborne) and historical data by us-
ing fuzzy models or similar methodologies. The 3D imaging
problem, which corresponds to our study case study applica-
tion, requires a constant speed with respect to the ground so as
to take distinct images. Constant turbulence and wind speed
are assumed, taking into account that in the future, these re-
sults will be used to characterize the operation with a partic-
ular wind speed of the defined fuzzy set.

The model presented in (6) enables us to assess the energy
consumption of a determined path in advance. However, to
do this, we first have to characterize the E(k,X ) whose na-
ture is stochastic. This task is achieved by a simulation-based
approach in which we simulate thousands of flights to esti-
mate the distribution of energy demanded conditional to dif-
ferent environmental conditions. Then, by combining these
simulation results with a prognostic algorithm, it is possible
to evaluate in real-time and probabilistically the energy de-
mand associated with a determined path. Finally, we can de-
rive the risk associated with each decision, which constitutes
the basis of our decision-making algorithm.

3.3. UAV Failure condition

To link successfully the failure events with the online vari-
ables, Sf will be defined as follows:

Sf (n0, nf ) = SOC(n0)− En0,nf
, (7)

where n0 is the initial node, nf is the final node and En0,nf

is the consumed SOC from the initial node till the last node.
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It is important to note that the UAV is assumed to visit each
point only once, making no more than one lap. Once this vari-
able is defined, a relationship can be formed with the drone
failure imposing Sf < T as a condition for falling, where T
is the SOC threshold for the UAV safe operation. This condi-
tion implies that if Sf − T < 0 at any point of the journey,
the drone falls. Then, the probability of failure is given by
Equation 8.

P (Sf (n0, nf ) < T |dn0+nf
, Xi) = P (Fn0,nf

|dn0+nf
, Xi)

(8)
where Fn0,nf

is the scenario where the travel from node ni to
nf is unsuccessful, di+j is the decision to travel from node ni
to nj and Xi is the vector containing the different conditions
in node ni.

3.4. Probability of success P (Si,j |di+j ,Xi)

The probability of success is given byP (Si,j |di+j ,Xi), where
Si,j is the scenario in where the travel from node ni to nj is
successful. Prognostics algorithms based on Sequential Im-
portance Sampling Re-sampling (SIR) are used to approxi-
mate this probability, mainly because of the efficiency of this
approach and its reduced computational time. The proce-
dure starts by sampling Np particles xn(k) ∼ SOCk, where
SOCk corresponds to the probability density function (PDF)
of the battery SOC when the UAV is located at node ni (n =
1, ..., Np). The weights wn(k) for each xn(k) are computed
as in Equation 9 (all particles have the same weight).

wn(k) = Np
−1 (9)

Each particle then evolves assuming different possible energy
consumption scenarios E(k) at node k, conditional to Xk, by
simulating Equation 10.

xn(k + 1) = xn(k)− E(k,Xk)

Ec
, (10)

where Ec is the capacity of the UAV battery.

This procedure generates a new set x′(k + 1), with N ′p par-
ticles, from which the probability of failure P (Fi,j |di+j ,Xi)
is obtained by summing the number of samples xn(k + 1) ∈
x′(k+1) with SOC values smaller than the SOC threshold T ;
situation that would represent a battery discharge event, and
normalizing weights as shown in Equation 11.

p(Sf (no, nf ) < T |δi,j ,XK) =

N ′
p∑

i=1

wi(k)I(T − xi(k)),

(11)
where {xi(k), wi(k)}Np

i=1 is a set of weighted-particles, Np

is the number of particles, xi(k) is position of particle i and
wi(k) is the weight of the i− th particle. The indicator func-
tion I(x) = 1 if x < 0 and I(x) = 0 otherwise. Then a new
particle population x(k + 1) with Np samples is subtracted

and the process is repeated to characterize the evolution of
the state PDF in time.

3.5. Conditional Expectation of Reward Function

The Conditional Expectation of Reward Function (CERF) is
employed in this proposal as the risk function to assess each
possible choice. Recall that our decision is binary: go to the
next node or return to the base, but to make it, we will first
evaluate a set of ns actions associated with the choice of ex-
ploring the next node. To be more specific, if the UAV is
currently at node i, the set of possible actions examined is de-
noted as {di+k, k = 0, ..., ns}, wherein di+k means the UAV
will return to the base after reaching node ni+k.

To compute the CERF of each sub-decision, it is necessary
to parameterize them in ”economic” terms considering both
rewards and penalties. Consequently, it is assumed that the
action of traveling successfully from node i (ni) to node j
(nj) yields a deterministic reward denoted Gi,j ≥ 0 , while
losing the UAV represents a potential sunk cost that can be
avoided if it “Returns To Landing” (RTL) safely. On the other
hand, if the UAV battery gets depleted in mid-flight, it results
in a complete loss of the UAV, D ≥ 0, with no chance of
recovering (or recycling) any parts.

An action di+k could face different events depending on the
realizations of future energy consumption. Those events are
disjointed and can be clustered in different families. Besides,
since they are disjointed, we can thus calculate the CERF of
each action by adding the CERF of all event families. This
procedure is explained in the following bullets.

•F1 : The UAV moves from the current node ni to an ahead
node nj and then returns to base safely. Therefore, its corre-
sponding CERF can be described as follows:

E(U(F1)|di+k,Xk) = Gi,k·P (Si,k|di+k,Xi)·P (Sk,0|dk,Xk),
(12)

where Gi,j is the summation of the rewards collected from
i + 1 to j i.e Gi,j =

∑j
k=i+1 gk, with gk being the reward

asociated to node k ; Si,j is the event of going successfully
from i to node j ; and Xi corresponds to a vector with the
current wind conditions at node i.

•F2 : The battery gets depleted while the UAV is moving
from the node ni+l to either some ahead node or the base,
l ≥ 0. In such a scenario, the CERF includes the summation
of rewards previously collected and the cost of the UAV loss,
then:

E(U(F2)|di+k,Xk) =

k−1∑
j=i+1

Gi,j · P (Si,j |di+j ,Xj−1) · P (Fj,j+1|dj+1,Xj)

+ (Gi,j) · P (Si,k|di+k,Xi) · P (Fk,0|di+k,Xk) (13)
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U(Fi,j) = Gi,j−1 (14)

Let Si,0 be the scenario of going from the current node to the
initial node n0 successfully, the reward related to this decision
is the cost of the UAV (D) since the UAV is recovered when
RTL safely, as shown in Equation 15.

U(Si,0) = D (15)

Finally, if the UAV battery discharges midair when the drone
is returning to the base node, the drone’s cost can be salvaged,
as shown in Equation 16.

U(Fi,0) = 0 (16)

To measure the reward associated to different trajectories start-
ing from node ni, the conditional expectation is used,

E(U |di+j ,Xi) =

[U(Si,j) + U(Sj,0)] · P (Si,j |di+j ,Xi) · P (Sj,0|di+j ,Xj)︸ ︷︷ ︸
Probability of an event in F1

+

j∑
k=i

U(Fi,k) · P (Si,k−1|di+j ,Xi) · P (Fk−1,k|di+j ,Xk−1)︸ ︷︷ ︸
Probability of an event in F2

+ [U(Si,j)− U(Fj,0)] · P (Si,j |di+j ,Xi) · P (Fj,0|di+j ,Xj)︸ ︷︷ ︸
Probability of an event in F2

(17)

In the aforementioned expressions, three possible scenarios
are captured: (i) proceeding to node nj and returning safely,
(ii) proceeding safely to some other node nk (between node
ni and node nj) but failing in returning safely to the landing
point, and (iii) proceeding to node nj but failing in returning
safely to the landing point. Replacing the reward values in
the Equation 17 leads to:

E(U |di+j ,Xi) =

(Gi,j +D) · P (Si,j |di+j ,Xi) · P (Sj,0|dj ,Xi)

+

j−1∑
k=i+1

(Gi,k) · P (Si,k|di+j ,Xi) · P (Fk,k+1|di+j ,Xi)

+ (Gi,j) · P (Si,j |di+j ,Xi) · P (Fj,0|dj ,Xj) (18)

If the decision is to return the UAV to base, then the condi-
tional expectation is computed as shown in Equation 19.

E(U |di,Xi) = D · P (Si,0|Xi) (19)

3.6. Decision making model

Once the expected reward has been computed, we can con-
struct the set {E(U |di+j ,Xi)}j={i+1,...,nf}∪{0}. Finally, the
criterion for choosing the return node is defined as:

i∗ = argmaxj(E(U |di+j ,Xi)), (20)

which is equivalent to choosing the route that maximizes the
expected reward.

4. CASE STUDY SETUP: UAV SIMULATION AND DATA
ACQUISITION

The simulation-based testbed was performed by Ardupilot’s
Arducopter. Since this software considers that both the drone
model-simulated and DroneKit python are employed as a Ground
Control Station, including direct communication suppressing
Mavproxy, it considerably slows down the simulation speed.
Arducopter allows us to accelerate the simulation whose speed
is capped by that of the CPU clock. Default values for the
drone parameters were changed to the parameters for 3DR
IRIS+ drone obtained from connecting a 3DR IRIS+ drone to
Mission Planner, a ground control station. The wind speed
value is substituted by that of each particular simulation, and
the turbulence is set to 0.1.

Recall that the ultimate goal of the simulation testbed is to
characterize statistically P (Fi,j |di+j ,Xi). As wind inten-
sity, traveling angle, and distance were the essential variables,
simulations were made considering a drone traveling along a
straight line, changing angle, and distance for different wind
speeds. For each scenario simulated, the variations of State of
Charge (∆SOC) are collected because they represent them-
selves the energy consumptions.

The acquired data has values for every possible angle with a
resolution of one degree, distances between 500 meters and
1800 meters and for wind intensities of 7 and 6. Effective
consumption is defined as ∆SOC divided by the distance
traveled. The evolution of the State of Charge was com-
puted according to Equation 21, where V is the UAV battery
voltage, I the battery current, tsample is the period between
two iterations of the proposed algorithm, tsim is the sampling
time within the simulation framework (1 [sec]), and Ecrit is
the initial total energy which is a constant given the vehicle
battery. Ecrit = 202426.858 in the case of a 3DR IRIS+
drone.

SOC(k) = SOC(k−1)−V ·I ·tsample(tsim·Ecrit)
−1 (21)

As simulations for different wind speeds were executed in
parallel computers, with dissimilar CPU clock speeds, tsim
cannot be directly utilized to compare the effective ∆SOC
between the two simulations. For this reason, the effective
∆SOC has been normalized by the simulation time. Fig-
ure 3 displays the distribution of the effective consumption.
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As it was expected, traveling against the wind translated into
higher consumption. Higher wind speeds translate into big-
ger differences between configurations against or in favor of
the wind direction.

0 50 100 150 200 250 300 350
 (Degrees)

0.006

0.008

0.010

0.012

0.014

0.016

Ef
f

Effective SOC for different angles of attack
wind speed=7
wind speed=6

Figure 3. Data acquired from traveling a single constant dis-
tance for different wind speeds and angles of attack.

Figure 4. Prognostic Decision-Making Algorithm Design.

Figure 4 presents the flowchart of Prognostic Decision-Making
Algorithm Design. All modules and functions are described
as follows.

• “Decision” module. It decides if the UAV should con-
tinue by selecting the route that maximizes the expected
reward such that if E(U |di+j ,Xi) for some j is larger
than E(U |di,Xi), then the UAV goes to the next node.

• “Reward Function” module. It calculates the expected
reward of reaching some node and Return To Landing
(RTL) for all the nodes considered within the algorithm
prediction horizon. Then, it selects the maximum mis-
sion reward from all the possible choices explored by the
algorithm.

• “Concatenate Steps” module. It computes failure prob-
abilities and rewards for all the routes in the algorithm
prediction horizon by concatenating the outcomes of the
module “Compare step” for all the routes explored. Ev-
ery “Compare step” module gives the SOC distribution
for a given node, and this distribution is used in the next
node as the initial SOC.

• “Compare step” module. It produces four outputs: 1)
the distribution of the SOC, 2) the probability of failure
associated with traveling from a node ni till a node ni+1,
3) the reward gained between node ni and node ni + 1,
4) gives the probability of failure traveling from a node
ni till a node n0. This is done using the modules shown
below in Figure 4.

• “Prob of failure” module. It calculates the probabil-
ity of failure, given a probabilistic characterization of the
evolution of the battery SOC in time, assuming that the
drone will not function if the SOC falls below the thresh-
old T .

• “Consumption” module. Given an angle, wind inten-
sity, and distance to travel, this module returns the dis-
tribution of the consumption related to those variables.
This is done by creating a new dataset with the given
wind angle and intensity values and multiplying the Ef-
fective ∆SOC by the distance to the next waypoint.

• “Subtract” module. It propagates the SOC distribution
by subtracting the possible consumption for each particle
of the SOC distribution.

5. OBTAINED RESULTS

In order to test the proposed algorithm, UAV flights are simu-
lated in a computational engine that uses an accelerated inter-
nal clock, which runs 10 times faster than in real-time. Every
two seconds, the decision-making strategy is executed, telling
whether the drone should continue to the following waypoint
(or “node”) or RTL. Design variables for each mission are the
cost of the drone (D) and the safety threshold (T ) for the bat-
tery SOC (which represents a catastrophic failure). A Particle
Filter algorithm is assumed to be used to provide real-time
estimates of the battery SOC, as described in Section 2.2. As
the wind speed cannot be changed mid-flight in the simula-
tion, the wind speed is assumed constant for now.

In all simulated flights, the proposed strategy achieves to re-
turn the UAVs to the landing location with sufficient remain-
ing battery energy. This situation proves that the algorithm
can avoid catastrophic failure midair. However, it is essen-
tial to conduct sensitivity analyses on the cost D of the asset
(in this case, the UAV) to understand the impact of this vari-
able in the decision-making process. In this regard, Figure 5
shows the dispersion associated with the nodes that were fi-
nally reached as a function of the UAV cost. In all cases, the
sensitivity in terms of the final decision is computed by vary-
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ing the UAV cost, while the SOC threshold T = 15 is kept
constant, as well as the rewards for every node. Information
on the node that is finally reached by the drone is essential
because it clearly shows whether the UAV is recovered. In
fact, every drone that reached a node nj with j < 40, was
also able to RTL safely. Figure 5 also shows that there is a
natural transition between decisions biased towards sacrific-
ing the drone and those that intend to recover it. This tran-
sition is highly influenced by the battery SOC as the cost of
the UAV decreases. On the other hand, as this UAV cost in-
creases, the decision shifts progressively towards a situation
where the strategy aims to recover the drone. Following this
logic, it is important to point out that the UAV cost plays a
fundamental roll in the decision taken by the drone. For this
simulation scenario, the drone gets to a node close to the node
35, and it has to decide whether to continue given that it will
fall (without taking into account outliers where node 35 was
reached with spare SOC). If the UAV cost is low, the drone
will not come back; if it is high, the drone will come back,
but in the middle, the drone makes a decision based on the
current SOC, leaning towards the bias given by the UAV cost.
As shown in Figure 5, the mean node reached by the UAV
decreases as its cost increases.
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Node reached with respect to the UAV cost

Figure 5. Dispersion of the node reached when moving the
UAV cost.

6. CONCLUSION

This work presents an integrated Risk-based strategy utilizing
a SOC prognostic algorithm to quantify the risk associated
with a given path in terms of future consumption, with the aim
of making real-time decisions on the UAV operation. More
specifically, we consider a UAV mission framework with a
discrete set of possible targets, where each one has costs, re-
wards, and failure risk, which is characterized by calculating
the total probability using sample-resampling methods. Fu-
ture work will focus on validating this methodology on actual
UAVs, incorporating a characterization of power consump-

tion for different wind speeds, thus allowing to modify the
flight policy depending on the current wind speed and his-
torical distribution data on the flight site. Besides, this work
gives a method that allows real-time decision-making con-
sidering several factors that condition the UAV energy con-
sumption. However, the number of covered factors is limited.
Indeed, crucial elements such as signal noise, component fail-
ure, moving wind intensity mean, and moving wind direction
are not taken into account. In our future work, we intend to
extend the number of factors to be considered by our PDM
approach.
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NOMENCLATURE

gi node i reward
Gi,j accumulative reward from node i to node j
D drone cost
Si,j success when traveling from node i to node j
Fi,j failure when traveling from node i to node j
di+j decision to travel node j from node i
di decision to travel node 0 from node i
X variable vector that influences energetic consumption
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