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ABSTRACT 

This paper proposes a reasoning framework to diagnose 

faults at the vehicle level in a complex machine like an 

aircraft. The current focus of Integrated Vehicle Health 

Management (IVHM) is on diagnosing and prognosing faults 

at the component and subsystem levels; only a few IVHM 

systems consider the interaction between the systems. To 

diagnose faults at the vehicle level, an IVHM System needs 

a framework that recognizes the causal relationships between 

systems and the likelihood of fault propagation between 

them. The framework should also possess an element of 

reasoning to assess data from all systems, to assign priorities, 

and to resolve ambiguities. The Framework for Aerospace 

VEhicle Reasoning (FAVER) that is proposed in this paper 

uses a Digital Twin (DT) of the aircraft systems to emulate 

functioning of the aircraft and to simulate the effect of fault 

propagation due to systems interactions. FAVER applies 

reasoning that can handle fault signatures from multiple 

systems in the form of symptom vectors, to detect and isolate 

cascading faults and their root causes. The blending of a DT 

and reasoning in this framework will enable FAVER to: i) 

isolate faults that have both local and cascading effects on the 

concerned systems, ii) identify faults that were previously 

unknown, and iii) resolve ambiguous faults. This paper 

explains the different steps involved in developing FAVER 

and how this framework can be demonstrated in the 

aforementioned scenarios with the help of different use cases. 

This paper also talks about the challenges to be faced while 

developing this framework and ways to overcome them. 

1. INTRODUCTION 

Any aerospace vehicle, like an aircraft, is a complex machine 

comprising various multi-physical systems, each having 

functions and objectives of their own. These systems interact 

with each other at different levels to attain full functionality 

of the aircraft (Ezhilarasu, 2018). In general, the aircraft 

systems are built in such a way that they remain stand-alone 

to a greater degree, to avoid unnecessary complexities. Still, 

due to the interactions between systems, it is not uncommon 

for a fault arising from one system to propagate and affect 

another system that the former is interacting with. Such 

cascading faults, whose paths are already known, are isolated 

in maintenance and troubleshooting activities. This is 

sometimes performed with aircraft maintenance systems like 

Honeywell’s Prime Epic Aircraft Diagnostic Maintenance 

Systems (ADMS) (Scandura, Christensen, Lutz, & Bird, 

2011). However, when a fault propagation takes a new/ 

unexpected path and affects multiple systems, it cannot be 

isolated easily during maintenance. One such real-world 

incident is the engine rollback of a Boeing 777 at Heathrow 

airport in 2008 (Sleight & Carter, 2014). During the 

investigation, the reason behind the engine rollback was 

found to be a drop in its power due to restricted fuel flow to 

both the engines. Further root cause analysis found that the 

fuel remained in the ‘sticky’ temperature range (less than -

10oC) for a prolonged period of time; this resulted in ice 

formation, which in turn was released in the fuel feed pipe 

and blocked the fuel oil heat exchanger and the rest of the fuel 

lines. Another such example is the emergency evacuation of 

a Fokker F28 in 2002, due to smoke in the cabin (Conradi, 

2015). The investigation found that it was due to a crack in 

the Auxiliary Power Unit’s compressor blade, the debris 

eventually causing a crack in an oil seal and resulting in oil 

spray in the bleed valve, leading to smoke in the cabin 

(Conradi, 2015).  

In cases like the abovementioned incidents, which are met 

with unexpected failure propagation involving multiple 

aircraft systems, troubleshooting is not a straight forward 

activity, and it results in extended downtime. Any Integrated 

Vehicle Health Management (IVHM) System that attempts 

diagnosing such cascading faults requires a holistic view of 

the aircraft, and the micro effects (confined to a system) and 

macro effects (affecting the system in addition to the system 
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of origin) of the interactions between the various systems 

(A.N.Srivatsava, R.W.Mah, R.Bharadwaj, & 

D.Mylaraswamy, 2013). The current focus of IVHM systems 

involve automated procedures focused at Line Replacement 

Units (LRUs) and subsystems level, but there are very few 

research publications that consider ‘vehicle level’ as their 

primary driver (Ezhilarasu, Skaf, & Jennions, 2019). This 

paper proposes a framework that aims to isolate the cascading 

faults affecting multiple systems of the aircraft. The 

Framework for Aerospace VEhicle Reasoning, also known as 

FAVER, incorporates the concept of a Digital Twin (DT) to 

produce simulations of what-if scenarios between the aircraft 

systems, along with an element of reasoning, to investigate 

data from the concerned systems and to isolate the root cause 

of cascaded faults. 

2. FAVER FUNDAMENTALS 

FAVER is a proposed framework for isolating faults in 

aircraft systems, particularly a fault or degradation in one 

system that affects another. FAVER comprises of two 

components: i) Digital Twin (DT) and ii) Reasoning. The 

following subsections present the background of both 

elements and explain how they will fit together to enable 

FAVER to isolate cascading faults in different scenarios. 

2.1. Digital Twin (DT) 

A DT is a virtual representation of any physical or functional 

asset that helps in monitoring the performance of the asset for 

a variety of outcomes like efficiency, health, or lifecycle cost. 

The term ‘Digital Twin’ was first coined by Dr. Michael 

Grieves from the University of Michigan in 2002, to mean a 

virtual/digital representation of any physical asset (Grieves, 

2016). NASA brought the concept of DT into the aerospace 

field in 2012, to integrate the simulation with on-board 

IVHM systems, along with historical maintenance and fleet 

data to represent its exact physical twin for further analysis 

(Glaessgen & Stargel, 2012). Over the last decade, the 

application of the DT has expanded, due to the abundance of 

data produced by the physical systems and the digitization of 

data collection and processing. In the field of IVHM, the DT 

has been applied for anomaly detection, predictive and 

prescriptive analysis and operation optimization (Auweraer, 

2018; General Electric, 2016; The Aerospace Technology 

Institute, 2017).  

By the definition of the DT, it is evident that it is, at its core, 

a simulation model of any physical asset, and that it functions 

as a living model and provides results based on its 

application. For a given instance, in the case of predictive 

analysis in IVHM, the DT can provide simulation results of 

the system’s remaining life and, in the case of manufacturing, 

it can give the results required for operation optimization. 

When extended to the field of health monitoring, the DT is 

capable of producing what-if scenarios to understand the 

hidden relationship between the systems; it is this capability 

of the DT which will be useful to the proposed framework for 

isolating cascading faults. FAVER uses the DT, as it can 

establish the interaction between the systems and enable 

simulations of a healthy state as well as possible fault 

propagations between the systems. 

2.2. Reasoning 

Reasoning is a systematic methodology for problem-solving 

by using the application of logic and cognition. There are a 

variety of reasoning strategies such as deduction, induction, 

abduction, analogical and temporal reasoning, which are 

applied depending upon the data available to solve problems 

(Ezhilarasu et al., 2019). A reasoning system is a software 

system that employs reasoning strategies in a systematic 

‘input-process-output’ manner. In the field of aerospace 

IVHM, several reasoning systems have been developed to 

monitor the systems health (Bunus, Isaksson, Frey, & 

Münker, 2009; Gaudette & Alwardt, 2006; Park et al., 2004; 

Sebastian, Peripinayagam, Jennions, & Alghassi, 2016). 

Reasoning is required in IVHM systems for many roles such 

as analyzing data from multiple sources, isolating the root 

cause of any faults, helping in decision-making processes, 

resolving ambiguities, detecting anomalies and upgrading 

diagnostic accuracies. Reasoning is an invaluable component 

for developing IVHM systems for vehicle level health 

monitoring (Ezhilarasu et al., 2019).   

In order to diagnose faults at the vehicle level, FAVER 

requires the reasoning element to meet with the following 

objectives: i) to process data from multiple aircraft systems, 

ii) to assess information, iii) set priorities, iv) resolve 

conflicts, v) pass judgement on the possible root causes of 

any fault, and vi) to update FAVER’s knowledge of any new 

fault that affects a system. 

2.3. The synergy between the Digital Twin and 

Reasoning 

The proposed framework, FAVER combines the versatility 

of a Digital Twin (DT) with the power of reasoning, in such 

a way that both these components compensate for each 

other’s lacking. A DT could emulate the functioning of an 

aircraft through simulations of its systems at healthy and 

faulty (or degraded) states; yet, the output from such 

simulations require further intense analysis and intelligence 

to isolate the root cause of the fault from the data produced. 

On the contrary, reasoning in a health monitoring system is 

only as effective as its domain knowledge either in the form 

of expert systems, models or datasets. Hence, FAVER aims 

to make use of the synergy between the ability of a DT to 

emulate the effects of fault propagation between the aircraft 

systems and reasoning’s ability to investigate the data 

produced to isolate the root cause of the fault propagation. 

This blending of DT and reasoning will enable FAVER to:  

i) isolate faults that have both local and cascading effects 

on the concerned aircraft systems,  
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ii) identify faults that were previously unknown, and  

iii) resolve ambiguous faults. 

3. FAVER METHODOLOGY 

Figure 1 shows the schematic of the proposed framework. 

The schematic is represented with two main layers, viz, i) The 

Digital Twin layer (bottom of figure 1), and ii) the Reasoning 

layer (top of figure 1). The two intermediate layers in figure 

1 represent the system level diagnostics and fault detection 

layers. Each vertical in figure 1 represents the modules 

required from each system, contributing to reasoning at the 

top level.  

Consider the Fuel System, the Engine, the Environmental 

Control System (ECS) and the Electrical Power System 

(EPS) of an aircraft (as shown in the bottom-most layer of 

figure 1). These systems have functions of their own and part 

of their functions that involve interacting with the other 

systems. For illustration, the fuel system provides fuel to the 

engine, the engine provides bleed air to the ECS and shaft 

power required for the EPS, and the EPS provides electric 

power to the components in the fuel system, the engine and 

the ECS. These systems interactions are considered for 

emulating the interactions in an aircraft via DT within 

FAVER. Besides, the EPS is also chosen to add a multi-

physical dimension to the problem chosen. The DT can be a 

physics-based or a function-based model, or it can be a 

Hardware-in-the-loop or a data-driven representation as well.  

The second horizontal layer from the bottom in figure 1 

represents the number of fault modes being considered at the 

system level. These fault modes degrade the systems from its 

100% healthy state to degraded or faulty states. Only a 

limited number of fault modes are taken into account for the 

initial setup of the framework, as FAVER aims to 

demonstrate its capability of isolating a certain number of 

fault modes with a broader range of systems rather than 

focusing on a large number of fault modes only from a few 

systems. The third horizontal layer from the bottom in figure 

1 shows that each system has its own diagnostics for the 

determined fault modes. These systems diagnostics are fed by 

sensor data from the DT for isolation of local fault with micro 

effects. They are incorporated in FAVER’s schematic so as 

to contribute to overall reasoning at the vehicle level. 

The reasoning is built on the diagnostic capability of the 

systems and their interactions. The reasoning module has 

access to both sensor data and diagnostic information from 

the systems. The knowledge is stored in the form of a 

symptom vector (sensor readings from each system), and any 

fault injected that affects one or more systems is isolated as a 

‘known fault’, with the help of built-in knowledge about the 

interacting functions of the systems.  

In figure 1, it is to be noted that the right-most vertical for the 

electrical power system does not possess any diagnostic 

module. This is to test FAVER for its ability to isolate faults 

that are previously unknown, as it is impractical to assume 

that reasoning in any health monitoring system is aware of all 

possible faults that might affect the systems. Consider a 

scenario where a fault signature is introduced in the EPS and 

it affects another system like the fuel system. Since the top-

level reasoning module depends upon the sensor data and 

system diagnostic information for isolating faults, this fault 

injected in the EPS will not be detected as a ‘known fault’ 

Figure 1: The schematic of FAVER 
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right away by reasoning. In general, the maintenance 

engineers will have to troubleshoot and isolate such a fault 

manually, since it will go unnoticed or misclassified by any 

diagnostic system. However, in this case, instead of 

misidentifying the electrical fault as ‘no fault’ or 

misclassifying it as a fault in the fuel system, FAVER would 

use the EPS DT with suitable virtual sensors to identify the 

combination of parameters that would lead to the injected 

fault signature. This fault signature can then be added to 

reasoning’s knowledge module with the electrical fault as its 

new label.  

The EPS DT is also used by FAVER to flag ambiguity. This 

is especially useful for the interacting systems, as many 

mechanical faults have similar symptoms as the electrical 

faults. As the EPS supplies power to many components in 

multiple systems, it is possible that fault symptoms occurring 

due to degradation in the EPS are ambiguous with mechanical 

degradations. In such cases, there is a risk of misclassifying 

a fault mode as a mechanical fault when it was originally an 

electrical fault. Using the EPS DT, FAVER will be able to 

reverse engineer the fault symptoms that match with the 

mechanical fault modes, to check if they can also be produced 

by the electrical parameters. When a suitable combination of 

parameters which could lead to the symptom (that matches 

with the mechanical fault), ambiguity will be flagged for that 

fault, and the reasoning’s knowledge module will be updated.  

4. DEVELOPMENT OF FAVER 

FAVER is being developed through four stages, as shown in 

Figure 2: i) Use-case Conceptualization, ii) Development of 

the building blocks, iii) Implementation and Testing, and iv) 

Evaluation. This section talks about the different steps 

involved in each stage of development.  

Stage 1: Use case Conceptualization 

This initial stage involves conceptualization of use cases that 

will be demonstrated through FAVER. The use cases are 

defined in such a way that the overall objectives of FAVER 

are satisfied through the demonstration. The cases of isolating 

single (system-level) and cascading faults (vehicle-level) that 

are previously known and unknown are framed into a number 

of distinct scenarios (as shown in table 1) for which the use 

cases are defined. These scenarios will enable demonstration 

of FAVER to isolate faults that affect a system locally, at a 

Figure 2: Stages in developing FAVER 
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micro scale as well as those that have a macro effect on other 

systems. It is to be noted that, for a fault mode that is 

previously unknown, its interaction effect cannot possibly be 

known and thus, the sixth case in table 1 is also not possible. 

 

The use cases will be formed for the remaining scenarios in 

table 1 and ambiguity can be checked for the known faults. 

The use cases (faults to be injected) are chosen from the 

scenarios from table 1, with reference to the four systems 

considered in the FAVER schematic (figure 1) that emulate 

the interaction between the systems of an aircraft. The faults 

chosen for demonstration can either be a single fault affecting 

a local system or a cascading fault that has a macro effect on 

another system. 

For example, consider figure 3. A reduced AC supply to a 

motor pump in the fuel system has its origin in EPS. 

However, this fault in the EPS has a cascading effect, which 

is to reduce the power to the motor pump, which in turn 

affects the fuel delivery to the engine and results in reduced 

power from the engine (redundancy is not considered in the 

use cases for demonstration purposes). This ‘domino effect’ 

has its root cause, the reduced AC supply from the EPS, and 

this fault can be flagged as one with a macro effect. This 

example can be used to check multiple use case scenarios like 

i) known fault with known interaction effect, ii) known fault 

with new interaction effect, and iii) new fault with a new 

interaction effect. Similar examples are being formulated to 

test the capability of fault isolation by FAVER.  

For the use case scenarios of a known single fault and a new 

single fault, faults injected at the system level can be chosen 

and tested. Ambiguity can be introduced in the system by 

injecting faults in components like valves. For example, a 

sticking valve in the fuel system can be a mechanical fault, 

and also a result of a stuck relay that reduces the voltage 

supplied to power the valve. The symptom vector for a 

sticking valve will be the same, despite the cause. Introducing 

such ambiguity could showcase the ability of FAVER to 

resolve such faults. When the use cases are defined, health 

parameters to be monitored will be decided, and the domain 

knowledge required for that use case are collected. 

Stage 2: Development of the building blocks 

This stage involves the development of the Digital Twin (DT) 

of the systems and the corresponding diagnostic reasoning at 

both system and vehicle level. For example, when the fuel 

system DT is built with respect to its source model, faults to 

be injected are defined, sensors to isolate faults are 

established and the parameters required for interaction with 

the EPS and the engine to demonstrate one of the use case 

scenarios are defined. In parallel, the fuel system diagnostics 

with isolation algorithms is built at the systems level and the 

knowledge base in the form of symptom vector is populated 

for reasoning at the vehicle level.  

Stage 3: Implementation and Testing 

The third stage of developing FAVER involves 

implementation and testing. In this stage, the DT of a system 

is run in a healthy condition, followed by fault injection and 

data collection. The symptom vector generated is compared 

with the knowledge base of reasoning to identify whether the 

fault is previously known. If no matches are found, the DT is 

used to check if any other system is the root cause of the 

injected fault, resulting in a previously unknown or 

ambiguous fault. Stage 2 and Stage 3 are repeated for 

building the DT and diagnostics for all four systems shown 

in figure 1. The reasoning module at the vehicle level is 

expanded to accommodate the different domain knowledge 

and suitable isolation algorithms. 

Stage 4: Evaluation 

Once all the systems are accounted for, in terms of the DT, 

their interactions, system level diagnostics, and top-level 

reasoning, FAVER will be evaluated for the performance 

metrics like classification accuracy, misclassification rate, 

number of false positives and false negatives and the time 

taken for classification. It will also be tested for its scalability 

and its sustainability to add or remove an aircraft system 

module to the framework. 

5. A THOUGHT EXPERIMENT 

A thought experiment was conducted with an experimental 

fuel rig to understand the interdependencies between various 

systems. The idea is to develop a conceptual model of how 

the reasoning is going to be demonstrated, while keeping the 

logic tractable. Too complex and the logic won’t be traceable 

Fault 

Mode 

Interaction 

Effect 

Use Case Scenario Effect

-scale 

Known - Known Single Fault Micro 

Known Known Known fault, known 

Interaction Effect 

Macro 

Known Unknown Known fault, new 

interaction effect 

Macro 

Unknown - New Single Fault Micro 

Unknown Unknown New fault, new 

interaction effect 

Macro 

Unknown Known Not Possible  

Table 1: Use Case Scenarios 

Figure 3: An example of a system fault with macro effect 
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or obvious, too simple and it won’t be effective as a 

framework. With the help of this thought experiment, a 

number of assumptions are seen to be necessary for the initial 

demonstration of FAVER.  

The fuel rig on which the thought experiment was conducted 

was developed in the IVHM lab in Cranfield University 

(Yufei Lin, 2017) and is representative of a commercial 

aircraft fuel system. Consider figure 4, where a small 

mechanical layout from the rig is presented for this thought 

experiment. Figure 4 can be seen to involve seven different 

layers. The mechanical system (hardware layer) consists of a 

reservoir from which the fuel is pumped by a gear pump GP, 

powered by a motor M, and it passes through a shutoff valve 

and filter F, followed by a flow control valve V, and back to 

the reservoir. There are four pressure sensors (S1, S2, S3 & 

S4), a laser sensor L, and a flow meter FM that provide sensor 

readings from the mechanical layer to the health monitoring 

layer (topmost layer of figure 4). The electrical system is 

shown via DC and AC layers; the sensors, the flow meter, the 

flow control, and the shutoff valves are all powered by 12-24 

VDC; the motor M that drives the gear pump is supplied by 

230VAC power. The electrical layer is required for the 

functioning of the mechanical components. Similarly, the 

control system is shown in two layers, viz, control and the 

feedback layers: they consist of the control functions pump 

speed N, the valve positions and the flow Q through the 

flowmeter, and their feedbacks respectively. The fault modes 

are injected into the fuel rig via the control system. For the 

effective functioning and diagnosing of the fuel rig, it is 

essential that all the dependent systems, i.e., the mechanical 

system, the electrical power system, and the control system 

should work together, along with the sensors and flowmeters 

which connect them to the health monitoring for diagnosis. 

 

In the beginning, faults are considered only within the 

mechanical and electrical systems. Six fault modes that are 

planned to be injected are listed in table 2. Among these fault 

modes, the clogged filter (FM1) and the pipe leak (FM2) are 

mechanical faults, whereas the reduced pump speed can 

either be due to reduced electric power to the pump (FM4) or 

due to a broken gear tooth in the pump (FM3). Similarly, a 

Table 2: List of fault modes for the thought experiment 

Mode Fault Type 

FM1 Filter Clogging Mechanical 

FM2 Pipe Leaking Mechanical 

FM3 Gear tooth broken in the pump Mechanical 

FM4 Low power to the electric pump Electrical 

FM5 Clogged flow control valve Mechanical 

FM6 Low power to the flow control valve  Electrical 

Figure 4: Multiple systems in a fuel rig - A thought experiment 
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clogged nozzle may occur due to either mechanical blockage 

(FM5) or lack of electrical power (FM6).  

Since the electromechanical components used in the test rig 

are susceptible to both mechanical and electrical faults, the 

symptom vectors for such fault modes resembled each other, 

thus introducing ambiguity to the problem. The symptom 

vector matrix was developed to represent the fault signatures 

at the system level, using which the diagnostic rules were 

developed to isolate both mechanical and electrical faults. In 

the case of the control system, with respect to the fuel rig, its 

role does not stop only at controlling the valves and motor 

speed and receiving the feedback. Rather, the control system 

is essential for injecting faults into the rig for diagnosis. Thus, 

introducing faults in the control system will render the 

diagnosis of fuel rig invalid. In practice the control system 

may well mask potential faults. Hence, for demonstrating 

FAVER with the fuel rig, only mechanical and electrical 

systems are assumed to be at fault, the control system is 

considered to be healthy. The same is the case for considering 

faulty sensors. Since the health monitoring layer, the output 

of which is used for diagnosing the faults in the fuel rig, is 

dependent upon the sensor readings, for the purpose of initial 

testing, the sensor data are assumed to be reliable. In a similar 

fashion, a few more assumptions are made to define the scope 

of the research, within which FAVER will be demonstrated. 

A complete list of the assumptions made is as follows:  

1. The EPS is not instrumented for diagnostics 

2. The control system is assumed to be 100% healthy 

3. Only single faults are considered 

4. Sensors are always healthy 

5. Fault modes signatures are to be studied at steady state  

6. No False Alarms are considered 

As previously mentioned, these assumptions can be relaxed 

at the later stage, to expand the framework and prove 

FAVER’s ability to isolate faults under complex conditions.  

6. CHALLENGES 

The development of FAVER poses a number of challenges. 

In order to enable FAVER to isolate cascading faults that are 

previously known and unknown and to flag ambiguity, a 

certain number of assumptions will be made, as mentioned in 

the previous section. These, however, will not affect the 

overall ability of FAVER to isolate the faults; instead, these 

assumptions will be treated as special conditions. Future 

research will relax these assumptions.  

FAVER requires validated simulations with which to build 

the Digital Twin (DT) for emulating the systems interactions. 

Developing every system from scratch is time-consuming 

and will not fit into the timescale for completing FAVER. 

Hence the DT sources are taken from previously developed 

and validated simulation models from research work within 

the IVHM Centre. Similarly, existing diagnostic methods are 

chosen for system level diagnosis, and reasoning is developed 

only at the vehicle level to isolate the faults that have a macro 

effect on multiple systems. 

One more challenge for developing FAVER is the 

complexity involved in establishing interaction between the 

systems. As FAVER is designed to accommodate multiple 

systems, the framework must possess the required features to 

enable systems interactions at the vehicle level. If a new 

system is introduced, it must be checked for all possible 

connections with the other systems and every system 

interacting with the new one must be updated for enabling the 

interactions via DT. All the concerned systems must go 

through rigorous verification and validation to account for the 

change. For this purpose, modularity is being introduced to 

the framework’s architecture. Every system will be 

encapsulated and will be treated as an independent module. 

The interaction between the modules will be established only 

through the modules meant for communication. In this case, 

when a new system is added, the necessary parameters will 

only be updated in the communication modules and the 

sources of other systems DT will not be disturbed. It is to be 

noted that, along with the challenge of complexity and 

sustainability, the modularity feature takes care of the issues 

of scalability for the framework. Even if the systems are of 

different scales, the scaling factor can be introduced in the 

communication modules, through which the DT interactions 

can be enabled.  

7. CONCLUSION & FUTURE WORK 

A Framework for Aerospace Vehicle Reasoning (FAVER), 

conceptualized with its main components of Digital Twin 

(DT) and reasoning, is discussed in this paper, along with the 

different stages of development and the use case scenarios. 

Developing and demonstrating FAVER will provide a 

pathway to isolate cascading faults and resolve ambiguities 

under multiple scenarios in the aircraft systems.  

Currently, the architecture of FAVER is being designed 

systematically, to include all of the essential components. As 

most sources of aircraft systems are available for the DT from 

the IVHM Centre, they will be brought into the framework 

via the modularity feature and tested for interaction with the 

other systems. Once the interactions are established, the 

reasoning strategies will be built to isolate cascading faults 

that are previously known or unknown to the system, as well 

as to identify ambiguity, i.e., figure 1 will be executed.  
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