
 

 1 

Automating Visual Inspection with Convolutional Neural Networks  

Christopher D. Hollander1, Sreerupa Das2, Suraiya Suliman3 

1,2,3Lockheed Martin Corporation, Orlando, FL, 32825, USA 

christopher.d.hollander@lmco.com 

sreerupa.das@lmco.com 

suraiya.h.suliman@lmco.com 

 
ABSTRACT 

Convolutional Neural Networks (CNNs) have become the 

recent tool of choice for many visual detection tasks, 

including object classification, localization, detection, and 

segmentation. CNNs are neural networks designed around 

the concept of weight sharing and the convolution operator. 

CNNs have been proven to work especially well for 

analyzing grid-like data, e.g. images. One of the key features 

of a CNN is its ability to automatically detect important 

features within an image (e.g. edges, patterns, shapes); prior 

to CNNs, these features had to be manually engineered by 

subject matter experts.  

Inspired by the significant achievements and success that 

CNNs have experienced in the domain of computer vision, 

we examine a specific convolutional neural network (CNN) 

architecture, U-Net, suited for the task of visual defect 

detection. We identify and discuss situations for the use of 

this architecture in the specific context of external defect 

detection on aircraft and experimentally discuss its 

performance against a dataset of common visual defects. 

One requirement of training Convolution Networks on an 

image analysis task is the need for a large image (training) 

data set.  We address this problem by using synthetically 

generated images from computer models of jets with varying 

angles and perspectives with and without induced faults in 

the generated images.  Data augmentation is used to further 

expand the size of the training set.  This paper presents the 

initial results of using CNNs, specifically U-Net, to detect 

aerial vehicle surface defects of three categories.  We further 

demonstrate that CNNs trained on synthetic images can then 

be used to detect faults in real images of jets with visual 

damages.  The results obtained in this research, indicate that 

our approach has been quite effective in detecting surface 

anomalies in our tests. 

1. VISUAL INSPECTION 

Visual inspection is one of the first steps, and a key 

component, of many traditional maintenance and operational 

processes soon after an aircraft completes a flight.  Being able 

to get an aircraft off the ground and make it available and 

ready for the next mission as quickly as possible, i.e., 

minimize downtime, is of utmost interest to aircraft owners, 

maintainers, and flight crew. Being able to quickly, correctly, 

and consistently locate all visual defects, and determine their 

type and severity, is critical to the functionality of the device 

and the safety of its operators. Sole reliance on pilot and 

maintainer walk-around inspection can be time consuming, 

error prone and expensive. Human fault due to stress, fatigue, 

distractions, etc. can result in defects being overlooked and 

undetected. Furthermore, manual detection cannot always be 

used to discover defects in hard to reach or unsafe areas. 

In the case of an Unmanned Aerial Vehicle (UAV), automatic 

visual inspection may be the only option due to lack of a 

human pilot to do the walk around and detect visual defects 

after the vehicle lands.  Inspection would have to be 

completed autonomously based on images collected either 

using a drone flying around the vehicle or make the UAV 

land in a hanger fitted with cameras.  In either case, 

interpretation of the images to determine vehicle health, 

locate defects, and determine type, severity and criticality of 

the unmanned vehicle must be completed quickly and 

efficiently.   

Automated visual inspection not only facilitates quicker and 

more consistent inspection, it also enables automating 

downstream maintenance steps.  For example, upon detection 

of an anomaly or defect, an automated work order could be 

created for taking necessary maintenance actions (repair or 

inspection) needed that would otherwise have to be created 

by a human maintainer upon detection of a problem, thus 

reducing the mean time to repair and increasing availability.  

Furthermore, if replacement of a part is necessary, it could 

even be ordered ahead of time automatically, further lowering 

the downtime. 

Christopher D. Hollander et al. This is an open-access article distributed 

under the terms of the Creative Commons Attribution 3.0 United States 

License, which permits unrestricted use, distribution, and reproduction in 
any medium, provided the original author and source are credited. 

The images used in the paper are ©2019 Lockheed Martin Corporation 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019 

2 

In this paper we focus on automating the visual inspection of 

fixed wing aircrafts with external damages. We approach this 

problem as an instance of semantic segmentation, with the 

primary goal being to identify a pixel-by-pixel match of the 

damaged areas. An example of external damage is shown in 

Figure 1.  

 

Figure 1. Image of an exterior damage.  

2. SEMANTIC SEGMENTATION 

2.1. What is Semantic Segmentation? 

Semantic Segmentation is one of the key problems in the field 

of computer vision.  It is a process in which an image is 

partitioned into coherent objects such that each pixel in the 

image is classified as being part of a person, a car, a bus or 

any other entity of interest in the image. Semantic 

segmentation paves the way towards comprehending content 

and meaning of the image. The importance of semantic 

segmentation or scene understanding is highlighted by the 

fact that an increased number of applications seek to infer 

knowledge from images (or videos), especially in the 

domains of self-driving cars and medical imaging.  

2.2. CNNs for Semantic Segmentation 

In the last decade, Convolutional Neural Networks (CNNs) 

have become the tool of choice for many computer vision 

problems, including semantic segmentation (Alex 

Krizhevsky et. al., 2012; Simonyan, Karen & Zisserman, 

Andrew, 2015; Szegedy, Christian, et. al., 2015; He, 

Kaiming, et. al., 2016). Semantic segmentation has become 

increasingly important in the medical sciences, where CNNs 

have been shown to significantly improve speed and accuracy 

of interpreting medical images (Meheta, Ra. & Sivaswamy, 

J., 2017, Shoji Kido et. al., 2018, Grinsven, Mark J.J. et al, 

2016). 

One approach to building CNN architectures for semantic 

segmentation is to consider an encoder/decoder framework.  

A pre-trained classification network like VGG or ResNet is 

used as an encoder and learns the discriminative features of 

the data. That encoded layer is then connected to a decoder 

network that maps the features on to the actual pixels in the 

image.   

In general, both the encoder and decoder are variations of a 

Fully Convolutional Network (FCN) (Shelhamer, Evan et. 

al., 2015). FCNs use a mixture of convolutional and pooling 

layers to extract image features, and deconvolution layers to 

relate a set of image features to the original pixels. One 

downside of using an FCN is that by propagating through 

several alternated convolutional and pooling layers, the 

resolution of the output feature maps is down sampled, and 

hence the classifications of FCN typically have low resolution 

with fuzzy object boundaries.  Multiple enhancements to FCN 

architectures have been proposed such as SegNet 

(Badrinarayanan, Vijay et al., 2017) and DeepLab-CRF 

(Chen, Liang-Chich, et. al., 2015). Our work leverages a 

related architecture known as U-Net (Ronneberger, Fischer, 

& Brox, 2015). 

2.3. Defect Detection 

Inspection for anomaly and defect detection is a special case 

of Semantic Segmentation.  In many ways defect detection is 

a much harder task compared to semantic segmentation on 

regular shapes such as people, buildings, and cars in an urban 

scene, where the shapes of objects are regular and well 

defined.  Similarly, objects in medical images are well 

understood and typically have well defined shapes with some 

variations.  The defects we are looking to identify are highly 

irregular such as cracks, punctures, and corrosion. 

There has been limited research on detecting defects in the 

last few years, with the main focus centered on the problems 

of identifying defects in steel strip surface detection (Ren, 

Qirui, et. al., 2018), defects in tire by analyzing X-ray images 

(Zhu, Qidan, Ai, Xiaot ian, 2018), metallic surface defect 

detection (Tao, Xian, et. al., 2018), fracture propagation 

(Miller, Robyn, et. al., 2017), PCB defect detection 

(Adibhatia, V.A. et.al., 2018), rail surface defect detection 

(Shang, Lidan, et. al., 2018), railway infrastructure defect 

recognition (Hyang, Huaxi, et. al., 2018).  For majority of 

these detection tasks, closeup images were used to detect 

occurrence or absence of unexpected change in grayscale as 

an indication of defect.  The research described in this paper 

extends the technology to more realistic images where a 

mounted camera can get a wider view of the vehicle as 

compared to pilot or maintainer walking around would have 

seen.  This also allows this research to be extended to 

maintenance of unmanned vehicles where the walk around 

could be completely automated.  

2.4. Use of Synthetic Images  

One of the greatest difficulties with training a CNN to solve 

a semantic segmentation problem is getting enough training 

data. The training set images typically have to be marked or 

preprocessed to create masks corresponding to each source 

image to serve as the target. When using real images, these 

masks are often generated by hand. This is not feasible for 

large datasets. A growing solution to this challenge is to use 
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synthetic data – 2D or 3D models generated on a computer 

along with the corresponding mask.  

Zang, Yang et. al. (2017), investigated the roll of synthetic 

images for semantic segmentation in urban scenes. One key 

element of their research was that their choice of urban scenes 

was based on the regularity of many objects found in urban 

environments. Unfortunately, damage that occurs to an 

airframe is rarely regular. 

Staar, Benjamin, et.al. (2018) and Tao, Xian, et. al. (2018) 

have used the publicly available DAGM (DAGM 2007) 

dataset for training.  The DAGM dataset contains 

synthetically generated images that have some semblance to 

surface defects.  Although labelled, the images were not 

suitable for our use as our application was more specific to 

defects on the exterior of air vehicles. 

Tremblay, J., et. al. (2018) have used synthetic images for 

object recognition.  They demonstrated the possibility of 

using inexpensive synthetic data for training neural 

networks while avoiding the need to collect large amounts 

of hand annotated real-world data or to generate high-

fidelity synthetic scenes.  We were inspired by this finding 

and extended the idea of using synthetic images for defect 

detection. 

Due to challenges of obtaining defect images of jets (either 

they were unavailable or were considered sensitive), we used 

synthetically generated images from publicly available 

computer models of jets with varying angles, lightings and 

perspectives with and without induced faults for our training.  

Faults were artificially generated and overlaid over the jet 

images.  One advantage of using synthetic images is that 

creating masks to indicate where the damage is (essential for 

training) becomes easy. The masks can be generated by a 

computer alongside the synthetic defects.  Moreover, since 

many aircraft typically have smooth and streamlined bodies 

with limited color variations, synthetic images of aircraft 

appear much closer to real images of aircraft (unlike synthetic 

images of natural scenery or animals with complex texture 

and color). 

3. CONVOLUTIONAL NEURAL NETWORKS FOR DEFECT 

DETECTION 

To bound the domain our initial investigation of defect 

detection, this research focused on three distinct surface 

defects – areas of corrosion, cracks, and punctures.  These are 

the types of defects that would typically be identified during 

a human inspection.  Figure 2 illustrates three samples of 

these defects. 

 

Figure 2. Examples of three types of surface defects focused 

on in this research: corrosion (top), cracks (middle), 

puncture (bottom). 

3.1. Network Architecture 

We used a fully convolutional auto-encoder-decoder network 

for defect detection and trained the model using a dataset of 

synthetic fixed-wing aircraft.  Our network architecture was 

inspired by the work on U-Net (Ronneberger, Fischer, & 

Brox, 2015). Figure 3 displays a diagram of the original U-

Net architecture. U-Net is an auto-encoder/decoder 

convolutional neural network with links between the 

encoding layer and decoding layers.  

We updated and extended the U-Net architecture with the 

following changes: (1) our input images are 512x288 pixels; 

(2) we use 3 convolutional layers in each block instead of 2 

layers; (3) we use a convolutional layer with a stride of 2 for 

down-sampling, instead of a max pooling layer; (4) we use a 

transposed convolutional layer for up-sampling, instead of a 

basic up-sampling layer; (5) we set the padding so that each 

standard convolutional layer is the same size, instead of 

cropping the layers during the copy step;  (6) the output layer 

contains one filter per defect. 
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Figure 3. The original U-Net architecture developed by 

Ronneberger, Olaf et al. (2015). 

The output layer of the network is a per-pixel softmax layer, 

implemented as a 2D convolutional layer with a kernel size 

of 1 and 4 filters (because there are 3 defect classes plus the 

background). The cross-entropy function is used as the loss 

function. The Adam optimization algorithm (Kingma & Ba, 

2015), with a learning rate of 0.001, was used to train the 

network. We assess the performance of our model through a 

mean intersection over union (IoU) metric (Shelhamer, Long, 

& Darrell, 2017)  that ignores background classification.  

3.2 Training Data 

There are a limited number of datasets that support defect 

detection on fixed-wing aircraft. We overcame this issue by 

leveraging publicly available 3D models and commercial 

photo manipulation software.  

Figure 4 displays an example of our training data paneled as 

a sequence of 8 inputs. Each input image has a corresponding 

mask that indicates where a defect is located on the aircraft 

surface. 

To create the input images, a graphic artist added the defects 

as textures on the 3D model. Multiple frames of the model 

were then saved at different angles to simulate what an 

aircraft maintainer might see if they were to walk around the 

plane.  

The first step to create the input masks as to generate a 

separate mask for each defect on the aircraft. To create these 

defect masks, each defect was altered to reflect light while 

lighting on the rest of the model was disabled. This technique 

allows us to generate an exact mask for any component of 

interest. These separate masks were then combined into a 

single image that reflected the total number of defects visible 

in any given image. Each defect was associated with a class 

(1, 2, or 3) and the shade of that defect in the input mask 

updated to reflect its class.  

 

Figure 4. An example of training data fed to the network 

The following training images were generated using the 

synthetic image generation process: 

• 361 images of a damaged aircraft model (paint corrosion, 

surface cracks, and impact punctures) 

• 361 image masks of the damaged areas 

• 361 images of an undamaged aircraft model 

Each input image and associated mask has a native resolution 

of 1920x1080 pixels. This resolution is reduced to 512x288 

pixels during preprocessing 

These 361 images and their associated masks were then split 

such that 20% were used in the test set, 20% in the validation 

set, and 60% for the training set.  

During training, these images were further augmented by 

rotation, shifting along the x and y axes, shearing, zoom, and 

horizontal and vertical flips. 

4. RESULTS 

The convolutional neural network was set to train with a 

batch size of 4 for 200 epochs at 116 steps per epoch. An 

early stopping mechanism was employed to halt training once 

there was no noticeable improvement for 10 consecutive 

epochs. This resulted in a total training time of 88 epochs. 

At the end of training, our network yielded a mean IoU value 

of 0.836. This value indicates that our predicted masks cover 

83.6% of the true defect area in our test set. Furthermore, this 

value indicates that our system can be expected to perform 

reasonably well on unseen data. 

Figure 5 displays the predicted mask from an image in our 

test set. The mask is colored red to make it stand out from the 

aircraft. It can be observed that the prediction accounts for 

the complex shape of the aircraft, highlighting only the 

damaged area and ignoring the landing gear panel in the 

foreground. 
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Figure 5. Predicted masks overlaying puncture (above) and 

corrosion defects (below) on the surface of our test model. 

Figure 6 displays the predicted mask from a real image with 

corrosion photo-shopped on to the nose cone. From this 

result, we can see that the damage was easily detected, 

however the hanger door – which is of similar color – was 

also marked as a defect. This result indicates that our network 

would benefit from retraining with additional images that 

include a larger variety of backgrounds and colors. 

 

Figure 6. The output of our model against a real image with 

simulated paint corrosion on the nosecone. Test images are 

on the left. Images with the defect prediction overlaid on the 

test images are on the right.  The top row is an image with 

defect and its prediction.  The bottom row is an image with 

no defect and its prediction. 

5. DISCUSSION/BROADER IMPACT 

Surface inspection of manned and unmanned aerial vehicles 

(UAV) for damages is a labor and time intensive process. In 

cases where human inspection is not possible due to remote 

landings of UAVs, damage assessment is curtailed by lack of 

visual inspections. Automatic visual inspection and damage 

detection has the potential to transform this labor intensive 

and error prone task into Just-In-Time (JIT) (Yasuhiro 

Monden, 1993) decision support.  Using the technology 

described in this paper and image feed from a camera 

mounted drone or on the hanger where the UAV is parked, an 

automated walkthrough of the UAV could be performed 

remotely. 

This paper presents the initial results of using CNNs, 

specifically a modified version of U-Net, to detect aerial 

vehicle surface defects of three categories. The results - a 

mean IoU value of 0.836 - indicate that our approach has been 

quite effective in detecting surface anomalies in our tests. 

Given the limited synthetic data sets we’ve used to train the 

model to achieve our object detection accuracy, we expect 

that increasing the quality and diversity of training data will 

increase the effectiveness of the model.  Approaches to 

creating a richer, more realistic set of synthetic data will 

include using depth camera to reconstruct 3D models of aerial 

vehicles, generating various lighting effects using ray tracing, 

adding gaussian and salt and pepper noise, and trying non-

uniform image resolutions.  We shall also be looking at 

generating a richer set of damages based on real images 

collected at our maintenance centers. Automatics detection of 

surface anomalies can trigger further inspection to classify 

damages for further action. 

The surface defect detection technology that we’ve 

developed can be applied to a broad range of domains. We 

expect that this technology can be readily transferred to land 

and naval vehicles. Automated damage inspection of a 

specific kind such as corrosion in the aerial, land and naval 

domain can have huge implications in the way we maintain 

and service our equipment 

6. CONCLUSIONS AND FUTURE WORK 

We’ve presented an approach to detecting three categories of 

surface defects on a fixed wing aircraft using the U-Net 

architecture and synthetically generated training data. To 

mitigate the fact that we lacked a dataset of real-world 

damaged aircrafts and their associated damage masks, we 

generated a set of synthetic data based on a 3D aircraft model.  

We trained a CNN with 361 images split into training, 

validation and test sets. We achieved a mean IoU value of 

0.836 at a total training time of 88 epochs. The CNN trained 

on synthetic images generated using simple wireframe 

rendering showed promising results in detecting damage on 

real aircraft images.  

We expect that training the CNN with more realistic synthetic 

images and a wider variety of defects will improve the 

detection performance. Our future work will involve 

generating test images that are more realistic by using more 

advanced rendering techniques such as ray tracing and 
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various lighting models. We shall also explore generating 

more complex images in realistic environments.  

After discussions with aircraft maintenance subject matter 

experts (SMEs), we’ve identified surface corrosion as one of 

the main defects of interest. Corrosion manifests in multiple 

ways on aircraft exterior such as rust spot, paint bubbles etc.  

We shall focus our generated data for corrosion detection use 

cases. 
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