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ABSTRACT

The creation, capturing, using and sharing of knowledge is 
based on data. The rate of data creation, collection, and 
elicitation through wide ranging experiments, simulations, 
observations and measurements is rapidly increasing within 
Integrated Vehicle Health Management (IVHM). In 
addition, Knowledge Management (KM), data abstraction, 
analyses, storage and accessibility challenges persist, 
resulting in loss of knowledge and increased costs.  This 
growth in the creation of research data, algorithms, technical 
papers, reports and logs, requires both a strategy and tool to 
address these challenges. A Data Life Cycle Model (DLCM) 
ensures the efficient and effective abstraction and 
management of both data- and knowledge outputs. IVHM is 
characterized by prognostics and diagnostics, which depend 
heavily on high quality data to perform data-driven, model-
based and hybrid computational analysis of asset health. 
IVHM does not yet have a systematic and coherent 
approach to its data management. The absence of a DLCM 
means that valuable knowledge might be lost or is difficult 
to find. Data visualization is fragmented and done on a 
project by project basis leading to increased costs. There is 
insufficient algorithm documentation and communication 
for easy transition between subsequent researchers and 
personnel. A systematic review of DLCMs, frameworks, 
standards and process models pertaining to data- and KM in 
the context of IVHM, found that there is no DLCM that is 
consistent with IVHM data- and knowledge management 
requirements. Specifically, there is a need to develop a 
DLCM based on Open System Architecture for Condition-
Based Maintenance (OSA-CBM) framework. 

1. INTRODUCTION

There has been a steady growth in both scope of research as 
well as data extraction activities in IVHM depicted in Figure 
1 below. This growth has been matched by the complexity 
of management and organization. With this growth in the 
creation of research data, data automating algorithms, 
technical papers, reports and theses, IVHM needs both a 
data management model and a knowledge management 
system that facilitate the storing, organizing and sharing of 
its research and knowledge outputs. Such a model needs to 
be secure and scalable with a high level of cross-platform or 
domain transferability. The absence of a suitable data life 
cycle model means weak data- and knowledge management 
for IVHM. This leads to increased costs and loss of valuable 
knowledge thereby creating long-term uncertainties for 
diagnostic and prognostic management. The primary value 
for designing and implementing a data life cycle model 
includes the following: 

• Enhanced and integrated requirements gathering for 
IVHM and IVHM data and knowledge management 
systems 

• Increased efficiency and effectiveness of planning and 
handling of the growing volumes, diversity and 
complexity of data and data management  

• Facilitate the design and development systems for high 
operational efficiency 

• Making raw and derived data accessible to IVHM 
researcher and engineering operations 

• Ensures the provision of secure, high quality, accurate 
and consistent asset data throughout its entire life-cycle 

• Facilitates the retention of provenance data 

• Ensuring timely, comprehensive, and secure approaches 
to data curation (Faundeen et al. 2013) 
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In this paper we carry out a non-exhaustive integrated and 
systematic review. We finally propose an integration of 
relevant elements of the Open System Architecture for 
Condition-Based Maintenance (OSA-CBM) framework, the 
International Council on Systems Engineering (INCOSE) 
process model, the Core Scientific Metadata (CSMD) model 
and United States Geological Survey (USGS) data life cycle 
model. The aim is to create a Data life cycle model suitable 
for the management of IVHM data, knowledge outputs, 
depth and breadth of IVHM operations, research and IVHM 
system requirements. 

The basic foundation of Integrated Vehicle Health 
Management (IVHM) consists of sensing, instrumentation 
and signal processing. This leads to the extraction of data 
and features selection, paving the way for prognostics 
prediction algorithms. Precision and well-timed availability 
of the above instruments are fundamental to maintenance 
scheduling(Perinpanayagam 2013). The first stage of the 
IVHM cycle is the collection of data using simulations, 
observations, derivation, experiments and referencing 
(SODER) methods (Figure 1) about an asset. IVHM 
delivers value to stakeholders and reduces the cost of 
delivery by monitoring the health of an asset and making 
decisions based on the data collected(Jennions 2011).  
Consequently, IVHM relies predominantly on the 
availability of high-quality data to perform data-driven, 
model-based and hybrid computational analysis of asset 
health. 

Figure 1. Data creation methods, data categories and file 
formats. 

The data has to be accurate, complete, timely, context 
relevant, reliable and explicit (Dibsdale 2011).  The absence 
of any or all of these qualities in any dataset creates 
uncertainties and increases the probability of misdiagnosis, 
modelling errors (Arahchige and Perinpanayagam 2017) and 
inaccurate predictions. This essentially indicates the 
malfunction of the IVHM system because it is “the assembly 
of data related to the current and future activities of a 

critical system and transforms these data into the 
information and which is applied to make a functional 
decision”(Prajapati, Roy, and Prasad  2018:1).   A data life 
cycle model can be defined as a “…a formal representation 
of all the possible states and all the valid state transitions of 
a data item, when handled by a particular system or by a 
user application, e.g. created, duplicated, deleted, backed-
up” (Simonet et al., 2015:26).  It represents the requisite 
actions, operations, or processes to be taken at various 
stages of data creation and management (Faundeen et al. 
2013). Data management through its entire life cycle still 
presents a number of complex challenges relating to 
interoperability, volume, storage, data citation, and metadata 
standards and data provenance (Porcal-Gonzalo 
2015;Beaujardière 2016;Yang, Matthews, and Wilson 
2013). This perhaps explains the proliferation of discipline 
or domain-specific data life cycle models.  

Various disciplines and organizations are creating 
standardized frameworks, data ontologies, standards and 
unique data life cycle models to suit their respective 
requirements. Metadata standards like Dublin core(Hsu et 
al. 2015), Core Scientific Metadata (CSMD) provisions the 
basic metadata required to enhance the search functionalities 
over data portals and knowledge libraries(Matthews et al. 
2010), but falls short of propagating the complete 
provenance data. The shortfall with the CSMD is that 
neither does it support for “access to the derived data 
produced during analysis, nor does it allow the provenance 
of data supporting the final publication to be traced through 
the stages of analysis to the raw data” as pointed out by 
Yang[64, p.613]. 

However, though metadata standards are relevant for all 
data and knowledge outputs and organizations, each 
organization or project seems to have separate requirements 
for their own research or projects data. This is reflected in 
the 17 data life cycle models identified, which all highlight 
the significance of metadata and standards. The models 
seem to differ on the depth and breadth of applicability and 
priority of requirements. For instance the USGS emphasized 
three critical cross-cutting activities namely; metadata 
description, quality assurance and protection from 
corruption or loss to be performed parallel to planning, 
acquisition, processing, analysis, preservation, publishing 
and sharing to achieve enhanced quality, understanding and 
long-term reuse (Plale and Kouper 2017; Faundeen and 
Hutchison 2017). The Digital Curation Centre (DCC) 
model, on the other, hand suggests metadata should 
comprise rules and formalized entities for automatable tools 
and services as well as the role of data managers and data 
curators in the improvement of knowledge (Plale and 
Kouper 2017).  

Taking the DataOne data life cycle model to illustrate the 
variance, though it represents all the classical stages of the 
data management life cycle, all parts of the life cycle are not 
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mandatory (Plale and Kouper 2017; Allard 2014; DataONE 
2017; Harrison 2013; Hidalga et al. 2017; Pouchard 2015). 
This implies that the number of selected stages are 
dependent on the type of project or project requirements. 
Furthermore, although the USGS addresses the weakness in 
most data life cycle models identified, it can be used in 
diverse settings despite having been developed mainly for 
USGS science data. The requirements on which this is 
developed are not consistent with small research facilities 
like the IVHM Centre Labs or the University as a whole. 
None of the models identified seems to satisfy the scenario 
of IVHM research, operations and systems. 

The core of IVHM is the capture of data and analysis to 
establish an early detection of anomalies and an advance 
indication of future failures, state or distinctive 
characteristics of current assets based on their current state. 
The conduct of prognostics and diagnostics is reliant on 
high-quality reliable data. This quality assurance can be 
determined by the data management life cycle. Data life 
cycle models are often integrated with software services and 
policies (Plale and Kouper 2017). It is therefore 
fundamental to consider associated processes involved in 
the planning, designing and developing of the software 
services and policies.   

The INCOSE system engineering process [V-Model] is 
suitable for the development of any system. It is vital in the 
scenario of IVHM data life cycle model and knowledge 
management system. This is suitable for the IVHM data life 
cycle and system development because of the restricted 
duration and scope of this research project. The V-model is 
best suited for these kinds of projects that have well-defined 
length and scope, consistent technology, and a clear and 
well documented technical and functional specifications 
(INCOSE 2017).  

Below is the presentation of our review and analyses leading 
to the IVHM Data life cycle model. 

1.1. Methodology: The Systematic Review 

Following a scoping study, the search string depicted in 
Figure 2 was implemented. As a consequence of the diverse 
and qualitative studies reviewed, a narrative synthesis was 
applied. A narrative synthesis is “an approach to the 
systematic review and synthesis of findings from multiple 
studies that relies primarily on the use of words and text to 
summarise and explain the findings of the synthesis.”(ten 
Ham-Baloyi and Jordan 2016:5).   This study identified 19 
data life cycle models with varying degrees of complexity, 
composition and depth (Figure 3). According to Pouchard 
[2015, p.180] "Data life cycle models present a structure for 
organizing the tasks and activities related to the 
management of data within a project or an organization. "  
Data lifecycle models represent a description of “data 
objects through a set of time ordered stages” (Plale and 

Kouper 2017:95). The data life cycle models vary in steps or 
phases from one organization to another. 

Figure 2: Scoping study and search string implementation 

The longest model has nine phases, and the shortest has five 
phases. However, these data life cycles are not necessarily 
cyclical but rather functional as some phases run parallel 
across the entire life cycle. 

Figure 3: Data life cycle models by phases 

The data life cycle models were then grouped by their 
respective numbers of data life cycles, i.e. five-phase, six-
phase, seven-phase, eight-phase and nine-phase models.  
The review revealed nine standards and frameworks relating 
to data life cycles. In the reviewed studies, the data life 
cycle has been described as the set of activities that affect 
the short and the long-term preservation of datasets through 
a system from planning, creation, maintenance, re-use and 
purging (Simonet, Fedak, and Ripeanu 2015;Beaujardière 
2016).   
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1.1.1. Five-phase data lifecycle models  

Three five phase models were identified; CRUD (Create, 
Read, Update and Delete), Enterprise Data life cycle model 
and Michigan State University (MSU) Records life cycle.  
These models make use of the classical elements of the data 
life cycle. The CRUD model provides a flexible data life 
cycle; it only obliges creation, storage and destruction while 
living use, sharing and archiving optional. The Enterprise 
Data life cycle model is a closed life cycle, and its emphasis 
on destruction limits the availability of data in the long-term 
(Arass, Tikito, and Souissi 2017). The Michigan State 
University (MSU) life does not feature sharing, 
classification and analysis. 

1.1.2. Six-phase data lifecycle models 

Six data life cycle models with six phases were identified; 
(i) United States Geological Survey (USGS) Science Data 
Lifecycle Model, (ii) University of Virginia, Steps in the 
Data Life Cycle, (iii) International Leader in Data 
Stewardship (ICPSR) Data Lifecycle, (iv) UCSD Libraries 
Data Lifecycle, (v) Generic Lifecycle Model, and UK Data 
Archive Data Lifecycle. 

PLAN ACQUIRE PROCESS ANALYZE PRESERVE
PUBLISH/

SHARE

Describe (Metadata, Documentation)

Manage Quality

Backup & Secure

Figure 4 : USGS Science Data Lifecycle Model (Faundeen 
et al. 2013) 

According to Faundeen and Hutchison (2017), data lifecycle 
models are fundamental to communication and data 
management and ensures adequate long-term preservation 
and accessibility. After reviewing more than 50 data 
lifecycle models [the latter four above inclusive], they came 
to the conclusion that none of the existing models was 
entirely consistent with the USGS data management 
requirements. It was imperative to USGS that their 
functional processes and workflows were adequately 
captured in a model.  

Furthermore, like other organizations, the USGS developed 
its own data management lifecycle with the aim of reducing 
complexity and removing redundant or irrelevant steps or 
phases that were not in sync with their scientific workflows 
and processes. The USGS opted for a linear and easily 
operated illustration of their new model (Figure 4). The 
model (Faundeen et al. 2013; Faundeen and Hutchison 
2017) included the basic classical data lifecycle phases and 
laid emphasis on three parallel phases; metadata, quality 
management, backup and Security. 

1. Plan: The organization should identify the resources, 
methods, techniques, functional and technical system 
requirements and generate both plans for either data 
acquisition, data entry or signal reception and data 
management.  

2. Acquire: This is the data capture phase which can either 
data acquisition, data entry, signal reception or all three 
activities combined.  

3. Process: Raw as well as derived data verification, 
organization, transformation, integration, and extraction 
in appropriate format takes place in this step. 

4. Analyze: This encompasses demonstrable quality 
requirements fulfilment, data analytics, modelling and 
evaluation test results as well as methods and activities 
carried out to facilitate definitions of facts, 
identification of forms and trends, developing 
interpretations and testing hypotheses. 

5. Preserve: Data storage for Long-term access and reuse. 
The purpose of this phase is the guarantee long-term 
preservation, ease of search and retrieval, accessibility 
and usability of the data. This step employs multi-
copy/storage locations, long-term usefulness, accuracy 
and consistency, information security, metadata and file 
formats. 

6. Publish/Share: Put together quality assured, metadata 
rich, platform or system-agnostic data, with relevant 
security safeguards and share with interested parties of 
stakeholders.  

7. [Parallel to phases 1-6] Describe (Metadata, 
Documentation): Establishes an obligation to create and 
upgrade metadata on any or all the stages of the 
lifecycle including the documentation of usage in 
specific systems, applications and settings. 

8. [Parallel to phases 1-6] Manage Quality: Mandatory to 
accurately undertake data collection, handling, 
processing, usage, and maintenance across all the 
phases of the scientific data lifecycle, is the use of 
protocols and methods. This implies effective and 
efficient quality assurance and quality control. 

9. [Parallel to phases 1-6] Back Up and Secure: Regularly 
create image backups of both files and data bases on 
either onsite or offsite devices. Access control and other 
security measures must be taken to prevent accidental 
data loss and data corruption. 

 The USGS data lifecycle model encapsulates the activities 
and steps in the latter four models. However different 
research activities or projects will use some or all elements 
of the data lifecycle in dissimilar ways. The data lifecycle 
management is influenced by the requirements of a 
particular project or organization (Faundeen and Hutchison 
2017) . 
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1.1.3. Seven-phase data lifecycle models  

The key feature of these models is the inclusion of 
discovery, knowledge repository and reuse. There is a 
noticeable absence of access control and security element. 
The Geospatial Data Lifecycle is a flexible non-linear and 
non-sequential comprising the classical Define, Evaluate, 
Obtain, Access, Maintain, Use/Evaluate and Archive stages 
but lacks the discovery and reusability elements. These may 
not be weaknesses in themselves as each life cycle model 
has been designed to cater for to the needs of their 
respective organizations. As noted in Yu and Wen( 2010) 
not all elements of the data lifecycle are applicable to all 
contexts and scenarios.  

1.1.4. Eight-phase data lifecycle models  

The DataOne data lifecycle model is one of eight phase data 
lifecycle models designed by the National Science 
Foundation (NSF) exclusively to focus on the phases field, 
or laboratory data goes through rather than the role of the 
person on data(Allard 2014). The model is developed as a 
foundation for the development of tools and services for 
data-intensive sciences and for encouraging best practices 
(Pouchard 2015; Arass et al. 2017; Plale and Kouper 2017; 
DataONE 2017).  

The experimental geomorphology data life cycle model 
addresses the complexity in analysis, storage and search and 
retrieval posed by increasing volumes of laboratory 
data(Hsu et al. 2015). Hsu et al., (2015) review data 
management practices and challenges for experimental 
geomorphology, established that the lack of; rules for 
metadata integration, documentation of workflow, data 
storage, motivation and training were impeding significant 
amounts of data sharing and re-use. These challenges mean 
that accessibility or availability of experimental or 
laboratory data is limited to the research or project 
lifecycles, and therefore undermining reproducibility and 
quality control. They suggested that efficient and effective 
data management and sharing should consider the entire 
data lifecycle, including metadata set information, 
disciplinary information, Quality information and readiness 
for reuse. 

The Data Documentation Initiative (DDI) version 3.0 
mostly linear combined lifecycle model integrates data 
application perspective and social science research data. 
Metadata requirements are grouped into five comprising 
conception of the study, collecting of data, logical data 
encoding structure, physical data encoding structure and 
archiving.(Ball 2012)  

The DCC curation lifecycle model (Faundeen and 
Hutchison 2017; Ball 2012; DCC 2008) is the model with 
the highest number of phases with emphasis on 
preservation, archiving and management of data and 
publications for long-term availability and reuse. It 

concentrates on data curation and serves as a planning tool 
for data creators, curators and users. The model features a 
complete lifecycle action, sequential actions and occasional 
situational actions (Plale and Kouper 2017). The model 
presents indispensable phases in the life cycle by using 
circles with a common center. The phases include: These 
are: (i) Conceptualize (Conceive & Plan); (ii) Create or 
Receive (Generate metadata); (iii) Appraise and select 
(Quality and Governance); (iv) Ingest (Move to Storage or 
Archive); (v) Preservation action (Apply retention 
schedules); (vi) Store (Secure Storage); (vii) Access, use 
and reuse (Access policy and control); (viii) Transform 
(Migration), plus (ix) Sporadic Actions: Migrate, Dispose, 
Reappraise and Dispose.  

The DCC lifecycle model provides an applied framework 
that can be loosely categorized into different levels and 
areas of curation such as technology level operations, bit-
level preservation routines and metadata curation.  The 
technology level operations involve migration, backup, 
indexing, and system upgrades. Bit-Level preservation 
routines include data-recording, checksum reporting, error-
correcting and character replacement and file format 
registries. The metadata curation level defines the content 
and context of digital elements. This level fulfils the 
technical, descriptive, structural and preservation metadata 
requirements(Parry 2016; Sabharwal 2015). One of many 
technical standards for metadata is the Dublin Core.  
Activities that generate rich footnotes and significance to 
images in Digital humanities scholarship and teaching 
practices are given three levels of Curation. 

Level one (L1) focuses on digital files and technology used 
in their preservation while levels two and three denotes the 
exercise of intellectual control and scholarly processing 
respectively.  Furthermore, underlying these levels are 
aspects of metadata schema such as Dublin Core, 
interoperability standards like the Open Archives Initiative 
Protocol for Metadata Harvesting (OAI-PMH), file format 
and data encoding, network characteristics and reliable 
hardware and software systems(Sabharwal 2015). 

1.1.5. Standards and frameworks 

In addition to some of the standard mentioned above, Figure 
5 below shows four main standards commonly used to 
support data management through the data life cycle. The 
design of data lifecycle models takes into consideration 
relevant and appropriate standards/frameworks to support 
respective domain data. Some relevant standards identified 
in the literature included the Open System Architecture for 
Condition Based Maintenance (OSA-CBM), the Core 
Scientific Metadata Model (CSMD), INCOSE systems 
engineering Management process (the V-model) and the 
National Oceanic and Atmospheric Administration (NOAA) 
Environmental Data Management (EDM) Framework. Each 
plays an important role in the data management lifecycle. 
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The Open System Architecture for Condition Based 
Maintenance (OSA-CBM) is an ISO-13374 compliant 
(Erkki Jantunen et al. 2017; Felke et al. 2010) “standard 
architecture for moving information in a condition-based 
maintenance system”(MIMOSA 2018). The ISO 13374 
provides the standards for condition monitoring and 
diagnostics of machines and machine systems – Data 
processing, communication and presentation. The OSA-
CBM framework (Figure 5) facilitates the integration 
different software and hardware components in order to 
decrease costs, enhance interoperability, boost competition, 
merge design changes, and stimulate collaboration in 
condition-based maintenance (Löhr and Buderath 2014; 
Sreenuch, Tsourdos, and Jennions 2013). According to 
(Choudhary, Perinpanayagam, and Butans 2016) OSA-
CBM is fundamental in the creation data identities [‘data 
CVs’] in the form of metadata that includes attributes such 
as id, site, time, alert, algorithm type, name, description and 
others. 

Figure  5: OSA-CBM Functional Blocks(MIMOSA 2018; E 
Jantunen, Junnola, and Gorostegui 2017) 

Its functional capability includes human-machine interface 
provisioning information accessibility. Its focus on 
interoperability and metadata makes its relevance in the data 
lifecycle models extremely pertinent. Figure 5 above 
displays the basic Architecture of OSA-CBM and the 
following paragraphs explain the data flow between the 
layers;

Data Acquisition (DA): This block uses either transducers or 
sensors to pick up physical manifestations and convert to 
clean digital signals for computerization to extract relevant 
information. The DA block is essentially a server of cleaned 
digital signal data. 

Data Manipulation (DM): The DM block processes raw 
data from the DA block by means of mathematical 
algorithms, generating computed and the virtual sensor 
readings which are stored in a database. 

State Detection (SD): In this block, the resulting data from 
the DA and DM blocks are compared to known profiles for 
any discrepancies, and if so, identify the profile associated 
with the data. 

Health Assessment (HA): While taking possible faults into 
consideration, historical health trends, functional status and 
load history are analyzed to diagnose faults and current 
health situation. 

Prognostic Assessment (PA): Using current data and 
projected usage, current health conditions of assets and the 
remaining useful life (RUL) are forecast using either model-
based (physical phenomena of degradation), data-driven 
(pattern recognition and machine learning algorithms) or 
hybrid approach (a combination of statistical data and 
physical phenomena) to get the best outcome. 

Advisory Generation (AG): This is the decision support 
layer that provides recommendations on steps and 
movements that need to be undertaken to optimize the 
useful health of the system in consideration. 

Presentation Block (Human Interface): The presentation 
layer displays health valuations, prognostic valuations, or 
decision support recommendations and alerts (Lebold et al. 
2002;Redding 2011). 

The OSA-CBM framework provides the parameters for 
systems architecture required for the successful application 
of Integrated Vehicle Health Management ( IVHM) to a 
product(Redding 2011). Thus, the structure of OSA-CBM 
architecture provisions the foundation for evaluating 
important IVHM technologies and database standards 
(Goebel 2011).  This is significant because IVHM is a data-
driven and data acquired from transducers and sensors 
directs much of the thinking surrounding it. In addition data 
management, data integrity, data quality are imperative for 
features or faulty conditions extraction-fundamental in 
condition-based maintenance (CBM) and Prognostic health 
management (Goebel 2011; Dibsdale 2011). IVHM systems 
require the capability to organize and manage small as well 
as large data sets in linked tables to promote the easeful 
appreciation and deliver a comprehensive language for data 
definition, retrieval, and update. Therefore, making data 
management an imperative competence in the operations 
room in particular and IVHM in general (Dibsdale 2011).  

Unlike OSA-CBM the Core Scientific Metadata (CSMD) 
model (Figure 6) is designed for use in large scale 
laboratory-centered scientific facilities to represent data 
acquired from scientific experiments or structural 
sciences(Yang et al. 2013). The Science and Technology 
Facilities Council (STFC) generated the model. It is 
designed around the hierarchical concept of scientific 
studies and investigation which are usually characterized 
by experiments, measurements, simulations, modelling and 
observations. The outcomes typically include three phases – 
Phase One being the acquisition of raw data which is 
analyzed in Phase to create derived data which is eventually 
published in phase three. The Core Scientific Metadata 
(CSMD) model mainly involves experimental data 
acquisition and partially automated creation of metadata. 
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The CSMD model supports interoperability of data 
management and accessibility, and facilitates cataloguing, 
data curation and data reuse for medium and to long-
term(Matthews et al. 2010).

Figure  6: The CSMD model (Matthews et al. 2010) 

The main elements of the CSMD model (Matthews et al. 
2010) include: 

Investigation: This is the most important entity of the study 
that specifies title, abstract, dates, data collection tools, 
facility and the unique identifiers referencing the particular 
model.  

Investigator: Stakeholders of the study; Main researcher, 
support researcher, sponsors, institutions and their roles. 

Topic and keyword: This include managed and unmanaged 
terms used in interpreting and cataloguing the research.  

Publication: Assigns references to publications linked with 
the research. 

Sample: Detailed data on study research sample. Unique 
details such as precautions on the toxicity of elements, and 
attributes relating to tagging of samples, substance 
annotation are captured in the model. 

Dataset: Research projects can include more than one 
dataset on which diverse and multiple samples are analyzed. 
Research activity can include raw datasets on which 
analyzed datasets are subsequently inserted.  

Datafiles: In the CSMD, this takes the form of physical data 
objects stored on physical storage disk drives(Yang et al. 
2013). Its metadata includes name, version, location, data 
format, time created, modified by and time modified, and 
other details such as Check-sum. 

Parameter: Defines explicit aggregates like pressure, 
temperature, volume or scattering angle connected to the 
research. These aggregates can be used to describe sample 
parameters, study environment or the variables being 
measured. Parameters can be linked at various levels with 
datasets and metadata elements. 

Authorization: The CSMD model can specify access 
controls on investigation and datasets. 

In a study of the problem of managing provenance of 
derived data in scientific research, Yang et al (2013) found 
that although the initial CSMD model provisioned 
accessibility, usage and reuse of experimental raw data, it 
did not "support access to the derived data produced during 
analysis, nor does it allow the provenance of data 
supporting the final publication to be traced through the 
stages of analysis to the raw data"(Parry 2016:613).  In 
other words, the original CSMD model recognizes the 
sources’ provenance of the derivative data but fails to 
describe the transformation provenance. They emphasized 
the significance of keeping track of previous work and the 
need for a resilient data management tool and computational 
workflows that would capture the flow of data, raw data to 
derived data through to final publication.  

They recommended that data trails generated during 
analysis should be captured to ensure reliable 
reproducibility research outcomes – an essential element in 
valid scientific research. Because much of the data in 
scientific facilities is generated in large volumes and at 
significant costs, repetition of data collection is not a viable 
or preferred option and therefore any bid to replicate results. 
Therefore, replication of test results would be best achieved 
through the re-analysis of already collected raw data.  

To demonstrate the validity of their proposition, they 
extended the CSMD model to account for derived data and 
to record the data analysis process enough for each of their 
use case. They extended the CSMD model to a software 
agnostic one that contains resultant data product to include a 
description of transformation provenance which is not 
covered in the existing model. They carried a pilot 
implementation with experimental scientists, with 
annotations employing the ICAT data catalogue scheme. 
They identified five fundamental factors for capturing 
provenance data. 

They include the following: 

• the data objects involved 

• the programs that produce or consume data objects 

• the ordering of the programs 

• the parameters to the programs; and 

• the people: This refers to those who drive the programs 
and therefore fundamental for accountability, security, 
attribution and archival processes. This element is 
excluded from the extended model  

They proposed six items as an extension to the CSMD 
model as follows:  

1. Adding a SoftwareExecution subclass of investigation: 
The subclass is for modelling the executions of one data 
analysis task in the process. 
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2. Linking a program to a software execution: This is a 
runtime notion associated a single software program, 
one or more data files and zero to any number of 
parameters that drive the program and the outputs from 
the data files and parameters. The persistent and 
catalogued aspects of derived data provenance trail are 
often determined by researchers. 

3. Linking software executions with datasets: Software 

executions are linked to input datasets and output 
datasets from an execution of a program and associating 
multiple software executions to input datasets extended 
to include many to many relationships between 
investigator and dataset, to capture their context in the 
provenance process.  

4. Associating parameters with a software execution:  
Parameters must be linked with no less than one of 
many possible programs [can take zero or more 
parameters] executions corresponding to unique 
datasets but with assorted output datasets and runtime 
parameters. 

5. Re-introducing the study: A study represents an 
amalgamation of associated investigations and a 
channel for relating SoftwareExecutions to each other 
and other types of investigations. 

6. Introducing study nesting: Nesting an investigation 
inside one or more larger ones. 

In conclusion, Yang et al., (2013) all observed that their 
proposed extended model was domain agnostic though 
developed for solving structural science data management 
problems from large scale facilities, it can be used to resolve 
issues of derived data management in many disciplines as 
well as in limited size scenarios like university research 
laboratories [such as the IVHM lab].  

The extended model captures both the data source and its 

provenance – the transformation it has gone through in the 
lifecycle. The ICAT prototype does not yet allow for the 
propagation of the complete provenance of output data 
without unpacking the datasets to facilitate the querying of 
used transformations for researchers and neither does the 
extended proposed CSMD model. In addition, there is still 
scope for improving the software and hardware environment 
which have equally not been covered in this proposition.

International Council on Systems Engineering (INCOSE) 
Systems Engineering V-Model [Verification and Validation 
model] (Figure 7) is a process for ensuring effective and 
efficient satisfaction, high quality, trust worthy, cost 
efficient and schedule customer as well as stakeholder 
requirements throughout a systems lifecycle. It illustrates 
the product lifecycle from foundation to obsolescence or 
destruction (INCOSE 2015). The V-model lifecycle is a 
waterfall-like step-by-step process implementation that 
ensures predictability, stability, reproducibility, and 
substantial surety.  

Figure 7: Systems Engineering Process - V-Model 
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“Systems engineering is an interdisciplinary approach and 
means to enable the realization of successful systems. It 
focuses on defining customer needs and required 
functionality early in the development cycle, documenting 
requirements, then proceeding with design synthesis and 
system validation while considering the complete problem” 
INCOSE (2015: 11). 

This definition covers the data lifecycle from planning, 
creation to retirement disposal. A key strength of the 
systems engineering process is the consideration of the 
complete lifecycle of a project during the project 
development phase. It depicts the ten basic steps involved in 
the conception, planning, functional and technical 
specifications, and the implementation of a system. The 
implementation can vary from system to system in terms of 
timescales, costs and predictable lifespan. The essential of 
the V-Model illustrates the gradual advancement from 
requirements specification, system/product implementation, 
to verification processes.  

The left part of the V-model characterizes problem 
identification.  It depicts the process of functional and 
technical requirements gathering with evolving granularity, 
for product systems and subsystems, including components 
and the relationship amongst them. The left part of the V- 
Model comprises artefact abstraction, selection, and the 
design description of the product. The right part of the V-
Model (Figure 8) depicts activities relating to the running 
and preserving, changing and enhancing, and eventual 
obsolescence or replacement of the system(INCOSE 2015; 
INCOSE 2017).  

The Systems Engineering process can be used in the 
development of any product or system. The process can be 
summarized into the following seven tasks: State the 
problem (concept studies), Investigate alternatives (concept 
development), Model the system (preliminary design), 
Integrating the system (final design), Launch the system 
(fabrication), Assess performance (verify components 
/performance), and Re-evaluate (demonstration & 
Validation)(Jacobs 2015). 

2. COMMONALITIES BETWEEN DATA LIFECYCLE MODELS,
OSA-CBM, STANDARDS

Data management through its entire lifecycle still presents a 
number of complex challenges relating to interoperability, 
volume, storage, data citation, and metadata standards and 
data provenance (Porcal-Gonzalo 2015; Beaujardière 
2016;Yang et al. 2013). This perhaps explains the 
proliferation of discipline or domain-specific data lifecycle 
models. Various disciplines and organizations are creating 
standardized frameworks, data ontologies, standards and 
unique data lifecycle models to suit their respective 
requirements. Metadata standards like Dublin Core (Hsu et 
al. 2015), Core Scientific Metadata (CSMD) provisions the 
basic metadata required to enhance the search functionalities 

over data portals and knowledge libraries (Matthews et al. 
2010), but falls short of propagating the complete 
provenance data. The shortfall with the CSMD is that 
neither does it support for “access to the derived data 
produced during analysis, nor does it allow the provenance 
of data supporting the final publication to be traced through 
the stages of analysis to the raw data” as pointed out by 
Yang (2013:613). 

However, though metadata standards are relevant for all 
data and knowledge outputs and organizations, each 
organization or project seems to have separate requirements 
for their own research or projects data. This is reflected in 
the 17 data lifecycle models identified, which all highlight 
the significance of metadata and standards.  

Figure 8: Integration parameters 

The models seem to differ on the depth and breadth of 
applicability and priority of requirements. For instance the 
USGS emphasized three critical cross-cutting activities 
namely; metadata description, quality assurance and 
protection from corruption or loss to be performed parallel 
to planning, acquisition, processing, analysis, preservation, 
publishing and sharing to achieve enhanced quality, 
understanding and long-term reuse (Plale and Kouper 
2017;Faundeen and Hutchison 2017).  

The Digital Curation Centre (DCC) model suggests 
metadata should comprise rules and formalized entities for 
automatable tools and services as well as the role of data 
managers and data curators in the improvement of 
knowledge (Plale and Kouper 2017). Taking the DataOne 
data lifecycle model to illustrate the variance, though it 
represents all the classical stages of the data management 
lifecycle, all parts of the lifecycle are not mandatory (Plale 
and Kouper 2017; Allard 2014; DataONE 2017; Harrison 
2013; Hidalga et al. 2017; Pouchard 2015). This implies that 
the number of selected stages are dependent on the type of 
project or project requirements. Furthermore, although the 
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USGS addresses the weakness in most data lifecycle models 
identified and can be used in diverse settings despite having 
been developed mainly for USGS science data. The 
requirements on which this is developed are not consistent 
with small research facilities like the IVHM centre Labs or 
the University as a whole. None of the models identified 
seems to satisfy the scenario of IVHM. 

The core of IVHM is the capture and analysis of data to 
establish advance indication of a future failures, state or 
distinctive characteristics of current assets in current the 
state. The conduct of prognostics and diagnostics is reliant 
on high-quality, reliable data. This quality assurance can be 
determined by the data management lifecycle. Data lifecycle 
models are often integrated with software services and 
policies (Plale and Kouper 2017). It is therefore 
fundamental to consider the associated process involved in 
the planning, designing and developing of the software 
services and policies.   

The INCOSE system engineering process [V-Model] 
suitable for the development of any system, is vital in the 
scenario of IVHM knowledge management system and data 
lifecycle model. This is suitable for the IVHM data lifecycle 
and system development because of the restricted nature of 
this project. The V-Model is best suited for these kinds of 
projects that have well-defined length and scope, consistent 
technology, and a clear and well documented technical and 
functional specifications (INCOSE 2017). 

The conceptual model above sheds light on the relationship 
between standards, data lifecycle models, OSA-CBM and 
the INCOSE systems engineering process model. It depicts 
the commonalities that are required for the IVHM Data 
lifecycle model. 

Integrated Vehicle Health Management (IVHM) is shaped 
by prognostics and diagnostics that rely predominantly on 
the availability of high-quality data to perform data-driven, 
model-based and hybrid computational analysis of asset 
health. The data has to be accurate, complete, timely, 
context relevant, reliable and explicit (Dibsdale 2011). 
IVHM is data-centric and driven by the OSA-CBM data 
model. The centrality of data for IVHM in the short, 
medium and long-term diagnostics whether it be historical 
asset health trends, operational status, load history, or fault 
identification, necessitates a data lifecycle model or a hybrid 
model consistent with OSA-CBM.  

Of all the existing data lifecycle models, there is none that is 
consistent with the requirements of IVHM data and 
knowledge management requirements; that integrates OSA-
CBM which is absolutely imperative to IVHM. The OSA-
CBM model is based on the concept of metadata and 
interoperability that requires persistent visibility and 
traceability of data (Choudhary et al. 2016) within and 
across diverse platforms, systems and devices, and therefore 
making data provenance a fundamental requirement. This 

has not been explicitly covered in any of the data lifecycle 
models. A new model is needed, and one that that integrates 
data acquisition with signal reception as well as data entry 
in order to accommodate the role of the systems or device 
operators for IVHM.  In the next section, we describe the 
various phases of the proposed IVHM data lifecycle model. 

3. THE INTEGRATED VEHICLE HEALTH MANAGEMENT 

DATA LIFECYCLE MODEL

 The proposed IVHM Data lifecycle model (IVHM-DLCM) 
(Figure 9) is a hybrid that integrates relevant standards, 
frameworks and models that fit the profile of IHVM 
research and engineering activities. The IVHM-IVHM Data 
lifecycle model is scalable and can be used in diverse IVHM 
activities of all depths and breadths. It takes into 
consideration interoperability, integrity, quality, security, 
provenance and preservation of data throughout the 
lifecycle. 

Figure 9: The IVHM Data Lifecycle Model 

The IVHM-DLCM has nine discrete phases with three other 
phases running parallel.  There also the revaluation process 
that runs parallel to phases One, Two, Three and Four. 

3.1. Distinct Phases 

3.1.1.  Planning 

The planning phase is the conception and beginning of 
simulations, observations, derivation, experiments and 
referencing (SODER) activity. In this phase, the research or 
engineering task is defined and planned – resources and 
planned deliverables for each phase are explored and 
explained.  The requirements for success, quality, integrity 
and security are defined, including systems requirements. 
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The metadata parameters both generic and standard are 
considered in this phase. The data management plan, 
retention schedules and requirements specification are some 
of the recommended deliverables in this phase. In this 
phase, we also do the selection of the sensor modules and 
other accessories like software tools required for the 
SODER activity. File formats, data storage and sharing 
plans are developed at this stage.  

3.1.2. Acquisition 

The data acquisition phase represents data creation from 
scratch or the extraction of existing raw or derived data for 
reuse. In this stage, observational, experimental, simulation 
data creation takes place as well as the retrieval of existing 
datasets, derived or reference data for reuse. Data 
governance standards and best practices ensuring integrity, 
security, quality and metadata are considered. The quality of 
the process is also vital as it has a direct impact on the 
quality of the data created of retrieved for reuse.  

3.1.3. Pre-Processing 

The preprocessing phase aims to flag out of range data 
values, missing values to mitigate the risk of making 
decisions based on misleading results. It is fundamental to 
IVHM machine learning activities. It is used to clean the 
original signal by eliminating noise and to improve object 
component condition. In other words, this phase represents 
the low-level computation of sensor data and constitute a 
key element of the OSA-CBM architecture. Sensor data is 
transformed into an understandable format. This is the stage 
where data cleansing –detecting and correcting mistakes, 
incomplete, inaccurate, irrelevant and incorrect records from 
datasets. This step employs best practices to ensure that data 
is free of inconsistencies, correct, usable and reliable.  

3.1.4. Processing 

 In this phase meaningful and relevant is extracted in 
suitable formats from raw datasets created after 
preprocessing for future use. This step involves activities 
such as validation, aggregation, summarization, sorting, 
classification and validation. It includes the conversation of 
data in usable and desired forms and formats. It can take the 
form mechanical, manual or digital processing. 

3.1.5. Analyses 

This represents activities like organization, interpretation 
and presentation of data. It involves statistical data 
analytics, simulations, modelling and other computation 
activities that reveal trends, facts, faults and tests theories 
and assumptions. In this step raw data is transformed into 
information and communicated to the stakeholders.  

3.1.6. Revaluation:  Phase 1 – Phase 5  

Revaluation is one of the most important tools in The 
Systems Engineering Process. Re-evaluation observation of 
outputs and using the information to modify the system, the 
inputs, the product or the process (INCOSE 2017).  It takes 
place in the first five phases. Feedback is collected at each 
phase on a situational basis to continually improve the steps 
and eliminate problems. The loops are used specifically 
when issues are identified as the lifecycle moves from one 
phase to the next. 

3.1.7. Preservation 

Preservation includes steps and processes for active data 
storage for the duration that it might be needed. It also 
involves access control and backup for security. These are 
the security actions taken to reduce the chances of data 
corruption and data loss. They also include submission to 
reliable data repositories. 

3.1.8. Dissemination 

 This step includes the preparation and dissemination of 
datasets, derived data as well as findings or outcomes to 
relevant stakeholder communities. It improves accessibility 
as well as being a recommended best practice. 

3.1.9. Archive 

This the last step before disposition. It represents the 
retraction of data and related outputs from active circulation. 
The retention schedule is applied to the data and only 
accessible on demand. 

3.1.10. Dispose 

 The data has reached the end of its useful and potential 
useful life. It is purged at this stage. It is securely disposed 
of to ensure that there can be no unwarranted access. 

3.2. Parallel Phases 

3.2.1. Metadata: Generic, CSMD, OSA-CBM 

The strategy for metadata generation and documentation is 
referenced throughout the data lifecycle. As the data 
transitions from one phase to the next, it might also change 
platforms and devices making this phase particular 
important for addressing provenance issues.  The metadata 
phase draws on the best generic metadata created by 
systems, the core scientific metadata model and the OSA-
CBM built in metadata to create a scalable metadata model 
within the lifecycle. This allows for easy contraction and 
expansion research and engineering activities. It 
accommodates small to large scale data generating 
activities. 
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3.2.2. Data Integrity, Quality and Security 

Data integrity involves creating, processing and maintaining 
the assurance, accuracy, consistency and completeness of 
data throughout its lifecycle. The content and meaning of 
data is maintained throughout its lifecycle. This also 
includes compliance with statutory requirements.  Quality 
represents the use of best practice protocols and methods of 
collecting and organizing data that ensures its accessibility, 
completeness, validity, accuracy, consistency, availability 
and timeliness.  Security involves the protection of data 
from unauthorized access to modify, use, delete and 
disclose. It includes protection against theft, breach of 
agreements, data protection laws and unintended or hateful 
modification. The computer system security, physical 
security and file security are all part of this step. 

3.2.3. Algorithms 

Refers to the algorithms and agents that automate research 
and engineering tasks. They are maintained as datafiles and 
at the same time they represent agents within the data- and 
knowledge management system.  

4. CONCLUSION

We have identified key data lifecycle models (DLCM) and 
frameworks and found that though they had some of the 
elements for IVHM data, they lacked some essential ones. 
Thus, sustaining the cycle of data and knowledge 
management issues – creation, quality, storage, security and 
provenance. In the review, we found that the USGS DLCM 
encapsulated most data lifecycle models. The USGS 
reviewed more than 50 DLCMs to develop their one, and 
therefore was chosen as the ideal Data Life Cycle for 
integration. The strength of the proposed data lifecycle lies 
in the integration of key elements of the OSA-CBM 
framework, the CSMD, the engineering process model to 
create a scalable model that fits the depth and breadth of 
IVHM Research and Engineering operations.  This model 
supports the design and implementation of protocols for 
effective and efficient data management. It provides a 
foundation for Data- and knowledge management system 
requirements. 
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