
Design and In-Water Testing of a Fault-Detection System for
Unmanned Underwater Vehicle Actuators

Matt Kemp1, Jon Erickson2, Scott Jensen3, Sotiria Lampoudi4, and Eric J. Martin5

1-5 Monterey Bay Aquarium Research Institute, Moss Landing, CA, 95039, USA
mkemp@mbari.org

jon@mbari.org
sjensen@mbari.org

slampoudi@mbari.org
emartin@mbari.org

ABSTRACT

We discuss the design of a fault-detection system for un-
manned underwater vehicle actuators, and present the results
of in-situ testing on a mass-shifter. The following design el-
ements are discussed: design objective, actuator selection,
failure modes, fault selection, fault injection, fault detection,
hardware selection, and software design. In-situ test results
are presented and analyzed, including: nominal operation,
faulty operation, false-alarm rate, missed-detection rate, de-
tection time, and redundant residuals. Follow-on application
to a second actuator is discussed.

1. INTRODUCTION

Unmanned underwater vehicles (UUV) often use electro-
mechanical actuators to perform flight control tasks – e.g.
thruster, elevator, rudder, mass-shifter, or variable buoyancy
system – (Webb, Simonetti, & Jones, 2001; von Alt, 2003;
Wernli, 2000). Model-based fault detection was discussed
extensively in (Gertler, 1998; Patton, Frank, & Clark, 1989).
Moseler and Isermann applied it to fault detection of DC mo-
tors (Moseler & Isermann, 2000). Nandi et al. extended this
to condition monitoring (Nandi, Li, & Toliyat, 2006). More
recently, Fagogenis et al. (Fagogenis, De Carolis, & Lane,
2016) used a Bayesian model with a hidden switch variable
to detect partial loss of thrust.

Kemp et al. presented characterization data for a UUV mass-
shifter under nominal and faulty conditions (Kemp & Raanan,
2017). They quantified the baseline fault-detection perfor-
mance using a gaussian detector, and compared it to a one-
class support vector machine.

Kemp and Martin discussed fault isolation of a mass-shifter

Matt Kemp et al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

using model-based methods (Kemp & Martin, 2018). They
found that despite the model capturing most of the system
dynamics, small model errors still caused a high rate of false-
alarms during start of motion.

Kemp discussed fault detection of a UUV thruster using
both model-free and model-based methods (Kemp, 2019b),
and found that the same fault-detection methods used on the
mass-shifter applied equally well to the thruster.

Analysis of nominal characterization data on a UUV rud-
der/elevator actuator indicated that the device operated
mostly under transient conditions, and that model-based
methods did not perform well due to difficulties modeling
black-box non-linearities introduced by the servo-controller
(Kemp, 2019a).

In this paper we discuss the design of a fault-detection sys-
tem for UUV actuators targeted at the rapid development and
in-situ validation of algorithms, and an application to a UUV
mass-shifter. The paper is organized as follows. Section 2 de-
scribes the design. Section 3 presents results collected during
in-situ tests. Section 4 analyzes the results. Finally, Section 5
summarizes the findings.

2. SYSTEM DESIGN

2.1. Design Objective

The design objective was to create a system capable of sup-
porting rapid development and in-situ validation of fault-
detection algorithms for any of the actuators typically used by
UUVs: thruster, rudder, elevator, mass-shifter, drop-weight,
or variable buoyancy system. We relied on four design prin-
ciples to achieve this:

1. house the electronics in a separate compartment – to min-
imize vehicle re-designs,

2. select high-equality modular off-the-shelf data acquisi-

1



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

tion hardware – to minimize development time and max-
imize flexibility,

3. use a computer running a standard operating system – to
minimize development time,

4. implement the software in Python – to maximize access
to existing software, and minimize implementation time.

2.2. Mass-Shifter

Although the design intent is general, the initial implementa-
tion was specific. The mass-shifter is an electro-mechanical
linear actuator that functions to move a large mass - the ve-
hicle’s battery – back-and-forth in order to adjust the pitch
of the vehicle (Figure 1). It consists of a DC brushed motor
and a planetary gear connected to the battery through a lead-
screw, and a PI servo-controller in constant velocity mode
that receives position feedback from a quadrature encoder.
The mass is constrained to move along parallel rails on four
wheels – front and back, left and right. The rails are termi-
nated at either extremity by hard travel limits – blocks of alu-
minum designed to stop the wheels.

Figure 1. Components of the mass-shifter.

2.3. Failure Modes

The mass-shifter has two modes of failure. The first is an
overload fault, which occurs when it exceeds the travel limit.
The second is a coupling fault, which occurs when the me-
chanical coupling between the battery and the motor is lost.
The preponderance of failures are due to overload.

2.4. Fault Injection

Fault injection was addressed during the design phase, with
a requirement that only faults which can be injected in a re-
versible and repeatable manner be tested. After reviewing de-
sign options, we decided to select overload faults – in-situ re-
versible coupling faults were discarded because they require
substantial vehicle modifications. Reversible overload faults
are injected by commanding the mass-shifter past its travel
limit but before the overload – i.e. less than 10mm past the
travel limit.

2.5. Fault Detection

Mass-shifter fault-detection and isolation can be done using
two residuals: 1) a current residual defined as the difference
between motor current and its nominal value, and 2) a posi-
tion residual defined as the difference between absolute bat-
tery location – measured with a string potentiometer – and
relative battery location – measured with the motor encoder
(Kemp & Martin, 2018).

Since the scope of this implementation was limited to over-
load faults, only the current residual was used. The system
however generated four residuals: 1) and 2) above, 3) a speed
residual defined as the difference between speed measured
with the encoder and its nominal value, which serves to de-
tect a stuck motor shaft or an encoder failures, and 4) a mo-
tor residual defined as the difference between speed estimated
from the encoder and speed estimated from motor current and
voltage, which serves to detect motor or sensor failure:

rcurrent = i− inominal

rposition = αxmotor − xbattery

rspeed = α(ωmech − sign(ωmech)ωnominal)

rmotor = α(ωelec − ωmech)

 (1)

where α converts motor rotation to linear motion, xmotor is
the battery position predicted from the encoder, xbattery is
the battery position from the potentiometer, ωmech is the mo-
tor speed calculated from the encoder, and ωelec is the motor
speed calculated from the electrical quantities:

ωelec = (V −Rmi)/Km (2)

where V is the motor voltage, i is the motor current, Rm is
the motor resistance, and Km is the torque constant.

The effect of pitch on the nominal current was measured by
putting the vehicle on a variable pitch table and measuring the
steady-state current over the full pitch range. The resulting
data reflected the force required to move against gravity, and
the energy dissipation that occurs when moving with it, and
is modeled by:

inominal = max(icutoff , i0 +Kφφ) (3)

when the motor is moving forward and

inominal = min(−icutoff ,−i0 +Kφφ) (4)

when the motor is moving aft, where, φ is the vehicle pitch
angle.

Parameter identification was done using a combination of
manufacturer data (Maxon A-max 22-110138 motor; Maxon
GP 22B-110357 planetary gear head; Nook lead-screw with
1 mm/rotation pitch) and model identification. Table 1 sum-

2



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

marizes the parameters, their values, and how they were de-
termined.

Table 1. Model parameters.

parameter name value method
Rm motor resistance 20.2Ω manuf
Km torque constant 21.8mNm/A manuf
wcmd commanded speed 419.4rad/s calib
α rotation to linear 0.001888 mm/rad manuf
Kφ pitch constant 0.055 A/rad calib
i0 current at 0 pitch 0.03 A calib
icutoff current at cutoff 0.02 A calib

2.6. Transient Suppression

Kemp and Martin observed that large transients are present
at the beginning and end of a commanded move (Kemp &
Martin, 2018). To reduce false alarms, we defined a state
machine with four states: idle, start transient, moving, and
stop transient: The state machine transitions from idle to start
transient when the mass shifter starts moving. It transitions to
moving 500 ms later, at which point it starts the fault detection
logic. The moving state lasts until the distance-to-target falls
below a threshold. The software then enters the stop transient
state and stops detecting; 500 ms later, it transitions to the idle
state.

2.7. False-Alarm Rate and Missed-Detection Rate

We defined the false-alarm and missed-detection rates as fol-
lows:

• False-alarm rate: fraction of nominal runs during which
the current residual exceeded the detection threshold N
times in a row.

• Missed-detection rate: fraction of the faulty runs during
which the current residual did not exceed the detection
threshold N times in a row.

2.8. Component Selection

The hardware design has two blocks. The first consists of
a custom signal conditioning printed circuit board (PCB)
placed between the motor and the servo-controller, and a
string potentiometer attached to the battery and connected to
the PCB (Tensor Solutions SP1-4). The PCB performs a se-
ries of analog operations: conversion of the motor current to a
voltage (shunt resistor), low-pass filtering, conversion to line
levels, and buffering. The PCB also provides a clean refer-
ence voltage to the potentiometer. All fault detection signals
from the PCB – ground, motor current, motor voltage, po-
tentiometer, and motor encoder A and B phases – are sent to
the fault-detection computer over a wet-mateable connector
located on the main pressure housing’s fore bulkhead.

The second block has five components (Figure 2):

• Signal acquisition is done with National Instruments
CompactDAQ hardware. NI’s CompactDAQ is a fam-
ily of high-quality customizable and modular signal ac-
quisition cards capable of measuring most signals of in-
terest. Motor current, motor voltage, and potentiometer
signals are converted by an NI-9239 analog acquisition
module. The motor encoder’s A and B signals are con-
verted to motor position by an NI-9361 counter module
configured for quadrature counting. The two modules
are slotted in an NI-9174 chassis – the 9174 can support
up to 4 modules. Synchronization between the modules
was achieved by slaving the 9361’s sampling clock to the
9239’s, and by starting acquisition on the 9239’s sam-
pling clock rising edge.

• Vehicle pitch is measured by a Microstrain 3DM-GX5-
25 attitude heading reference system (AHRS). The
AHRS is mounted underneath the mounting frame.

• The fault-detection software is implemented on a Con-
gaTec PA5 single-board computer (4x1.6 GHz Atom
cores) running Windows 10. Windows 10 was selected
in order to support the NI-DAQ interface library to the
CompactDAQ modules.

• A ConnectTech Com Express CCG020 carrier board pro-
vides the interface between the computer and the DAQ
and AHRS.

• A custom interface PCB, which performs two functions:
converting input power from the vehicle to all necessary
supply voltages, and exporting the signals from the signal
conditioning PCB to the CompactDAQ modules.

The second block’s electronics sits in a 300m-rated pres-
sure housing mounted in the vehicle nose section (Figure 3).
Power to the payload is provided by the vehicle. Communi-
cation with the vehicle is done over Ethernet

Figure 2. Fault-detection housing.

3



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

Figure 3. The fault detection system (right) is mounted in the
nose section of the UUV.

2.9. Software Design

The monitored quantities (voltage, current, encoder position,
position of the mass and pitch) are read by software written
in Python running on the payload computer. The software
runs in a loop, each iteration of which consumes the last 200
samples from the NI-DAQ – NI-DAQ is NI’s API for Com-
pactDAQ modules – the last pitch value from the AHRS, and
context supplied by the UUV. The software decides whether
to run the fault detection calculations depending on the con-
text, and logs raw and processed data. The loop runs syn-
chronously, at a rate of 2.5 Hz.

While NI-DAQ supplies a low overhead asynchronous log-
ging solution based on the TDMS file format, we found it
impractical to use as it could not be read by existing MAT-
LAB TDMS drivers due to binary incompatibility. We chose
instead to log all data in the HDF5 format.

Under Windows 10, the Python software is started by the Task
Scheduler at boot. This seemingly simple design decision led
to the discovery of a long failure cascade and some lessons
learned: during integration testing, we found that at times NI-
DAQ simply ceased to flow, with no outward sign of error. We
traced the root cause to a Windows policy, which prioritizes
interactive tasks (e.g. logging in) over scheduled ones (e.g.
our application). The result of this policy is that when a user
logs in, occasionally our application was being pre-empted,
causing the NI-DAQ buffer to overrun. When this occurs, a
Python exception is raised, but since the read operation occurs
in a callback – which is a Python function called by a C DLL
– , the overrun exception must be handled in the callback, or
risk being lost as it cannot propagate up the (C) call stack.

To prevent this, two measures were taken. First, all excep-
tions that may occur in the NI-DAQ callback are handled in
the callback itself, as they cannot propagate out of it – this
is probably safe practice for callbacks, although it is in con-
flict with the design imperative to keep their execution time
to a minimum. Second, the priority of the scheduled task was
elevated above that of interactive tasks. Because process pri-
ority is not exposed by the Task Scheduler GUI, we accom-

plished this by exporting the scheduled task as XML, editing
the XML, and re-importing the scheduled task into the Task
Scheduler application.

2.10. Communication with Vehicle

The payload was integrated to a Tethys-class Long-Range
Autonomous Underwater Vehicle (LRAUV). LRAUVs per-
form unmanned basin-scale oceanographic measurements,
and have an operational envelope of 14 days (Bellingham et
al., 2010).

The vehicle’s flight control software includes a message pass-
ing component based on the Lightweight Communications
and Marshalling (LCM) (Huang, Olson, & Moore, 2010).
LCM messages are published over multicast on the vehicle’s
on-board Ethernet, and can be consumed by payloads and pe-
ripherals. In our case, the software driver for the mass-shifter
was instrumented so as to publish its state (idle, homing or
moving) over LCM. The Python software running on the pay-
load was, in turn, written to consume the state messages from
the mass-shifter, and used them to drive its own internal state
machine, whose states included all those of the mass-shifter
driver, as well as two additional states representing a start and
stop transient.

Once the vehicle is in the water, the payload is controlled via
the vehicle’s own flight control software. A C++ component
module was added to the vehicle’s flight controller to control
payload power-up.

3. RESULTS

3.1. Test Protocol

To conduct in-situ experiments, we instructed the vehicle to
dive to 4 m, shut its propeller down, and null its buoyancy
and pitch. The vehicle was then instructed to move the mass-
shifter in one of three ways:

• Nominal: from the center position (50%), move to 75%
range (+20mm), then to 25% (-18mm), and finally back
to center.

• Developing fault: move to within 1mm of the travel limit,
then past the limit within 4mm of the failure point, then
back to 1mm before the limit.

• Critical fault: move to within 1mm of the travel limit,
then to within 1mm of the failure point, then back to
1mm before the limit.

We performed at total of 495 nominal runs, and 30 fault runs.

3.2. Nominal Behavior

Figure 4 shows the current and current residual during a nom-
inal run from 75% to 25% range (i.e. from 20mm to -18mm).
The insert shows the pitch of the vehicle during the move.
The current is highest during the initial part of the move, as

4



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

the mass-shifter is ascending against gravity. As the pitch
decreases, the current decreases. When the pitch changes
sign, the mass-shifter acts as a brake. The current residual
is O(10mA).

Figure 4. Current (blue) and current residual (red) during
nominal operation. Motion is from right to left. The current
decreases from 80mA to 20mA due to pitch changes. The
residual is O(10mA).

3.3. Fault Behavior

Figure 5 shows the current and residual during an overload
fault: motion starts just short of the travel limit (at 37mm),
and continues until the overload failure (at 46mm). The cur-
rent increases 10X during the move, and the residual 15X.

Figure 5. Current (blue) and current residual (red) during an
overload fault. Motion is from left to right. The overload
occurs at 46mm. Current and residual grow from O(10mA)
to 300mA just before the overload.

3.4. False-Alarm Rate

Per our definition, the false-alarm rate is the fraction of nom-
inal runs during which the current residual exceeded the de-
tection threshold N times in a row. Figure 6 shows the false-
alarm rate over 495 runs, as a function of the detection thresh-

old, and for different minimum fault lengths N . We found
that the false-alarm rate was 0 when the threshold exceeded
30mA, independent of N .

For thresholds below 30mA, we found that 1) the false alarm
rate decreased exponentially fast with threshold, and 2) that
the false-alarm rate decreased with N .

Figure 6. False-alarm rate versus detection threshold for dif-
ferent minimum fault lengths N .

3.5. Missed-Detection Rate

Per our definition, the missed-detection rate is the fraction of
faulty runs for which the current residual did not exceed the
detection threshold N times in a row.

We performed a total of 30 faulty runs, and found no missed-
detections across the range of thresholds and minimum fault
lengths.

Figure 7 shows the average time elapsed between initial con-
tact with the travel limit and the detection of a fault, as a func-
tion of detection threshold and for different minimum fault
lengths N . At a detection threshold of 30mA, the detection
time is 3 second or less depending onN . For other values, the
detection time increases monotonically with threshold, and
shifts up with increasing N .

4. DISCUSSION

4.1. False-Alarms Rate

We found that the false-alarm rate taken over 495 nominal
runs can be driven to 0 with a modest detection threshold.
The fundamental reason for this is that the residual is 15X
larger at overload then in nominal condition (Figures 4 and
5).

Going deeper, if we assume that the nominal residual has
a gaussian distribution of the correct standard deviation
(10mA), then setting the desired false-alarm rate to a very
large value, say once per 1010 samples, could be met with

5



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

Figure 7. Detection time versus detection threshold for dif-
ferent minimum fault lengths N .

a threshold of 60mA, still 5X below the observed overload
residual!

Detailed examination of the data indicated that the false-
alarms observed at low thresholds occurred at the start of mo-
tion. We also found that they were caused by data-buffering
latencies. Referring to Figure 8, when the fault-detection
system receives a start of motion message from the vehicle,
it pulls the most recent available data buffer for processing
(shown in black). Because buffer size is 125ms, the processed
data therefore precedes the event by anywhere between 125
and 250ms. The result is that the 500ms transient rejection
delay is occasionally insufficient, i.e. part of the large tran-
sient filters through.

Predictions of this analysis are consistent with the data: 1)
increasing the minimum fault length should decrease false-
alarms, as it effectively decreases the latency (Figure 6), and
2) increasing the detection threshold should decrease false-
alarms, by filtering out those false-alarms with a smaller
buffering latency.

Possible remedies include increasing the transient rejection
delay, and reducing the data buffer size.

Figure 8. Origin of the false-alarms. Top: startup transient.
Bottom: data buffering diagram. The data buffer currently be-
ing filled is in green, and the available data buffer is in black.

4.2. Detection Horizon

We showed (Figure 7) that the detection time is of order 3 sec-
onds. Since it takes 10s from initial contact to system failure,
it means that the detection horizon is 7s.

Seven seconds is large compared with the vehicle’s 2.5Hz
control loop. As a result, fault avoidance is quite possible:
one could envision, for example, a scheme where after de-
tecting a developing overload fault, the actuator would stop
and return to the point where the fault first occurred, and pos-
sibly update its internal software travel limit accordingly.

4.3. Detection Time

We showed that the detection time increases with the detec-
tion threshold and with the minimum fault length N . To ex-
plain this, we refer to the data showing the growth of the
residual during a fault (Figure 5), and ask: how much time
does it take for a detection to occur?

The detection time is the sum of two terms: how long it takes
to cross the threshold the first time, and how long it takes to
cross it N − 1 more times. We can write down the result by
inspection:

tdetection =
r−1(threshold)

v
+ (N − 1)tdetectionloop (5)

where r(x) is the current residual from Figure 5 and v is
mass-shifter speed, and where we’ve taken account of the
constant speed maintained by the servo-controller, and the
rapid growth of the current. This result shows that a higher
threshold implies a larger detection time, and that N shifts
the detection time up.

4.4. Position Residual

The results we presented are based on the current residual,
but as explained earlier three additional residuals are being
generated: position residual, speed residual, and motor resid-
ual. Whereas the original intent of the position residual was
to detect coupling failures, we found that it is in fact a strong
indicator of overload faults.

The position residual is the difference between the position
estimated from the motor encoder and a string potentiometer
attached to the mass-shifter. Figure 9 shows that the residual
is less than 0.5mm during nominal operation, but grows 16X
during an overload fault, to 8 mm.

The reason for the growth is that, whereas the servo-controller
maintains constant motor speed even when pushing against
the travel limit, the mass slows down because the wheels and
the frame compress (Figure 10).

The position residual could provide a fault confirmation

6



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

Figure 9. Position residual during nominal operation (red)
and during an overload fault (black). The residual drastically
increases when contact with the travel limit occurs.

mechanism for faults generated by the current residual; ad-
ditionally, it could provide a way of discriminating between
current overloads due to the travel limit and the short current
spikes that are occasionally observed far from the travel limit.

Figure 10. Deformation of the mass-shifter wheel and frame
during an overload fault.

4.5. Thruster Fault Detection

The same fault-detection system used for the mass-shifter can
be used for thruster fault detection. As discussed in (Kemp,
2019b), the LRAUV thruster is a 3-phase DC brushless mo-
tor, driven by the same EZSV23 servo controller as the mass-
shifter but with feedback from the Hall effect sensors instead
of an encoder. The net motor current can be measured with
the same two wires used by mass-shifter, using only one of
the three current phases and conputing 1.5 times its mean ab-
solute value. Similarly for the motor voltage, it can be mea-
sured with two wires using any of the three inter-phase volt-
ages and performing the same operation. Motor speed can be
measured using two of the three Hall sensors, as if they were
the A and B phases of a quadrature encoder.

From a hardware perspective, the only difference between the
two is signal level, i.e. different sense resistors have to be
used on the vehicle-side PCB.

From a data acquisition perspective, the same hardware used
on the mass-shifter – voltage and counter modules – will work
for the thruster.

From a software perspective, the main differences are the con-
text data provided by the vehicle – motion status, commanded
and actual position for the mass-shifter; motion status, com-
manded speed, and vehicle depth for the thruster –, and the
algorithm. Because of a design decision to implement the
software in Python using a computer running a standard OS,
conversion of an algorithm developed in Matlab to an online
implementation is expected to be seamless.

The biggest difference between the two is expected to be
the fault-detection algorithm. The mass-shifter depends on
a single environmental variable – vehicle pitch – whereas the
thruster operates in a host of conditions that depend on exter-
nal factors – straight and level flight, idle, surface swimming,
diving, climbing, etc. Unlike the mass-shifter where a com-
plete characterization was possible in the lab, only limited lab
characterization can be done on the thruster. At-sea charac-
terization tests will take place in Fall 2019.

5. CONCLUSION

We discussed the design and testing of a fault-detection sys-
tem for UUV actuators, intended to support the rapid de-
velopment and in-situ validation of actuator fault-detection
algorithms. An application to a UUV mass-shifter was im-
plemented, and results of in-situ testing were presented. We
found no false-alarms in 495 nominal runs, and 30 out of 30
successful detections of injected faults. We analyzed these
results, and found them to be consistent with expectations.
Plans for in-situ testing of thruster fault-detection using the
same hardware were discussed.

ACKNOWLEDGMENT

This work was done with financial support from the Packard
Foundation.

REFERENCES

Bellingham, J. G., Zhang, Y., Kerwin, J. E., Erikson, J.,
Hobson, B., Kieft, B., & Banka, A. (2010). Effi-
cient propulsion for the tethys long-range autonomous
underwater vehicle. Proceedings of IEEE/OES Au-
tonomous Underwater Vehicles Conference.

Fagogenis, G., De Carolis, V., & Lane, D. M. (2016). Online
fault detection and model adaptations for underwater
vehicles in the case of thruster failures. IEEE Interna-
tional Conference on Robotics and Automation.

7



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

Gertler, J. (1998). Fault detection and diagnosis in engineer-
ing systems. Marcel Dekker Editor.

Huang, A. S., Olson, E., & Moore, D. C. (2010). Lcm:
Lightweight communications and marshalling. Pro-
ceedings of IEEE/RSJ Conference on Intelligent Robots
and Systems.

Kemp, M. (2019a). High variability in the nominal response
of a rudder. Proceedings of Prognostics and Health
Management Society conference.

Kemp, M. (2019b). Underwater thruster fault detection and
isolation. Proceedings of AIAA.

Kemp, M., & Martin, E. (2018). Fault isolation of an electro-
mechanical linear actuator. Proceedings of Prognostics
and Health Management Society conference.

Kemp, M., & Raanan, B. (2017). Actuator fault detection for
autonomous underwater vehicles using unsupervised
learning. Proceedings of the Annual Conference of the
PHM Society.

Moseler, O., & Isermann, R. (2000). Application of model-
based fault detection to a brushless dc motor. IEEE
Transactions on Industrial Electronics.

Nandi, S., Li, X., & Toliyat, H. (2006). Condition moni-
toring and fault diagnosis of electrical motors. IEEE
Transactions on Energy Conversion.

Patton, R., Frank, P., & Clark, R. (1989). Fault diagnosis in
dynamic systems. Prentice Hall.

von Alt, C. (2003). Remus 100 transportable mine counter-
measure package. Proceedings of Ocean 2003.

Webb, D., Simonetti, C., & Jones, C. (2001). Slocum: an

underwater glider propelled by environmental energy.
IEEE Journal of Oceanic Engineering, 26, 447-452.

Wernli, R. (2000). Auv commercialization - who’s leading
the pack. Proceedings of Ocean 2000.

BIOGRAPHIES

Dr. Matt Kemp is a Principal Engineer at the Monterey Bay
Aquarium Research Institute in Moss Landing CA. He holds
a Ph.D. in Physics from the University of North Carolina at
Chapel Hill. Dr. Kemp served as Director of Concept De-
velopment with Bluefin Robotics for 5 years, and Director
of Concept Development with Nekton Research for 7. His
research interest is in unmanned underwater vehicle health
management. He is a member of IEEE, PHM, AIAA, and
AAAS.

Jon Erickson is a Mechanical Engineer with forty years in
the Marine Research field. Jon’s primary interests are in new
materials and manufacturing technology, and their applica-
tion to a marine environment.

Scott Jensen is an Electrical Engineer at MBARI. His work
encompasses microprocessors, digital, analog and power
electronics, system design, and instrument support.

Dr. Sotiria Lampoudi is a Software Engineer. She holds a
Ph.D. in Computer Science from the University of California
in Santa Barbara. Her research interests include field robot
coordination and robotic OS and Command and Control ar-
chitecture.
Eric Martin is an electrical engineer at MBARI. He holds
an M.S. in Ocean Engineering from the University of Rhode
Island. His research interests are ocean instrumentation, re-
motely operated vehicles, and virtual reality.

8


