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ABSTRACT

To access ground truth degradation information, we simulated
charge and discharge cycles of automotive lithium ion bat-
teries in their healthy and degrading states and used this in-
formation to determine performance of an autoencoder-based
anomaly detector. The simulated degradation mechanism was
an abrupt increase in the battery’s rate of time-dependent ca-
pacity fade. The neural network topology was based on one-
dimensional convolutional layers. The decision-support sys-
tem, based on the sequential probability ratio test, interpreted
the anomaly generated by the autoencoder. Detection time
and time to failure were the metrics used for performance
evaluation. Anomaly detection was evaluated on five differ-
ent simulated progressions of damage to examine the effects
of driving profile randomness on performance of the anomaly
detector.

1. INTRODUCTION

The layers of capability of Prognostics Health Monitoring
(PHM) in ascending order are: anomaly detection, diagnos-
tics, and prognostics. This manuscript is chiefly concerned
with the first capbility - anomaly detection. An early success-
ful demonstration of an autoencoder neural network for vibra-
tion data provided the first layer of Prognostics Health Mon-
itoring (PHM) capability – anomaly detection (Japkowicz,
Myers, Gluck, et al., 1995). Since then, there has been a
revolution in training deep neural networks, which facilitated
training of deeper, more expressive neural network models
and demonstrated its performance on many important ma-
chine learning tasks (LeCun, Bengio, & Hinton, 2015). The
significant advantage of the deep learning approach in PHM
is that it can be trained on abundantly available normal data
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(Yan & Yu, 2015), whereas classical machine learning mod-
els require a more statistically large data set (Bishop, 2013),
with a significant number of instances of failure, which are
expensive to collect. By the time of this study, autoencoders
have become the first choice method for anomaly detection in
PHM (Eklund, 2018).

PHM systems can evolve in time, growing their capabilities
from anomaly detection, towards diagnostics and prognostics
(Sikorska, Hodkiewicz, & Ma, 2011; Bussey, Nenadic, Ardis,
& Thurston, 2014). As more failure data becomes available,
representation learning features of deep learning can be ex-
ploited to learn better Condition Indicators (CIs). The exper-
iments with real world data have demonstrated the potential
of the deep learning models to effectively detect anomalies.
However, because the ground truth of failure is typically not
accessible without significant feature engineering (see, e.g.,
the fundamental axioms of structural health monitoring, and
Axiom IVa in particular (Worden, Farrar, Manson, & Park,
2007)), we explored the effectiveness of deep learning mod-
els using simulated failures. The selection of the physical sys-
tem and its model that generated synthetic data was based on
the following criteria: the system had to be well-researched
in PHM community (to provide familiarity with the nature of
the solution and facilitate intuitive interpretations), it had to
be nonlinear (to avoid trivial solutions), with information con-
tained in multiple time scales, and to have existing published
models (to leverage known results and reduce the debugging
time). A lithium ion battery system quickly emerged from
this criteria as a good candidate since the system was well-
researched in the PHM community (see e.g. (Saha & Goebel,
2008; Olivares, Munoz, Orchard, & Silva, 2013)).

The simulated battery system enabled the study of a 1D Con-
volutional Neural Network (CNN) autoencoder, built to de-
tect anomalous behavior where ground truth knowledge of
how the system degraded up to failure was known. Degrada-
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tion was set in the form of battery cell capacities. A driving
profile in the form of power was input into the simulation,
where alternating cycles of charging and driving with regen-
erative braking were present.

2. METHOD

To better evaluate performance of an autodencoder as an
anomaly detector, we decided to build a simulation model be-
cause real failures of high-severity, low-frequency type (the
type that is of interest to PHM), are expensive and the ground
truth is often not accessible. The first step was to select the
system to simulate. As stated above, the requirements were
that the model be complex and nonlinear, with multiple tem-
poral scales. With nonlinear relationships between series re-
sistance and state-of-charge (SOC), open-circuit voltage and
SOC, a couple of minutes time constant associated with re-
laxation and charge/discharge cycle on the order of hours, the
lithium ion battery had the desired characteristics. Section 3
describes the customized simulation.

Because the focus was to assess anomaly detection capabil-
ity of an autoencoder-based model, the model was trained on
normal data to learn the internal representation. The details
of data preprocessing and model development are provided in
Section 4.

We built a decision-support layer to operate on the error sig-
nal produced by the autoencoder (the difference between its
input and output) to assess the performance of the model with
respect to its capability to operate as an anomaly detector.
Section 5 describes the decision support and the metrics used
for the assessment in detail.

Finally, in Section 6, we compared performances of multiple
simulated failures to understand the sensitivity of the model
to the rate of degradation and to the randomness of the driving
cycle.

3. BATTERY MODEL SIMULATION

3.1. Simulation environment

Standard Modelica libraries, with Open Modelica interface
OMEdit were used for simulation (Fritzson et al., 2006). The
battery model was based on the Electrical Energy Storage
(EES) library (Einhorn et al., 2011). The EES library was
chosen because it was readily available, has been referenced
in literature, and provided non-trivial examples that served as
the starting point for our battery simulations. We started with
the example AdvancedStackCycling which includes a three
cell battery stack, charger, vehicle driving cycle, battery man-
agement system, and observable states. An example simula-
tion output of one cycle including the voltage, current, SOC
are shown in Figure 1. This includes a Constant Current (CC)
- Constant Voltage (CV) charge cycle followed by a rest pe-
riod before entering a drive cycle with regenerative braking.

Ultimately, the battery behavior for the purpose of anomaly
detection is represented by battery stack voltage and current
waveforms.

Figure 1. A closer view of charge up and driving with regen-
erative braking.

3.2. Extending a published simulation library

Simulating faults required extensions of the EES’s Advanced-
StackCycling simulation, including updated constants along
with protection against over-voltage during regeneration,
variable time-based capacity aging, variable resistance with
SOC, and measurement noise. The extended top level block
diagram is shown in Figure 2 with modifications of the origi-
nal example explained in turn.

cellParameters

ground

idealCommutingSwitch

charger

on

v

V

voltageSensor

A

currentSensor

Battery  Stack
ns

np

driving

FTP72

on

cycler

dch.

ch. Vmin

Vmax

V Batt

+
+1

+1

VNormalNoise

1 s

mu=0

sigma=0.001

I Batt

+
+1

+1

INormalNoise

1 s

mu=0.003

sigma=0.05

Figure 2. Top level Modelica stack cycling block.

3.2.1. Over-voltage protection

Over-voltage during the driving cycle was a consequence of
the way the simulation model extrapolates the drive cycle
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power in a Modelica CombiTimeTable. With periodic extrap-
olation, the time-series drive cycle was continuously repeated
to ensure a value existed for the entire simulation time. Since
the table was time-based rather than event based, each driving
cycle started at a different point on the drive cycle, not nec-
essarily at the beginning. This can result in the driving cycle
starting at a high regeneration period (charging) with a fully
charged battery. Without protection, we observed voltage
spikes above the maximum cell voltage in certain instances.
This was mitigated by adding a two-second moving average
on the voltage to compare with a set threshold voltage 1% be-
low Vmax. If this threshold was exceeded, current was set to
zero to represent a regeneration safety limit in a vehicle. This
resulted in a slightly different simulation profile for each driv-
ing cycle, adding complexity to the model.

3.2.2. Capacity aging

In addition to voltage protection, complexity was added by
including multiple linear capacity aging rates to represent
healthy and faulty capacity fade over the lifetime of the bat-
tery. Capacity aging was defined as a time-dependent adjust-
ment to the battery capacity as shown in Eq. (1) with the ag-
ing factor K defined in Eq. (2). For the simulations, nor-
mal capacity aging was set to reach our failure criteria, 70%
of the initial capacity C0, in approximately 3.1 years, that
is Cf=70%. This typical time-based aging is shown as the
healthy slope in Figure 3, interrupted by the accelerated slope
due to a simulated fault. Low-rate degradation always accom-
panies normal battery operation, therefore we labeled this re-
gion as healthy. This region was used to train the autoencoder
(see Section 4). The slope was adjusted by the damage factor
md in the faulty region which started at the onset of failure
point tonset, set at 62.5 hours in our simulations. As listed in
Section 6, Table 2, multiple slopes above and below the base-
line of md = 400 were considered in our simulation to get a
variety of datasets for testing the autoencoder model.
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Figure 3. Capacity aging for healthy and faulty conditions.

C = C0 +K(t) · t (1)

K(t) =

{
kC , t ≤ tonset
md · kC , t > tonset

(2)

3.2.3. Variable resistance with SOC

Batteries typically exhibit higher resistance at a lower state
of charge. This behavior was implemented in the simulations
as shown in Figure 4. A linearly decreasing resistance occurs
until SOC reaches 50% and becomes a constant value. While
this functional dependence was not quantitatively based on a
specific battery behavior, it provided a qualitative model that
was more accurate than assuming a constant resistance. In
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Figure 4. Cell resistance variation with SOC.

addition to the dependence on the state of charge, the cell re-
sistance also depends on the capacity. The capacity fade is
accompanied by in an increase in the cell resistance, which
affects the relationship between the terminal battery voltage
and the battery current. While the implementation of the
functional dependence RBatt(C) seemed straightforward in
principle, the attempts to extend the physics-based model to
include RBatt(C) caused problems with the numerical inte-
gration of the overall dynamical model. Unrealistic oscilla-
tions observed in the resulting simulations prevented the ex-
tension of the model in this manner.

3.2.4. Measurement noise

The final level of complexity was added as noise on the stack
voltage and current measurement. This is representative of
measurement error and noise of the monitoring equipment.
Normal noise was added to stack current with µI = 0.003,
σI = 0.05, and a sample period of one second. Normal noise
was added to the stack voltage with µV = 0, σV = 0.001,
and a sample period of one second.

3.3. Modified discharge cycle

The EES library provides an FTP72 discharge profile in terms
of electrical power (kW) for the Urban Dynamometer Driv-
ing Cycle which was used as the basis for the simulation,
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hereafter referred to as the Urban Driving Cycle. The Ur-
ban Driving Cycle profile was extended to obtain more depth
of discharge before recharging because of the limitations of
the physics-based model: as stated above, the battery model
did not includeRBatt(C) dependence and the simulations did
not reveal the changes in the voltage-current relationship for
shallow depths of discharge. Consequently, deeper depths of
discharge were needed to allow the autoencoder to observe a
change in the voltage-current relationship over a longer pe-
riod of time. An autoencoder trained on experimental data
should detect changes even for shallow depths of discharge.

The modification of the discharge cycle was accomplished
by widening all positive power (discharge) values from one
second duration to five second duration for each instance.
Any value equal or below zero power (charge) remained a
one second duration. As a result, the total driving cycle du-
ration for our Modified Driving Cycle simulation was 4482
seconds instead of 1370 seconds for the Urban Driving Cy-
cle. The driving profiles are shown in Figure 5. Additionally,
the power was reduced with a gain of 0.025 for the driving
profile in Modelica because the battery stack being simulated
consisted of only three cells and could not realistically power
these loads.
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Figure 5. Battery power load profile for urban driving cycle
with modification.

3.4. Design of multiple simulations

Multiple simulations were performed to create data with vari-
ations in the drive cycle and level of capacity degradation for
testing repeatability of the autoencoder. The Modelica EES
implementation featured two separate cycles: one for produc-
ing discharge power and the other for controlling the state of
usage (whether it was in driving or in charging mode). In
general, these two periods were non-commensurate and pro-
duced some level of pseudo-random driving cycles, which be-
haved more realistic than fully deterministic cycles. With this
inherent randomness, we were able to create different driv-
ing patterns with time offsets (shifts in the horizontal axis)
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Figure 6. Comparison of drive cycle variations due to a time
shift from the baseline profile.

of the Modified Driving Cycle shown in Figure 5, keeping
all other battery parameters the same as the baseline. As
explained in Section 3.2.1, periodic repetition of the driv-
ing profile was utilized for continuity at all time steps, there-
fore each shifted profile was different and no two cycles were
identical. To illustrate the behavior of the simulation, Fig-
ure 6 shows the variability of battery current IBatt that re-
sulted from time shifts of the baseline drive profile, referred
to as Shift 1 and Shift 2. Since fault detection was our main
focus, we also performed simulations with two levels of ca-
pacity fade by adjusting damage factor md. The simulation
with a less severe capacity fade compared to the baseline was
labeled Slower while the quicker capacity fade was labeled
Faster. The method for adjusting the capacity is explained in
Section 3.2.2.

4. AUTOENCODER-BASED ANOMALY DETECTOR

4.1. Data preparation

The simulated data contained thirty-six signals of various in-
ternal states of the battery model. The autoencoder model
was concerned only with two that were practically observ-
able: terminal battery voltage VBatt and current IBatt. A
constant sampling rate of 1Hz was used for the two signals in
the data. Data was first split into healthy and faulty sections.
The battery was considered healthy up to where the change in
the slope of cell capacity degradation occurred. After which,
the battery was considered faulty until 70% of its cell’s ca-
pacity had degraded, at which point failure was designated.

4.1.1. Segmenting samples

The convolutional model took input data of size (256, 2),
i.e., 256 seconds by 2 signals, voltage and current. For
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Figure 7. Split of healthy data: training, validation, and test
(baseline simulation).

example, 100,000 data points in time would be segmented
into 390 samples of 256 seconds, with 160 points discarded
(100,000 = 390×256 + 160). This allowed 4 to 5 minutes
of operation for each training sample, which corresponded
to 1 to 2 time constants of a lithium ion battery relaxation
(Nenadic, Bussey, Ardis, & Thurston, 2014; Valant, Gaustad,
& Nenadic, 2019), so that the model could learn dynamical
relations in the data. The value of 256 was then chosen for
accelerating computations on the Graphical Processing Units
(GPUs). After samples were created, healthy data was split
into training, validation, and testing for the model.

4.1.2. Healthy data split

Healthy data samples were randomly split into training, vali-
dation, and testing, as shown in Figure 7. Approximately 80%
of the healthy data was used to train the autoencoder. About
10% was used for validation during training, and another 10%
was used for further testing after training was finished. This
resulted in 702 training samples, 87 validation samples, and
89 testing samples. Any length of time could have been sim-
ulated, but the resulting 702 training samples were sufficient
to achieve a reasonably accurate model. The details of the
model accuracy are provided in Section 4.2

4.1.3. Scaling

Data was scaled into the 0 to 1 range using a min/max scaler.
It was important to segment the data and split it into training
and validation prior to scaling so that only training data was
fit for scaling to avoid data snooping (Abu-Mostafa, Magdon-
Ismail, & Lin, 2012).

4.2. Model development

The motivation for 1D CNNs was their compactness and abil-
ity to better exploit computational advantages of GPUs com-
pared to Multi-Layer Perceptrons (MLPs). As shown below,
these networks employ Finite Impulse Response (FIR) filters,
whose parameters are computed during the training process,
which makes them very flexible models, because many phys-

ical systems have been approximated as linear time invariant
systems and modeled with filters. The nonlinear activation
functions have the ability to extend traditional linear model-
ing. In our experiments, GPUs were able to moderately ac-
celerate training of MLP-based models by cutting the training
time in half; by contrast, the GPU acceleration in training of
1D CNN models of similar complexity (to that of their MLP
counterparts) was about a tenfold increase.
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Figure 8. CNN 1D unit cell.

The basic cell of a 1D CNN layer, shown in Figure 8, is de-
scribed as follows. A hidden layer output vector φ of a 1D
CNN cell consists of M hidden units φm

φ = [φ1 . . . φm . . . φM ]T , (3)

where an individual unit is the result of a nonlinear transfor-
mation applied on an affine transformation of the N differ-
ently filtered input signal s

φm = fm

(
bm +

N∑
n=1

sn ∗ hn,m

)
(4)

fm is the activation function (e.g. ReLU(z)
∆
= max(z, 0))

that performs the nonlinear transformation, hn,m are the co-
efficients of the N digital filters, and bm is the offset. Symbol
∗ denotes convolution and each digital filter corresponds to

sn[k] ∗ hn,m[k] =

∞∑
i=−∞

s[k − i]hn,m[i]

=

k∑
i=0

s[k − i]hn,m[i],

(5)

where the limits of the last sum were reduced on the account
of the causality of the signal and the filter. In the present case
N = 2, with s1 = VBatt and s2 = IBatt.

The overall model topology is depicted in Figure 9: the en-
coding consisted of alternating convolutional and max pool-
ing layers, whereas the decoding consisted of alternating up-
sampling and convolutional layers.

The model was implemented in Keras (Chollet et al., 2015;
Chollet, 2017), a deep learning framework within Tensorflow
(Abadi et al., 2015), which includes an implementation of
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Figure 9. Topology of a 1D CNN autoencoder.

1D CNN layer. The implementation code is provided in the
appendix.

Several iterations, after exploring model variations, viz. the
number of layers, the width of the layers, and the fil-
ter size employed by the convolutional layers, arrived at a
model summarized in Table 1. The convolutional layers em-
ployed 10% dropout for regularization (Srivastava, Hinton,
Krizhevsky, Sutskever, & Salakhutdinov, 2014). The opti-
mizer was ADAM (Kingma & Ba, 2014), with the learning
rate of 10−3, and the Mean Squared Error (MSE) loss func-
tion. In addition, Mean Absolute Error (MAE) was used as a
metric. The model was trained, validated, and tested on nor-
mal data (see Figure 7) and evaluated on the faulty interval.
An additional restriction in this implementation was that only

Table 1. The summary of autoencoder model by layers.

Layer Number Signal Number of Activation
of signals length parameters

Input 2 256 0 −
Convolutional 1D 40 256 2,600 ReLU
Max-Pooling 1D 40 128 0 −
Convolutional 1D 20 128 25,620 ReLU
Max-Pooling 1D 20 64 0 −
Convolutional 1D 4 64 2,564 ReLU
Up-Sampling 1D 4 128 0 −
Convolutional 1D 20 128 2,580 ReLU
Up-Sampling 1D 20 256 0 −
Convolutional 1D 40 128 3,240 ReLU
Convolutional 1D 2 256 82 Linear
Total params 36,686
Dropout 10% and kernel size 32 for all convolutional layers
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Figure 10. Loss during training with inset plot showing error
histograms for train, validation, and test.

discharge data – the data associated with driving – was used
for model training, validation, test, and evaluation. This deci-
sion was made after observing that the step change in signals
associated with the onset of charge cycle was slow to train
and resulted in larger errors compared to the rest of the data.
Because these recurring large errors were lowering the sen-
sitivity of the early anomaly detector prototypes, the data as-
sociated with charging of the battery was removed from the
training.

Figure 10 shows loss during training for both training and val-
idation samples. The training loss was greater than the vali-
dation loss because dropout turned off random neurons when
evaluating training data. No neurons were turned off during
evaluation of validation data resulting in a smaller loss, which
is a typical manifestation of dropout regularization. The in-
set plot displays the scaled histograms, to estimate Probabil-
ity Density Functions (PDFs), of prediction error for training,
validation, and test data, with the logarithmic y-scale to better
show the tails of the distributions. The three histograms were
virtually indistinguishable (except from the end of their tails),
suggesting good generalization of the trained model.

Figure 11 shows the model evaluation for the entire baseline
simulation of the battery degradation; the top two subplots are
the input signals and the outputs of the autoencoder (battery
voltage VBatt(t) and current IBatt(t)), the third subplot is
the error, and the fourth subplot is the ground truth of the
degradation – capacity C(t). Note that the local peaks of the
error signal increased in both height and width as capacity
faded. The error was higher near the end of a driving cycle,
as further shown in Figure 12, which zooms into two driving
cycles. Recall that the depth of discharge was only slightly
over 50% (see Figure 1). The capacity degradation of the
simulated battery was observable from the terminal port only
at relatively high depths of discharge, where the relationship
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Figure 11. Model evaluation over Baseline simulation.

Figure 12. Model evaluation zoomed over two driving cycles.

between voltage and current started to change. A close-up of
the battery and current signals in Figure 12 also provides a
better visual display of the agreement between the inputs and
outputs of the autoencoder.

5. DECISION SUPPORT

The error signal from an autoencoder can be used directly
by an analyst, but a decision-support layer is typically em-
ployed to interpret the error signal and facilitate further ac-
tions. While a simple decision support layer is a filter-and-
threshold, this study used the Sequential Probability Ratio
Test (SPRT). The SPRT was developed for quality control
(Wald, 1947) and first used in PHM for monitoring of nuclear
plants (Gross & Humenik, 1991) and later for monitoring of

0.0 0.1 0.2 0.3 0.4
Error MAE
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20

40

p(
)

ph( )
pf( )

Figure 13. Error distribution of healthy data (histogram and
fitted lognormal distribution) and assumed faulty distribution

software failures in servers (Cassidy, Gross, & Malekpour,
2002).

In the present implementation the SPRT computed the log-
likelihood ratio of the error metric - MAE:

` =

Ns∑
i=1

ln pf(εi)−
Ns∑
i=1

ln ph(εi) (6)

where εi was a sample MAE, Ns is the number of error sam-
ples considered, and ph and pf were the PDFs associated with
distributions of healthy and faulty data, respectively.

The decision D has three states {Healthy, Faulty,
Need more data} and the decision process was carried
out using the following logic in

D =


Faulty, A ≤ `
Need more data, A ≤ ` ≤ B
Healthy, ` ≤ B

(7)

where A and B are the design parameters.

The probability of the healthy state was readily estimated
from the histogram of MAE associated with training data (see
Figure 13). A log-normal distribution was selected to model
ph because the histogram of MAE resembled the prototypical
shape of the log-normal PDF given by Eq. (8)

ph(ε|µL, σL) =
1

εσL
√
2π

exp

(
− ln(ε)− µL

2σ2
L

)
, (8)

where µL and σL are the parameters that were fitted to the
error data.

The probability distribution associated with faulty data was
less straight forward because there could be different faults
associated with different failure modes and the decision-
support layer should aim to catch all of them. Our design
choice of uniform distribution

pf(ε|εmax) =

{
1

εmax
, 0 ≤ ε ≤ εmax

0, elsewhere
(9)

where εmax was a hyperparameter, was loosely based on
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Laplace’s principle of insufficient reason and εmax=0.4 was
heuristically chosen to extend considerably beyond the tail of
ph.

Three hyperparameters of the decision support layer, viz. the
number of samples Ns, the lower limit B and the upper limit
A had to be selected. The limits were set based on the values
of ` during training, with some margin for unseen cycles (see
Figure 14) to be B = −1 and A = 18. The number of cycles
was selected so that it corresponded to a couple of minutes of
data, specifically Ns = 128.

Two metrics were used to evaluate the performance of the
overall system: 1) Detection Time (DT ) computed as the
time difference between the onset of the accelerated degra-
dation and the first detection of the anomaly and 2) Time To
Failure (TTF ) as the time difference between the first de-
tection and the degradation level that was designated as the
failure by the system specification Cf = 70%. Note that the
battery is still operational at this level, but the level that the
system deems unacceptable. For DT , smaller values indi-
cated better performance, while for TTF , larger values indi-
cated better performance. In addition to these two metrics,
capacity of the battery at the time of the first anomaly detec-
tion, denoted by Cd, was also considered.

Figure 14 shows the performance of the decision-support
layer that operated on the autoencoder error, shown in the
third subplot from the top of Figure 12. The top subplot
shows the log-likelihood ratio `, the middle subplot shows the
output of the decision layer D, and the bottom subplot pro-
vides the ground truth – capacity fade C. The log-likelihood
ratio ` had peaks at the end of driving cycles. The grid lines
indicate the SPRT thresholds A and B in the figure. The sub-
sequent peaks were generally increasing both in height and in

width, although not strictly monotonically. A few driving cy-
cles with less depth of discharge did not have large peaks. The
capacity subplot indicated the system-designed failure level
of degradation and the two metrics – DT and TTF . Cd and
Cf are indicated in the bottom subplot.

6. DETECTION PERFORMANCE

Four simulations, in addition to the baseline, were run to as-
sess the anomaly detection performance of the autoencoder.
Two of the additional simulations varied the damage factor, or
the multiplicative factor of the normal capacity fade; one was
degrading faster and the other slower, compared to the base-
line. Their labels were Slower and Faster. The other two ad-
ditional simulations varied the simulation time offset param-
eter to affect the random pattern of slightly more or less driv-
ing, which corresponded to slightly deeper or less deep depths
of discharge. These two simulations were dubbed Shift 1 and
Shift 2.

Table 2 lists the five different simulations, with their charac-
teristics (damage factor and offset time) and the performance
metrics (DT and TTF ). Capacity associated with the first
anomaly detection was also indicated. As expected, there
was some variations in performance among these five simula-
tions. Baseline simulation had similar performance as Shift 1
and Shift 2, the former performing a little worse and the latter
performing a little better. The anomaly detector took longer
time to detect the anomaly in the Slower simulation compared
to Baseline, but Cd was higher. Under these circuimstances,
it would be reasonable to expect that TTF was also longer,
but it was not. The reason for the shorter than expected TTF
was due to a couple of deeper than normal discharges that just
happen to take place in that simulation.

The dashed lines indicating the SPRT thresholds A and B
in Figure 14 were set considerably higher than the observed
peaks. The margin was intentionally set to avoid false detec-
tion. After applying the anomaly detection on five different
simulations, we revisited these thresholds. Figure 15 shows
the peaks of ` during normal operation that occurred at the
end of driving cycles in the form of a scaled histogram, which
was then fitted to the normal distribution, also shown in the
graph. The upper SPRT threshold A is indicated in the graph
as well. The set threshold level was conservative, '4.8 stan-
dard deviations away from the estimated mean. This design
choice, given the observed simulated data, virtually assures
zero false alarms. A less conservative threshold would be
able to detect anomalies sooner, but would also increase the
potential for Type II error.

7. CONCLUSION

The objective of the study was to obtain ground truth of the
damage through simulation of a physical system and to use
this ground truth to improve the assessment of the perfor-
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Figure 15. Estimated distribution of log-likelihood peaks for
the five simulations with the fit to normal distribution.

Table 2. CNN performance on several simulation variations.

Simulation Damage Offset DT TTF Cd
Labels Factor md t [s] [hrs] [hrs] [%]
Baseline 400 0 34.0 35.3 85.3
Slower 350 0 45.0 31.4 87.8
Faster 450 0 30.1 20.3 82.1
Shift 1 400 1,500 34.2 31.1 85.2
Shift 2 400 3,500 27.1 42.4 88.2

mance of autoencoder-based anomaly detectors. We simu-
lated normal aging and accelerated aging in a lithium ion
battery system. A published battery model in Modelica was
modified to simulate cell capacity degradation. The autoen-
coder was based on 1D CNN layers, which seemed particu-
larly well-suited for simulating time-domain signals, and to
our knowledge have not received significant attention. An
SPRT-based decision-support layer was employed to inter-
pret the error signals from the autoencoder. We showed that
the autoencoder’s prediction error increased as cell capacities
faded during faulty operation, and quantified these anomalies
using two metrics; detection horizon and remaining useful
lifetime. Five variations of the battery simulations were gen-
erated in order to verify detection results.

Future work will focus on modeling faulty operation rather
than healthy operation, expanding the battery simulation, and
extracting condition indicators from the encodings of the au-
toencoder model. The battery simulation could be expanded
to more cells that better match empirical data, resistance as
a function of capacity fade, thermal effects, and an improved
battery management system. A more advanced simulation
with these features should provide nuances for the autoen-
coder model to interpret. If condition indicators on the ad-
vanced model can be found, they can inform damage assess-
ment and diagnostics. Furthermore, developing the diagnos-

tic level of PHM could lead to the prognostics level through
forecasting these condition indicators.
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NOMENCLATURE

t Simulation time
IBatt Battery current
VBatt Battery voltage
SOC Battery state-of-charge
C Battery cell capacity
C0 Initial battery cell capacity C
Cf Failure level
Cd Capacity associated with the first detection
K Time-dependent slope of capacity fade
kC Normal capacity fade
tonset Onset of accelerated battery degradation
md Multiplicative factor for faulty capacity fade
µI Mean of current measurement noise
σI Standard dev. of current measurement noise
µV Mean of voltage measurement noise
σV Standard dev. of voltage measurement noise
s General input signal of a 1D CNN cell
N Number of input signals of a 1D CNN cell
φk kth output of a 1D CNN cell
φ Outputs of a 1D CNN cell arranged as a vector
M Number of outputs of a 1D CNN cell
l Log-likelihood ratio
pf Probability density function for faulty data
ph Probability density function for healthy data
ε Sample mean average error
D Decision
Ns Number of samples in SPRT
A,B Design parameters
µL Log-normal distribution mean
σL Log-normal distribution standard deviation
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APPENDIX

1 from tensorflow.keras import Input, optimizers, losses
2 from tensorflow.keras import metrics as metric
3 from tensorflow.keras.models import Model
4 from tensorflow.keras.layers import Dropout, Conv1D, MaxPooling1D, UpSampling1D
5 dropout_rate = 0.1
6 # --- Input ---
7 input_data = Input(shape=(sample_size, num_signals))
8 # --- Encode ---
9 encoded = Conv1D(filters=40, kernel_size=32, activation=’relu’, padding=’same’)(input_data)

10 encoded = MaxPooling1D(pool_size=2)(encoded)
11 encoded = Dropout(rate=dropout_rate)(encoded)
12 encoded = Conv1D(filters=20, kernel_size=32, activation=’relu’, padding=’same’)(encoded)
13 encoded = MaxPooling1D(pool_size=2)(encoded)
14 encoded = Dropout(rate=dropout_rate)(encoded)
15 # --- Encodings ---
16 encoded = Conv1D(filters=4, kernel_size=32, activation=’relu’, padding=’same’)(encoded)
17 encoded = Dropout(rate=dropout_rate)(encoded)
18 # --- Decode ---
19 decoded = UpSampling1D(size=2)(encoded)
20 decoded = Conv1D(filters=20, kernel_size=32, activation=’relu’, padding=’same’)(decoded)
21 decoded = Dropout(rate=dropout_rate)(decoded)
22 decoded = UpSampling1D(size=2)(decoded)
23 decoded = Conv1D(filters=40, kernel_size=32, activation=’relu’, padding=’same’)(decoded)
24 decoded = Dropout(rate=dropout_rate)(decoded)
25 # --- Output ---
26 output_layer = Conv1D(filters=2, kernel_size=1, activation=’linear’, padding=’same’)(decoded)
27 autoencoder = Model(input_data, output_layer)
28 lr = 1e-3 # learning rate
29 autoencoder.compile(optimizer = optimizers.Adam(lr=lr), loss = losses.MSE, metrics = [metric.MAE,])

Listing 1. Implementation of 1D CNN Autoencoder in Keras/TensorFlow.
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Figure 16. Our Keras implementation of the model.
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Figure 16 lists the Keras implementation of the model.
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