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ABSTRACT

The development of convective weather avoidance algorithm
is crucial for aviation operations and it is also a key objective
of the next generation air traffic management system. This
paper proposes a novel network architecture that embeds con-
volutional layers into long short-time memory (LSTM) cells
to predict the trajectory, based on the convective weather con-
dition along with the flight plan before the aircraft takeoff.
The data used in the experiments are history flight track data,
the last on-file flight plan, and the time-dependent convec-
tive weather map. The history flight data are taken from the
NASA Sherlock database and the weather data used in this
paper is the Echo Top (ET) convective weather product from
Corridor Integrated Weather System (CIWS). The experiment
is conducted using three months history data over the period
from Nov 1, 2018 through Feb 5, 2019 with the flights from
John F. Kennedy International Airport (JFK) to Los Ange-
les International Airport (LAX) but the methodology can be
applied to the flights between any arbitrary two airports. In-
terpolation is performed on flight plans and real history tracks
to fix the fold number of LSTM cells and also reduce compu-
tation complexity. The training loss is defined as the standard
Mean Squared Error (MSE) of the predicted tracks and the
real history tracks. Adam optimizer is used for backpropa-
gation. Learning from the real historical flight data, the out-
of-sample test shows that 47.0% of the predicted flight tracks
can reduce the deviation compared to the last on-file flight
plan. The overall variance is reduced by 12.3%.

1. INTRODUCTION

The design of future U.S. air traffic system, referred to as
NextGen (H. Swenson, Barhydt, & Landis, 2006), is the sub-
ject of current research at universities and research centers
around the country (Erzberger, Lauderdale, & Chu, 2012).
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While the developing of algorithms for convective weather
avoidance contributes a lot to it since the weather-related de-
lay of commercial operations is one of the most frequently
encountered problems in the en-route airspace. It is able to re-
duce the risk of safety concerns. The convective weather con-
ditions can develop rapidly and pose danger to mid-air traffic
activities among the United States airspace. Once the convec-
tive weather condition is confirmed by the National Weather
Service (NWS), the relevant information would be sent to the
controller and the pilot to update the flight route to avoid fly-
ing through the regions without creating conflicts with other
aircraft with the surrounding traffic. This kind of activity
will largely increase the workload of controllers, especially
when a large number of airplanes are heading to the same
region. In NextGen, information sharing between aircraft
will be greatly enhanced so that each aircraft receives and
transmits the cooperative surveillance information, and thus
aircraft can take over a certain amount of ATM tasks from
ground air traffic controllers. These tasks include flight plan
changes, trajectory prediction, and conflict detection. In this
way, NextGen can alleviate the workloads of ground air traf-
fic controllers (W. Liu & Hwang, 2011; Phillips, 1996; Paielli
& Erzberger, 1997). A study with Dallas/Fort Worth ARTCC
airspace shows that the controller’s workload is highly related
to dynamic density. It also shows that cognitive workload as-
pects are important because past research indicates that in-
frequent but critical events such as loss of separation, alti-
tude deviations, and incorrect pilot read back impose consid-
erable mental workload on the controllers (Sridhar, Sheth, &
Grabbe, 1998). Thus the development of an automated tra-
jectory planning tool is crucial to aviation operations within
United States Airspace to address the issues caused by the in-
creasing workload of controllers/pilots. The aircraft weather
avoidance algorithm can be divided into the following two
categories,

Dynamic Weather Reroutes (DWR) (McNally et al., 2012)
is raised over the past several years as a ground-based concept
to efficiently and automatically generate trajectories around
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convective weather regions for in-flight aircraft within the en-
route airspace. It is a search engine that continuously and au-
tomatically analyzes in-flight aircraft in the airspace and pro-
poses a time and fuel-saving corrections to current weather
avoidance routes (McNally et al., 2012). The system Termi-
nal AutoResolver (Erzberger, Nikoleris, Paielli, & Chu, 2016)
was developed to employs a variety of maneuvers including
resolve conflicts and avoid weather cells with the algorithm to
find the path around the convective weather polygon using a
single auxiliary waypoint (Erzberger et al., 2012). NASA and
American Airlines (AA) have been conducting a trial of DWR
at AA’s Integrated Operations Center in Fort Worth, Texas
since July 2012 using DWR. Results show that AA flights
with DWR in use realize about 20% more savings than non-
AA flights. A weather forecast analysis examines the extent
to which DWR routes rated acceptable by AA users remain
clear of downstream weather. A sector congestion analysis
indicates congestion could be reduced 19-38% if all flights
fly DWR routes rather than nominal weather avoidance routes
(McNally et al., 2013, 2015).

Strategic Trajectory Prediction (TP) in the both spatial and
temporal domain is another popular research topic in soci-
ety. The use of ground-based TP tools has been applied to
air traffic controllers with traffic management (H. N. Swen-
son, Vincent, & Tobias, 1997), efficient runway utilization
(Davis et al., 1997), conflict detection (Brudnicki & McFar-
land, 1997) and also on weather avoidance (Ayhan & Samet,
2016). A model-based aircraft TP during takeoff using the
radar measurements of flight tracks which serve as an in-
dicator among candidate trajectories that attend to predict
the actual flight data (Lymperopoulos, Lygeros, & Lecchini,
2006). Similarly, another recent research study applies the
Hidden Markov Model (HMM) to predict trajectories taking
environmental uncertainties into account (Ayhan & Samet,
2016). By training the HMM model on a historical trajec-
tory and weather dataset, the author obtained the parameters
of HMM. This approach treats the objective airspace as a set
of cubes associated with weather parameters as observations
of HMM to predict a trajectory among historical trajectory
candidates. The above two approaches are deterministic and
require the dataset to cover all possible past flight routes for
trajectory selection. In contrast, a few researchers empha-
size on probabilistic approach rather than deterministic pre-
diction. To predict the time of arrival, a generalized linear
model (GLM) is developed in the terminal area with the ini-
tialization of wind and aircraft state (De Leege, van Paassen,
& Mulder, 2013). Another recent study using a deep genera-
tive convolutional recurrent neural network (RNN) approach
for 4D trajectory prediction, as of the authors’ knowledge, is
the first paper using an encoder-decoder recurrent neural net-
work structure for this task (Y. Liu & Hansen, 2018). The
paper proposes an end-to-end convolutional recurrent neural
network that consists of a long short-term memory (LSTM)

encoder network and a mixture density LSTM decoder net-
work. The model is able to predict the aircraft 4D trajectories
using high-dimensional weather features and last filed flight
plans and the prediction error metrics show that average abso-
lute horizontal errors are around 50 nautical miles and 2800
feet for average vertical errors.

Long short-term memory (LSTM) neural network has been
shown as an effective tool in multiple sequential learning
tasks compared to a fully connected neural network (FCN)
and convolutional neural network (CNN). LSTM is able to
handle long-range time series data, noisy data, and continu-
ous values. Furthermore, it doesn’t require a priori choice of
a finite number of state variables like HMM (Hochreiter &
Schmidhuber, 1997). LSTM has shown to be a powerful tool
in natural language translation (Cho et al., 2014; Venugopalan
et al., 2014; Sutskever, Vinyals, & Le, 2014), speech recog-
nition (Graves & Jaitly, 2014; J. Chorowski, Bahdanau, Cho,
& Bengio, 2014). Another interesting research work focuses
on predicting the runway incursion during the landing pro-
cess of the aircraft (Wang, Pang, Liu, Dutta, & Yang, 2019).
The purposed Bayesian updating model is able to predict the
occurrence of runway incursion using the flight track data.
By incorporating physics into the network, a novel hybrid
learning model is proposed to predict the flight trajectories
faster and more reliably (Yu, Yao, & Liu, 2019, 2018). An-
other novel application is ”Social LSTM” (Alahi et al., 2016),
which predicts the human trajectory in crowded areas. By
modeling each individual with an LSTM network and using
pooling techniques to connect each LSTM networks, Social
LSTM can achieve a far better prediction accuracy than other
works. A recent study on aircraft trajectory prediction incor-
porates aircraft dynamics with recurrent neural network and
purposed a deep residual RNN architecture called physics-
based learning (Yu et al., 2019, 2018). This special form of
RNN structure can accurately predict aircraft responses and
shows excellent extrapolation performances. It’s also worth
pointing out that the recurrent neural network has difficulties
in the backpropagation process in training. The concept of
gradient vanishing and gradient explosion (Bengio, Simard,
Frasconi, et al., 1994) was raised up by researchers during
applications.

Inspired by the research of 4D trajectory prediction (Y. Liu
& Hansen, 2018) and the characteristics of RNN, we apply a
special form of the recurrent neural network, LSTM in partic-
ularly, to aircraft trajectory prediction task. While the tradi-
tional fully connected LSTM (FC-LSTM) doesn’t take spatial
correlation into consideration, we embed two convolutional
layers into LSTM cells thus increase the size of hidden ten-
sors to cooperate with weather information into each of the
LSTM gates. This also makes the LSTM ”wider” than FC-
LSTM with more parameters for the model to update in the
backpropagation process.
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This paper is organized as follows: Section 1 briefly in-
troduces the background and current research progress in
weather-related air traffic management field. This includes
discussion on the two main branches in this area, Dynamic
Weather Reroutes (DWR) and Strategic Trajectory Prediction
(TP), followed by a concise review of LSTM and how we de-
fine the problem with our model. Section 2 talks about the
data acquisition and processing of FAA flight data and CIWS
convective weather products. In Section 3, we explain our
model architecture in detail. Section 4 shows the training and
the out-of-sample testing result of the purposed model archi-
tecture.

2. DATA ACQUISITION

All data used in this paper are obtained from the Sherlock
Data Warehouse (Arneson, 2018). Sherlock is a big data
system for data visualization to support air traffic manage-
ment (ATM) research, which includes a database, a web-
based graphical user interface (GUI) and other services. It
is a platform for reliable ATM data collection, archiving, pro-
cessing, query, and delivery and can be used for big data anal-
ysis, including data mining and machine learning (Arneson,
2018). Data of Sherlock comes primarily from the FAA and
the National Oceanic Atmospheric Administration (NOAA)
(Eshow, Lui, & Ranjan, 2014). There are multiple sources
feeding into Sherlock, such as flight plan and track from Air
Route Traffic Control Center and TRACON, Rapid Refresh
(RR) Weather Forecast from NOAA including wind, temper-
ature and pressure, current and forecast precipitation and echo
tops from Convective Integrated Weather Service (CIWS) and
FAA SWIM data sources for flight data. The raw data Sher-
lock collected will be parsed, processed and stored on an Or-
acle server and the approved user is able to choose the date
and data source in order to query the database and download.
Here we only use the data from two sources of them. The
Integrated Flight Format (IFF) flight data and Echo Top (ET)
convective weather data from CIWS.

2.1. Flight Data

The ATAC data is collected from 76 different FAA facilities
in the Integrated Flight Format (IFF). The IFF data format
includes all source data plus derived fields about flight sum-
mary, track points, and flight plan,

• The flight summary information includes flight time,
flight call sign, aircraft type, origin and destination
source, and the flight operation type. It is a general de-
scription of the flight.

• The flight track points are the record of real flight opera-
tion. It includes the total 4D flight tracks, ground speed,
and climb rate. It also contains information about the
departing, cruising and landing procedure.

• The flight plan comes as a string of waypoints. We use

the online aviation database OpenNav (LLC, 2018) to
parse the string of flight plan into WGS84 coordinates.

Figure 1. Process Raw IFF data

The raw IFF data download from Sherlock is massive with
more than half-million rows for one day which contains all
the flight plans, flight tracks and other flight information of
aircraft flying above the United States airspace within one
day. That is 30k-50k flight call signs for each day’s file
recorded. Thus, multiple data parsers and filters are created
for raw data cleaning. Fig. 1 graphically shows the workflow
for preprocessing the IFF data. Fig. 2 is a plot of flight tracks
from JFK to LAX on Nov 1, 2018, taken from the IFF data.
Each flight has a unique flight trajectory even if the controller
tends to make the flight plan for flight call signs from the
same operator are identical.

Figure 2. Flight tracks from JFK to LAX on 11/01/2018

Alg.1 is a detailed explanation of the flight data processing
part. The inputs are the departing airport code Key1 and arriv-
ing airport code Key2, for instance, JFK and LAX. DateList
is the list of dates for the raw data. We downloaded three
months’ data over the period from Nov 1, 2018, through Feb
5, 2019, of approximately 100 days’ data thus the DateList
contains these 100 days. The last input should be the number
of points in the output tracks and flight plans, this is also the
folder numbers in LSTM. The output is the processed true tra-
jectory Trnew and flight plan FPnew of a fixed equal length
of n for each flight call sign. It worth pointing out that the
idea of a given flight plan coordinates a time-stamp comes
from the requirement of point matching of each predicted tra-
jectory points and actual trajectory points. Although the ac-
tual aircraft will not flying at a constant ground speed during
takeoff and landing procedures, we still choose to use linear
interpolation to FPs and flight tracks to simplify the data pro-
cessing part.
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Algorithm 1 Flight Tracks and Flight Plans
Data: IFF raw data path
Input : Key1, Key2, DateList, n
Output: Trnew, FPnew

1: for date in DateList do
2: Load IFF raw data file of given date
3: Query the file departing at Key1 and arriving at Key2
4: Create a folder named with date
5: Save 4D Tr and last on-file FP named with flight call

sign and date in the datefolder
6: for callsign in datefolder do
7: Parse FP into WGS84 coordinates
8: Match FP from Tr for the time column
9: Interpolate FP and Tr with 1 second interval

10: Equally sample n points from FP and Tr as Trnew
and FPnew

11: Save Trnew and FPnew

12: end for
13: end for

2.2. Weather Data

The weather data are fetched from Corridor Integrated
Weather Systems (CIWS). CIWS is designed to improve
convective weather decision support for congested en-route
airspace (and the terminals that lie under that airspace) by
automatically generating graphical depictions of the current
severe weather situation and providing frequently updated
forecasts of the future weather locations for forecast times
from zero to two hours. It acquires data from FAA termi-
nal weather sensing systems, and National Weather Service
sensors and forecast products, and automatically generate
convective weather products for display on existing systems
in both terminal and en route airspace within the CIWS do-
main (Klingle-Wilson & Evans, 2005). The two key features
of CIWS, Echo Top (ET) and Vertically Integrated Liquid
(VIL), both come with current and forecast datasets in Sher-
lock. A Lincoln Laboratory’s study shows that vertically
integrated liquid (VIL) is a better indicator of storm severity
and new growth and is less susceptible than other precipi-
tation representations to anomalous propagation and other
anomalies (Robinson, Evans, & Crowe, 2002).

While the echo top weather product is another feature to mea-
sure the severe weather conditions such as thunderstorms.
Another study of Lincoln Laboratory proposes an improved
echo tops algorithm that could more accurately estimate the
true storm echo tops (Evans & Ducot, 2006; Evans, Caru-
sone, Wolfson, Crowe, & Smalley, n.d.). The current weather
dataset is updated every 150 seconds and the forecast weather
dataset is updated every 300 seconds. Figure. 3 is a schematic
plot of ET at 5:57:30 AM on July 23, 2018, within the NAS.
The real history tracks not following the flight plan but de-
viate to fly through the gap of convective weather contours.

Figure 3. EchoTop contour for JBU1823 on 7/23/2018

Table 1. EchoTop Key Features

Parameters Current Forecast
Dimension 1x1x3520x5120 24x1x3520x5120

Range Latitude / ◦ [19.36, 48.90]
Range Longitude / ◦ [-134.35, -61.65]
Update Frequency / s 150 300

This also shows the importance of aircraft trajectory adjust-
ments under convective weather influence. A few other key
parameters of ET data are shown in Table. 1.

Algorithm 2 Weather Cube Generation
Data: True Trajectory Data, Weather Data
Input : TrajectoryPoints, CubeSize, Weather
Output: WeatherCubecoord, WeatherCubeV alue

1: Convert weather data coordinates to Mercator’s Projec-
tion Coordinates

2: Convert trajectoryPoints coordinate to Mercator’s Projec-
tion Coordinates

3: for Points in TrajectoryPoint do
4: Determine the flight direction
5: Find a line perpendicular to the current position normal

line
6: Generate 20 points along this perpendicular line
7: for Step in the CubeSize do
8: From every right of these 20 points move to the next

point which passed through a perpendicular line par-
allel to the previous line with distance of Step

9: Generate 20 points along the new perpendicular line
10: Move another step from very right of these new 20

points
11: end for
12: end for
13: Save WeatherCubecoord and WeatherCubeV alue

In this research, we only use the current ET data as it’s more
holistic than the forecast data. Nevertheless, it can apply to
forecast dataset without too much effort. Since the key idea
of this research is predicting real trajectories using the flight
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plan and convective weather close to the flight plan. We de-
veloped Alg.2 to take out the convective weather cubes ahead
of the current position of the aircraft. The size of the weather
cubes is 20 × 20 after scaling the original resolution by 10
times and the angle of the cube is set as the aircraft head-
ing angle. However, the cube size can be changed as of the
user’s interest. This means the convective weather area of in-
terest can be expanded or shrank under different settings. A
schematic plot of the taken weather cubes is shown in Fig. 4.
The blue area is the range of convective weather we are going
to take out for the specific flight plan. The width of the blue
band can be changed by the cube size parameter in Alg.2.
The black box shows the exactly feature cube area at the cur-
rent position. Theoretically, there is one box region for each
trajectory point.

Figure 4. Schematic of Weather Cube Algorithm

We have collected the data over the range from Nov 1, 2018,
to Feb 5, 2019, of 2737 flight tracks and flight plans. While
only 2528 of them have complete convective weather data
during the period from departure to arrival. Only longitude
and latitude coordinates are considered in this experiment.

3. NETWORK ARCHITECTURE

Aircraft tend to frequently deviate from the last on-file flight
plan due to weather-related issues discussed above. We for-
mulated the trajectory prediction task as a sequence learning
problem of calibrating the flight plan to be as close as possi-
ble with the actual flight trajectory using convective weather
features. The model has been defined as a point matching
regression model between the FP and Tr. The inputs to the
model would be the flight plan and the weather cubes ahead
of each point of the flight plan and the output is the predicted
trajectory. LSTM has been proved efficient to handle sequen-
tial learning problem while the convolutional layers are in-
troduced into the architecture to extract useful features from
weather cube. The outputs of convolutional layers are con-
catenated with LSTM hidden tensors thus feed into the calcu-
lation within LSTM cells.

3.1. LSTM

LSTM neural network, as a special form of RNN, was first in-
troduced in 1997 (Hochreiter & Schmidhuber, 1997). All re-

current neural networks have a repeating module of the neu-
ral network, for instance, a single Tanh layer in a standard
RNN. Each of the repeating modules is called an RNN fold
and the fold number is just the number of repeating modules.
LSTM also has this chain-like structure with different repeat-
ing modules. A LSTM cell consist of three cell gates, the for-
get gate (Eq. 1b), input gate (Eq. 1c) and output gate (Eq. 1f).
These three gates are connected by the cell state tensor in
Eq. 1d and Eq. 1e. The forget gate is used to decide whether
the information needs to be pass into the cell state or not. The
Sigmoid layer here output a number between 0 and 1. A 1
usually means the information needs to be thrown away. The
input gate is to control whether the information is going to
store in the cell state thus another ”yes or no” operation to the
cell state is performed after the input gate (Eq. 1d). The Tanh
layer here creates new candidate values ĉt and the cell state
is updated with the output of the input gate and the new can-
didate (Eq. 1e). At last, we are going to decide what we are
going to output in the output gate (Eq. 1f and Eq. 1g). Tanh
will push the cell state through it to a value between -1 and 1
and multiply it to the output of the input gate which is a result
after sigmoid operation. Thus LSTM will only output what
we would like to output. The symbol ⊕ means concatenate
operation between arrays.

hx = ht ⊕ xt (1a)

ft = Sigmoid(Wf · hx + bf ) (1b)

it = Sigmoid(Wi · hx + bi) (1c)

ĉt = Tanh(Wc · hx + bc) (1d)

ct = ft · ct + it · ĉt (1e)

ot = Sigmoid(Wo · hx + bo) (1f)

ht = ot · Tanh(ct) (1g)

LSTM is capable of performing two kinds of sequential learn-
ing tasks, sequence to sequence (Seq2Seq) learning and time
series forecasting. Seq2Seq learning is a widely adopted
method in machine translation and question and answering
(QA) systems. It was specially designed to learn and predict
1D sequences, such as complete sentences in text or speech
(Karatzoglou, Jablonski, & Beigl, 2018). It has been shown
successful in machine translation (Chung, Gulcehre, Cho, &
Bengio, 2014; Luong, Sutskever, Le, Vinyals, & Zaremba,
2014; J. K. Chorowski, Bahdanau, Serdyuk, Cho, & Bengio,
2015), and in other natural language processing (NLP) tasks
such as parsing (Cheng, Dong, & Lapata, 2016), text summa-
rizing (Nallapati, Zhai, & Zhou, 2017) and multi-task learn-
ing (Luong & Manning, 2016). The work performed in this
paper can be classified as a Seq2Seq learning approach.

One of the key ideas behind LSTM is that it can connect the
previous information to the current state. This is achieved by
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the high dimensional array called hidden tensor and the cell
state across all the calculation of three gates. The informa-
tion is extracted in each fold of LSTM and is stored by the
hidden tensor generated from the current state. Then the hid-
den tensor will be passed into the next LSTM fold thus the
information from the previous state is introduced into the cal-
culation of each gate. The short-term memory thus can be
remembered by the model fold by fold thus formulate a long
period sequential learning model.

3.2. Architecture

Compared to the classical architecture of LSTM, we mod-
ify the repeating module of each LSTM folds to incorporate
with the convective weather cubes. We add two convolutional
layers and two dense layers before the computing of forget
gate (Eq. 2a, 2b, 2c, 2d). These layers are used to extract
useful weather features into a vector and concatenate them
with the hidden tensor of LSTM to pass through iterations.
To increase the number of parameters included in the LSTM
cells, we also increase the dimension of hidden tensors by
adding a fully-connect (FC) layer (Eq. 2l). This will also in-
crease the number of parameters in each gate computations
drastically. Another graphically drawing of the unfolded net-
work architecture is shown in Fig. 5. The input to each LSTM
fold would be the current position (xi, yi) and the convective
weather cube ahead of the current position Cubei, the output
from each fold would be the predicted position (Xi, Yi) un-
der the calibration of weather cubes. Then the final predicted
trajectory is just the stack of each calibrated position.

xconv1 = Relu(K1 ⊗ xweather) (2a)

xconv2 = Relu(K2 ⊗ xconv1) (2b)

xdense1 = Relu(Dense(flatten(xconv2), 16)) (2c)

xdense2 = Relu(Dense(xdense1, 4)) (2d)

hx = ht ⊕ xt ⊕ xdense2 (2e)

ft = Sigmoid(Wf · hx + bf ) (2f)

it = Sigmoid(Wi · hx + bi) (2g)

ĉt = Tanh(Wc · hx + bc) (2h)

ct = ft · ct + it · ĉt (2i)

ot = Sigmoid(Wo · hx + bo) (2j)

ht = ot · Tanh(ct) (2k)

ht = Relu(Dense(dimht
, dimhidden − 6)) (2l)

Here are a few implementation details,

• The data are feed into the model after min-max normal-
ization which linearly maps the data into the range be-
tween 0 and 1.

• The hidden dimension can choose any arbitrary integer
but is set to be 100 in our case.

• The hidden tensor and cell state tensor is initialized with
the start point of the trajectory which normally is the de-
parting airport coordinates. All the other parameters such
as weight and bias tensor are initialized with a normal
distribution of 0 mean and standard deviation of 0.1 for
convenience.

• The first convolutional layer uses a kernel of size 6×6×2
and the second convolutional layers has a kernel of size
3× 3× 4, both with a stride of 2.

• There are no pooling operations between convolutional
layers since the location of weather cells is vital to the
output.

• It’s not easy to modify the layer functions of the high-
level deep learning packages such as Keras thus the work
is performed under the Tensorflow environment.

Figure 5. Unfolded Network Architecture

The loss function is defined as the mean squared error (MSE)
between the predicted coordinates and flown trajectory as
shown in Eq. 3.

L(Wx, bx) =
1

n

n∑
i

(Y pred
i − Y true

i )2 (3)

4. RESULTS

The training process is performed on a workstation with Intel
Xeon E5-1620 v4 @3.50 GHz chipset and an Nvidia GTX
1080 graphics card. Running 1000 epochs with a batch size
of 64, the MSE reaches 1×10−3. The parameters such as hid-
den dimensions, convolutional layers’ kernel sizes, number of
hidden units and even the choice of the optimizer contribute
a lot to successfully give back an acceptable output. While it
worth pointing out that 90% of the data is split as the training
set and 10% of the data is split as the testing set. One needs to
continuously adjust the model parameter settings during the
training process.
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The final input of the model is the parsed, interpolated flight
plan route including horizontal coordinates and the corre-
sponding weather feature cube at each point and the out-
come of the model is the predicted trajectory of each flight
call sign. After inverse normalization of the predicted output
of the model, we draw out the model output as the calibrate
predicted trajectory, the original last on-file flight plan, and
the ground truth real history flew flight tracks along with the
weather conditions together as shown in Fig. 6. The plot visu-
alizes the flight VRD 415 on Apr. 7, 2017 where the relevant
data are taken from the testing data set. We could see that the
prediction tracks are closer to the aircraft true tracks. We also
notice that the prediction tends to stay close to the original
flight plan.

Figure 6. A Plot of Testing Result

To better illustrate the prediction improvement of the neural
network, we compared the result from the original deviation
and the calibrated deviation. The original deviation is defined
as the l-2 norm between the ground truth history flight tracks
and the original flight plan route while the calibrated devia-
tion is the l-2 norm between the ground truth history flight
tracks and the predicted flight tracks as shown in Eq. 4 and
Eq. 5. The n here stands for the LSTM fold numbers and 2 is
a representation of longitude and latitude.

L2orik =

n∑
i

2∑
j

(Y true
k,i,j − Y fp

k,i,j)
2 (4)

L2newk =

n∑
i

2∑
j

(Y true
k,i,j − Y pred

k,i,j )
2 (5)

Using this evaluation metric, each flight call sign has a pair of
the original l-2 norm and new l-2 norm values. We could eas-
ily get the percentage of deviation reduced in the testing data
set by count how many L2orik is bigger than L2newk out of the
total number of the testing dataset. Index k here is the index
for data set where one flight track as one data set. It’s shown
that 47.0% of the deviation between flight tracks are reduced
in our trained model. Then we calculated the variance im-

provement of deviations using Eq. 6. The result shows that
the overall l2-norm (flight track deviation) reduction among
the testing set is 12.3%.

reduction =
V ar(L2orik )− V ar(L2newk )

V ar(L2orik )
(6)

5. CONCLUSION

This paper aims at addressing the issue of convective weather-
related aircraft trajectory prediction prior to takeoff. Inspired
by the research of 4D trajectory prediction (Y. Liu & Hansen,
2018) and the characteristics of RNN, we apply a special form
of the recurrent neural network, LSTM in particularly, to air-
craft trajectory prediction task. While the traditional fully
connected LSTM (FC-LSTM) doesn’t take spatial correlation
into consideration, we embed two convolutional layers into
LSTM cells thus increase the size of hidden tensors to coop-
erate with weather information into each of the LSTM gates.
This also makes the LSTM ”wider” than FC-LSTM with
more parameters for the model to update in the backpropa-
gation process. The developed neural network model has two
major differences compared to the classical FC-LSTM net-
work and will be discussed later.

As part of the NASA University Leadership Initiative (ULI)
project (Y. Liu & Goebel, 2018) which aims to address the
safety needs and their technology solutions for future national
airspace system (NAS), we developed a novel convolutional
layers embedded LSTM neural network to predict the air-
craft trajectory prior departing using the last on-file flight plan
and convective weather information in order to reduce the
weather-related safety uncertainties and output a calibrated
flight route.

To reach this objective of the research, we have the following
major innovations,

1. Generate 4D flight plan from text format string flight
plans using web-mining tools and real history flight tra-
jectory data as a reference.

2. Develop an algorithm to take out the convective weather
feature cubes of given coordinates and convective
weather data. The size of the cube is a user-defined
parameter which means the weather area of interest can
be changed as of user’s interest. The angle of the feature
cubes is rotated with the flight heading angle.

3. Embed convolutional layers into the repeating modules
of the LSTM structure to take our useful information in-
side of the convective weather feature cubes. Omit the
use of pooling layers to keep the location information.

4. Expand the hidden tensor dimensions by adding addi-
tional fully connected layers within the LSTM folds to
increase the number of parameters of the network.
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The training process shows that after training for 1000
epochs, the model’s mean squared error is able to reach
1 × 10−3. The dimension of hidden tensors in LSTM fold
and the number of hidden units is decided during training.
The final model outcome shows that our model prediction can
calibrate the last on-file flight plan with the given convective
weather feature cubes. Statistical study shows that 47.0% of
the flight deviation is reduced using our model and the over-
all variance of deviation reduction is 12.3%. To output a cal-
ibrated trajectory, the model will need a flight plan and con-
vective weather information as input to generate a calibrated
flight trajectory. The uniqueness of the purposed NN archi-
tecture comes from the modification of LSTM recurrence. In-
stead of simply layers stacking, we include convolutional op-
erations into the flow of recurrence.
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NOMENCLATURE

FAA federal aviation administration
CIWS corridor integrated weather system
ET echo top
ATM air traffic management
NWS national weather service
DWR dynamic weather rerouting
TP trajectory prediction
AA american airlines
HMM hidden markov model
GLM generalized linear model
FCN fully connected network
CNN convolutional neural network
NOAA national oceanic atmospheric administration
IFF integrated file format
RNN recurrent neural network
LSTM long short-term memory
FP flight plan
V IL vertically integrated liquid
NAS national airspace system
Seq2Seq sequence to sequence
FC fully connected
MSE mean squared error
⊕ concatenate operation symbol
⊗ convolution operation symbol
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