
Classification Based Diagnosis: Integrating Partial Knowledge of the
Physical System

Ion Matei1, Johan de Kleer2, Alexander Feldman3, Maksym Zhenirovskyy4, and Rahul Rai5

1,2,3,4 Palo Alto Research Center, Palo Alto, CA, 94304, USA
imatei@parc.com
dekleer@parc.com

afeldman@parc.com
mazhenir@parc.com

5 University at Buffalo - SUNY, Buffalo, NY, 14260, USA
rahulrai@buffalo.edu

ABSTRACT

Machine learning methods based on classifiers are more ro-
bust to system complexity, but they ignore the relations that
exist in the data due to the physical laws governing the be-
havior of the system. In this paper we discuss how (partial)
knowledge about the physical system can be integrated in the
machine learning process. We focus on classification based
diagnosis. We show how the partially known model is inte-
grated in the classification algorithm, and how the new algo-
rithm differs from the typical classification algorithm used in
machine learning. We demonstrate that by integrating the par-
tial system knowledge, the cross-entropy optimization prob-
lem used for learning a classifier can be expressed as a set of
regression problems in terms of the parameters of the model
representing the unknown behavior, followed by simpler clas-
sifier learning. The regression problems have reduced com-
plexity since they have to model on a part of the system be-
havior. We showcase our approach when diagnosis faults for
a rail switch system. Our approach amounts to deriving a
formal approach to integrating partial system knowledge in
classification-based diagnosis.

1. INTRODUCTION

Machine learning algorithms are a useful tool for system an-
alytics applications such as diagnosis and prognostics. They
are robust to system complexity but agnostic to the source
of the training data. In addition, they typically require more
complex models, e.g., neural networks (NN) with many lay-
ers. In many applications, we do have at least some partial
knowledge about the system from which the training data
originates. In several of our previous commercial projects

Ion Matei et al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

we encountered exactly this case: we had access to the
specifications of only a subset of the system components
due to proprietary reasons (Matei, Ganguli, Honda, & de
Kleer, 2015). If full information about the system is avail-
able, a plethora of model-based methods for diagnosis and
prognosistics can be used (de Kleer, Mackworth, & Re-
iter, 1992),(Gertler, 1998),(Isermann, 2005),(Patton, Frank,
& Clark, 2000). These methods require some prior informa-
tion about the fault rates, do not always scale with the system
complexity and they work well for particular classes of sys-
tems. For example, Kalman filter-based methods (Kalman,
1960) are optimal for linear systems with Gaussian noise.
Machine learning methods based on classifiers are more ro-
bust to system complexity, but they ignore the relations that
exist in the data due to the physical laws governing the be-
havior of the system.

In this paper we discuss how (partial) knowledge about the
system can be integrated in the classifier learning process.
We focus on classification problems as they are suitable for
diagnosis purposes. We address two main challenges: (i) rep-
resentation and integration of the unknown behavior, and (ii)
design of a training algorithm that considers the partial sys-
tem knowledge. To address these challenges we build upon
our previous work on learning acausal components in par-
tially known physical systems (Matei, de Kleer, & Minhas,
2018). Unlike causal systems, their components do not have
a fixed notion of inputs and outputs. They are characterized
by ports through which energy is exchanged between com-
ponents. Component behaviors are described by constitutive
equations in terms of port and internal variables. The system
behavior emerges from the composition of individual com-
ponent behaviors through port connections. Acausal systems
are typically represented as differential algebraic equations
(DAEs). Under certain conditions, by employing index re-
duction techniques, they can be transformed into ordinary dif-

1

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

ferential equations (ODEs) and solved using standard ODE
solvers.

We address the first challenge (i) by bringing the system of
equations into a block-lower-triangular (BLT) form. This
form describes the causal relations between component vari-
ables: the equations from which variables are computed, and
what variables need to be computed first in order to compute
other variables. Hence, we can derive an input-output rep-
resentation (e.g., a regression model, or a recurrent NN) to
represent the unknown behavior, and more importantly we
can compose this representation with the rest of the known
components. The second challenge (ii) is addressed by show-
ing that a cross-entropy optimization problem used for learn-
ing a classifier can be expressed as a set of regression prob-
lems in terms of the parameters of the model representing
the unknown behavior, followed by a simpler classifier learn-
ing. Our approach amounts to deriving a formal approach to
integrating partial system knowledge in classification-based
diagnosis.

Paper structure: Section 2 describes the acausal model rep-
resentation, the implications of a partially known model and
the classification problem formulation. Section 3 presents the
representation of the classifier in the full and partial model
knowledge. Section 4 shows an illustrative example.

2. PROBLEM SETUP

Our objective is to diagnose faults in a physical system. The
nominal and the fault behaviors represent different operation
modes. By diagnosing a fault we mean identifying an opera-
tion mode.

2.1. Model representation

We assume that the behavior of the physical system is de-
scribed by a hybrid differential algebraic equation (DAE).
The typical mathematical model for describing the behavior
of the system is

0 = F (ẋ, x, u, w, θ), (1)
y = h(x, u, v, θ), (2)

where x is the state vector, u is the vector of inputs, and w
and v are process and measurement noise, respectively. The
system output is denoted by y and θ is a variable that sets
the mode of operation and takes values in the discrete set
{1, 2, . . . ,M}. It is sometimes more beneficial to work with
discrete dynamics of the form

0 = F (xk+1, xk, uk, wk, θk), (3)
yk = h(xk, uk, vk, θk), (4)

which can be obtained through approximations of the contin-
uous dynamics, e.g., by approximating the state derivatives.

An example of an electric circuit whose behavior is described
by a hybrid DAE is shown in Figure 1. The circuit has two

Figure 1. Example of a physical system with a hybrid DAE

modes of operations that are activated by manipulating an
electric switch. In the nominal mode the switch is closed.
An open switch models an open connection for the resistor
R2. In the nominal mode, the behavior of the system is given
by

uR1 = E + v2 (5)

iE = − 1

R1
uR1 (6)

uR2
= v3 − v2 (7)

iC2
=

1

R2
uR2

(8)

iC1
= iE − iC2

(9)
d

dt
v2 =

1

C1
iC1

(10)

d

dt
v3 =

1

C2
iC2 (11)

while in the fault mode we have

uR1
= E + v2 (12)

iC1 = − 1

R1
uR1 (13)

d

dt
v2 =

1

C1
iC1

(14)

(15)

Note that the two set of equations describe two DAEs. How-
ever, by simple substitutions they can be converted into
ODEs. For example the fault mode equation takes the form

d

dt
v2 = − 1

R1C1
v2 −

1

R1C1
E. (16)

2

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

We often prefer to preserve the algebraic equations as they
can give us key insights into the behavior of specific compo-
nents.

2.2. Partially known behavior

In an ideal case, we know both the topological and behavioral
representation of the system. In real scenarios however, this
is rarely the case as we have discovered in one of our previ-
ous diagnosis projects described in (Matei et al., 2015). One
common cause for lacking full system description is incom-
plete technical specifications: often, even the system manu-
facturers do not have access to the complete list of compo-
nent specifications due to proprietary reasons. In the context
of this paper, partial knowledge refers to having access to the
behavioral description of a subset of the system components.
We do assume that the topological description of the system
is known. To make it more concrete, let the behavior of re-
sistor R2 be unknown. How to chose acausal mathematical
component models was discussed in (Matei et al., 2018). The
component model must contain two connectors, each connec-
tor having a current and a potential variable. For our example
these are v2, i2, v3 and i3, where the indices refer to the nodes
2 and 3 in the circuit shown in Figure 1. These variables are
constrained by a vector valued function fR2 : R4 → R2, such
that fR2(v2, i2, v3, i3;β) = 0, where β is a set of unknown
model parameters. To simplify the model we can assume that
i2 + i3 = 0. Therefore we are left with finding a function
f
′

R2
: R3 → R such that f

′

R2
(v2, i2, v3;β) = 0. This is

not a causal representation. We further obtain a causal repre-
sentation by leveraging the BLT form of the circuit shown in
Figure 2, where we assumed some mockup constitutive equa-
tion for R2 for the purpose of performing the transform. The
BLT form shows that the capacitor’s potentials can be inter-
preted as inputs for the resistor model and the current is an
output. This input-output mapping is particular to this cir-
cuit though. Therefore, the causal representation for the be-
havior of the circuit can be chosen as i2 = f

′′

R2
(v2, v3;β).

There is no systematic way to chose a particular representa-
tion. We can chose a polynomial or a NN representation. The
causal block representation has the advantage that enables us
to model the behavior of the unknown component using an
input-output map (or an ODE with inputs and outputs). This
map is parameterized by β and the parameters are learned us-
ing training data. It has one important disadvantage though.
The causal model for the unknown component is not neces-
sarily generalizable. The reason is that the behavior of the
component is not actually causal. In other configurations, the
component may have a different causal representation, that
is, the current may act as input and the potentials as outputs.
There is an additional challenge caused by the parameters of
the map. Not all of them are feasible. For example, the re-
sistance value is always positive. A negative value will re-
sult in an unstable system. Feasibility constraints can also be

learned as discussed in (Matei et al., 2018) or derived from
component properties such as dissipativity1. Alternatively,
we can just ignore the existence of constraints and perform
unconstrained optimization since we expect the cost function
to increase significantly for unstable cases.

Figure 2. BLT form of the circuit shown in Figure 1. The
columns show model variables and the row depict the equa-
tions from which the variables are computed. The equations
and variables are expressed in the Modelica language

2.3. Classification problem

In the classification problem, the objective is to determine
the mode θ based on a set of observations. Without loss of
generality, we assume that system has no exogenous inputs.

The type of observations we consider are time series of output
measurements y0:T = {y0, y1, . . . , yT }, where yk = y(tk)
and tk are sampling instants, assumed uniform. To simplify
the notation we will generically denote a sequence y0:T by y.
We will distinguish between time series sample by using the
index i, that is y(i). We will make the following assumption.

Assumption 2.1 The mode θ does not change for the dura-
tion [0, T] and all time series correspond to the same initial
condition. �

This means that each data sequence y(i) corresponds to one
mode only. The classification problem involves determining
the current mode of operation based on a set of observation
y. It is based on a probabilistic model p(θ = n|Y = y;β),
where Y is a vector-valued random variable representing the
observations (feature vector). The vector β represents the
parameters corresponding to the model used for describing
the conditional probability distribution. For example, we can
use a NN model with a softmax function at the last layer.
The classification decision is the solution of the problem
arg maxj{p(θ = j|Y = y)}. The parameters β are learned

1The dissipativity constraint for component R2 requires the power P =
i2v2+i3v3 ≥ 0. For a resistor model, this means that P = i2(v2−v3) =
R2i22. This shows that we require R2 ≥ 0.

3

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

by minimizing the cross-entropy between two probability dis-
tributions

min
β
E [H (q(θ|Y), p(θ|Y ;β))] , (17)

where H is the cross entropy defined as H(q, p) =
−Eq[log(p)], and the probability distribution q(θ|y) is the
“ground truth”, assumed known. To evaluate the expectation
(17) we need the unknown distribution of Y . This distribu-
tion is approximated using the training examples, resulting
in

E [H(q(θ|Y), p(θ|Y ;β)] ≈

1

N

N∑
i=1

H
(
q(θ|Y = y(i)), p(θ|Y = y(i);β)

)
, (18)

where {y(i)}Ni=1 is a set of realizations of Y (training exam-
ples). The cross-entropy can be explicitly written as

H
(
q(θ|y(i)), p(θ|y(i);β)

)
=

−
M∑
j=1

q(θ = j|Y = y(i)) log p(θ = j|Y = y(i)), (19)

where q(θ = j|Y = y(i)) = 1 if y(i) corresponds to mode j,
and zero otherwise. In the machine learning community, the
solution of Eq. (17) is typically obtained by using gradient
descent algorithms, e.g., stochastic gradient descent, Adams
(Kingma & Ba, 2014) or RMSProp (Ruder, 2016). The learn-
ing algorithm does not use any information about the origin
of the data, or what information may be known about the sys-
tem that generated it. One immediate consequence is that
we may require a complex model for p(θ|Y ;β), and hence a
large number of parameters to learn. This in turn induces the
need for large training data sets. Another consequence is that
we ignore relations that exist between the elements of the fea-
ture vectors. Such relations originate from the physical laws
governing the behavior of the physical system.

3. CLASSIFIER TRAINING THAT INCLUDES INFORMA-
TION ABOUT THE SYSTEM

We distinguish two cases concerning what is known about the
system generating the observations: (i) complete knowledge,
and (ii) partial knowledge.

3.1. Complete knowledge

In this scenario, a complete model of the physical system is
available. This model accurately describes the behavior of
the system up to some process and measurement noises. The
objective is to find a representation of the probability p(θ|y).
Using Bayes’s rule, this probability can be expressed as

p(θ = j|Y = y) =

p(y|θ = j)p(θ = j)∑M
l=1 p(y|θ = l)p(θ = l)

. (20)

The computation of the probability p(θ = j|Y = y) can
be done using the model of the system. Using the discrete
dynamics shown in Eq. (3)-(4), we have

p(y0:T |θ = j) =∫
p(yT |xT , θ = j)p(xT |y0:T−1, θ = j)dxT . (21)

The probability p(yT |xT , θ = j) is completely determined by
the sensing model described by Eq. (4) and the distribution
of the measurement noise vT . In the case vT is an additive
Gaussian noise, p(yT |xT , θ = j) is a Gaussian probability
distribution function (pdf). The quantity p(xT |y0:T−1, θ = j)
is the prediction step in the state estimation procedure. It can
be expressed in terms of the update step:

p(xT |y0:T−1, θ = j) =∫
p(xT |xT−1, θ = j)p(xT−1|y0:T−1θ = j)dxT−1. (22)

The probability p(xT |xT−1, θ = j) is determined by the pro-
cess model defined by Eq. (3) and by the distribution of the
process noise wT−1. The probability p(xT−1|y0:T−1, θ = j)
is the update step in the state estimation process. Therefore,
we require M state estimation filters run in parallel, for each
mode of operation. The complexity of evaluating the itera-
tive convolution operations involving the probabilities at the
prediction and update steps depend on the type of model.
For linear systems with Gaussian noise these probabilities
are Gaussian with statistics computed using the Kalman fil-
ter (Kalman, 1960) equations. For nonlinear systems, ex-
tensions of the Kalman filter such as the extended or un-
scented Kalman filter may be an option. Alternatively, pro-
vided sufficient computational resources are made available,
we can use the particle filter (Arulampalam, Maskell, & Gor-
don, 2002). If unknown, the probability p(θ = j) can com-
pute as proxy using the training examples. Namely, we have
p(θ = j) ≈ 1

N

∑N
i=1 q(θ = j|y(i)). Alternatively, we

can solve an optimization problem of the form defined by
expression (17) with respect to the probabilities p(θ = j).
We can model these probability using a softmax function,
p(θ = j) = eηj∑M

l=1 e
ηl

, and solve the optimization problem
with respect to parameters ηj .

Figure 3 depicts the architecture of the classifier when the
complete model of the system is known. It is composed ofM
filters that compute the probability distribution of the outputs
given a mode of operation, followed by a fusion block, which
determines the current model by computing the probability
introduced in Eq. (20).

4

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

Figure 3. Classifier architecture: complete knowledge case

3.2. Partial knowledge

In the partial model knowledge case, the classification prob-
lem uses the same formula as in Eq. (20), and hence we need
to evaluate the probabilities p(y|θ = j) and p(θ = j) if un-
known. To evaluate p(y|θ = j) we need the complete model,
which at this point is not available, since the parameterized
maps modeling the unknown components are not tuned to
match the observed behavior. One alternative is to augment
the state of the system with the parameters of the unknown
components and learn them as part of the state estimation
problems. We would need to use a filter that is accurate
enough for non-linear systems since the parameters may enter
non-linearly in the behavioral equations. Another approach
is to use an optimization based approach for learning the pa-
rameters. This fits more naturally with learning classifiers
in machine learning approaches. We consider two strategies
for learning the parameters of the unknown components and
switching model. In the first strategy, we first learn separately
the parameters of the unknown part of the system, followed
by learning the switching model p(θ = j). In the second
strategy we jointly learn the unknown component parameters
and the switching parameters. The application of one or the
other depends on particular assumptions we make. For both
strategies we model the probability distribution p(y0:T |θ = j)
as a Gaussian multivariate distribution with unknown covari-
ance matrix. Assuming independent, additive measurement
noise, it is formally expressed as

p(y|θ = j;βj) ≈ p(y|ŷ, θ = j;βj) =

m∏
i=n

p(ŷi + vi|θ = j;βj), (23)

where p(yi|θj , ŷj ;βj) = p(ŷi + vi|θj ;βj) ∼ N (ŷi,Σj), Σj
is the noise covariance matrix, and ŷi is an entry in the simu-
lated output sequence ŷ0:T using the model in mode j; model
that dependents on the unknown vector of parameters βj . If

the parameters of the component are mode independent, we
can use the same parameters for each mode.

3.2.1. Sequential parameter learning

We make the assumption that the process noise is negligible
and that the variance of the measurement noise is unknown.
The variance will be estimated as part of the learning process.
For each mode j, the parameters βj are learned by solving a
minimum least square error problem of the form

min
βj

1

Nj

Nj∑
i=1

‖y(i)
0:T − ŷ

(i)
0:T (βj)‖2, (24)

where index i refers to a training example, and Nj is the
number of training examples corresponding to mode j. Any
non-linear least square optimization algorithm can be used,
the numerical complexity coming from the fact that the op-
timization algorithm requires simulating the model at each
iteration and computing the gradient of the cost function, if a
gradient-based algorithm is used. To obtain analytic formu-
las for the gradient of the cost function, we can use the auto-
differentiation feature of deep learning platforms such as Ten-
sorflow (Abadi et al., 2015), Pytorch (Subramanian, 2018), or
Autograd (Maclaurin, Duvenaud, Johnson, & Adams, 2015).
All three option support loss functions that can depend on
ODE solutions. They do not support DAEs though for which
a causal graph representation of the gradient computation
scheme is not suitable. An alternative to automatic differ-
entiation is using DAE solvers that support sensitivity analy-
sis (e.g., CVODES, IDAS). An example of a Python package
that implements DAE solvers featuring sensitivity analysis is
DAETools (Nikolic, 2016a), where sensitivities of the DAE
variables with respect to the system parameters can be com-
puted numerically, but accurately at the same time with the
DAE solution. Formulating the system dynamics in a deep-
learning framework enables the use of GPUs that can prove
beneficial for large scale problems and for large training data
sets. Once the optimization problem is executed, we can use
the empirical covariance as an approximation for Σj , namely

Σj ≈
1

Nj(T + 1)

Nj∑
i=1

T∑
l=0

[
y
(i)
l − ŷ

(i)
l

] [
y
(i)
l − ŷ

(i)
l

]′
, (25)

where ŷ(i)
l are functions of β∗

j , the optimal parameters as pro-
duces by the optimization problem. Next, we compute the
probabilities p(θ = j; η). For this part we follow the same
idea as in Section 3.1, where we solve an optimization prob-
lem shown in expression (17), in terms of a parameterized
model p(θ = j; η). The sequential learning algorithm is sum-
marized in Algorithm 1. One drawback of this approach is
that any errors accumulated while learning parameters βj will
affect the mode switching part of the algorithm. We address
this in the second strategy.

5

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

Algorithm 1 Sequential learning
1: for j = 1 : M do
2: Learn offline the parameters for the unknown components

in mode j

β∗j = arg min
βj

∑
i

‖y(i)0:T − ŷ
(i)
0:T ‖

2

3: Estimate the error covariance matrix covariance matrix

Σj ≈
1

Nj(T + 1)

Nj∑
i=1

m∑
l=0

[
y
(i)
l − ŷ

(i)
l

] [
y
(i)
l − ŷ

(i)
l

]′
,

4: Estimate the switching parameter

η∗ =

arg min
η
−
∑
i

M∑
j=1

q(θ = j|y(i)0:T) log p(θ = j|y(i)0:T ;β∗j , η)

subject to:
p(θ = j|y0:T ;β∗j , η) =

p(y0:T |θ = j;β∗j)ηj∑M
l=1 p(y0:T |θ = l;β∗l)ηl

where
p(y0:T |θ = j;β∗j) ∼ N (ŷ0:T ,Σj),

ηj ≥ 0,

M∑
j=1

ηj = 1,

with η = [η1, . . . , ηM], ŷ0:T the simulated outputs in mode j.
5: Predict online the mode

j∗ = arg max
j
p(θ = j|y0:T ;β∗j , η

∗)

3.2.2. Joint parameter learning

Here we assume that the variance of the measurement noise
Σj is known and hence we do not need to estimate it. This
is the case when the precision of the sensors is available.
We maintain the same assumptions on the sensing model
that induces a Gaussian distribution for the random vector
y0:T |θ = j. This way we can formulate an optimization
problem where both the parameters of the unknown compo-
nents and the switching parameters can be estimated simul-
taneously. This classification approach is summarized in Al-
gorithm 2. As usual with non-convex optimization problems,
convergence to the global minima is not guaranteed. Still, it
is usually the case that the cost function has a rich set of local
minima that provide satisfactory prediction accuracy.

4. ILLUSTRATIVE EXAMPLE

To showcase our approach, we develop a diagnosis engine for
detecting and isolating faults in a rail switch system. We con-
sider a set of faults for which we build a hybrid classifier that
uses that partial system knowledge and a NN-based classifier,
for comparison purposes.

Algorithm 2 Joint learning
1: Solve offline the optimization problem

β∗j , η
∗ =

argmin
βj ,η
−

∑
i

M∑
j=1

q(θ = j|y(i)0:T) log p(θ = j|y(i)0:T ;βj , η)

subject to:

ηj ≥ 0,

M∑
j=1

ηj = 1,

p(θ = j|y0:T ;βj , η) =
p(y0:T |θ = j;βj)ηj∑M
l=1 p(y0:T |θ = l;βl)ηl

where

p(y0:T |θ = j;βj) =

T∏
i=0

p(ŷi + vi|θ = j;βj)

and p(ŷi + vi) ∼ N (ŷi,Σj), with ŷ0:T the simulated sequence
of outputs in mode j, and Σj the measurement noise covariance
matrix.

2: Predict online the mode

j∗ = arg max
j
p(θ = j|y0:T ;β∗j , η

∗)

4.1. Rail switch model description

The rail switch is composed of a servo-motor and a gear-
mechanism for scaling the rotational motion and for ampli-
fying the torque generated by the electrical motor. The rail
load is composed by a mechanical adjuster, and tongue-rails.
The schematics of the system is presented in Figure 4 de-
picting the main components of the rail switch. The point

Figure 4. Rail-switch schematics

machine is composed of two sub-components: servo-motor
and gear mechanism. The electrical motor acts as a power
source. The gear mechanism is responsible for scaling down
the angular velocity generated by the servo-motor, amplify-
ing the torque generated by the servo-motor and transform-
ing the rotational motion into a translational motion. The rail
load is composed of two main components: the adjuster and

6

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

the tongue rails. The adjuster transfers the force generated
by the motor (through the driving rod) to the rails. The ad-
juster connects the driving rod connected to the point machine
to the rails. There is a delay between the time instances the
driving rod and the adjuster start moving. This delay is con-
trolled by two bolts on the driving rod. Tighter bolt settings
means a smaller delay, while looser bolt settings produce a
larger delay. The adjuster is connected to two rails that are
moved from left to right or right to left, depending on the
traffic needs. The motion of the rail is eased by a set of bear-
ings and affected by the length of the rail and elasticity of the
rail. Based on the technical specifications of the servo-motor
and adjuster, we built Modelica models for them. Building a
first-principle model for the rail proved to be challenging and
hence we chose to learn a model for it from the measurement
data.

The first step in learning a model for the rail is choosing a
representation that is compatible with the rest of the model: it
must have an interface (port or connector) compatible with
the mechanical domain. The interface is characterized by
two variables: a flow variable (force) and a non-flow vari-
able (velocity). The product between the flow and non-flow
variables has the interpretation of instantaneous power. Next
we choose a set of constitutive equations that constraint the
interface variables. We chose to represent the map involving
the interface variable as a NN. Since such a map has a in-
put and output, the next steps is determining which is which.
Following the step described in section 2.2, we use the BLT
representation to determine the input and the output of the
NN. Note that any map (even a linear one) is sufficient to
perform the BLT transform. It should not come as a surprise
that the BLT transform indicates that the force is an output.
Hence, we model the rail behavior by using a causal map
F = g(u;w), where g : R3 → R is a map described by a
NN with one hidden layer:

g(u) = W [1]
(

tanh
(
W [0]u+ b[0]

))
+ b[1], (26)

where, the input u = [x, ẋ, ẍ] is a vector containing the po-
sition, speed and acceleration, the output F is the force, and
w = {W [0], b[0],W [1], b[1]} is the set of parameters of the
map g.

4.2. Fault modes

We consuder four fault operating modes: left and right mis-
aligned adjuster bolts, obstacle and missing bearings. These
fault modes were reported to be of interest by a rail system op-
erator we collaborated with. Obviously there are many other
fault modes of interest at the level of the point machine for
example. Such faults are more readily detected due to the
rich instrumentation present at the servo-motor.
Misaligned adjuster bolts: In this fault mode the bolts of the
adjuster deviate from their nominal position. As a result, the

instant at which the drive rod meets the adjuster (and there-
fore the instant at which the switch rail starts moving) hap-
pens either earlier or later. For example in a left-to-right mo-
tion, if the left bolt deviates to the right, the contact happens
earlier. The reason is that since the distance between the two
bolts decreases, the left bolt reaches the adjuster faster. As a
result, when the drive rod reaches its final position, there may
be a gap between the right switch blade and the right stock
rail. In contrast, if the left bolt deviates to the left the contact
happens later. The model of the adjuster includes parameters
that can set the positions of the bolts, and therefore the effects
of this fault mode can be modeled without difficulty. Figures
5 and 6 show a comparison between the nominal behavior and
the misaligned left and right bolts, respectively on the motor
current and angular velocity.

Figure 5. Effects of a misaligned left adjuster bolt on the
motor current and angular velocity

Figure 6. Effects of a misaligned right adjuster bolt on the
motor current and angular velocity

Missing bearings: To minimize friction, the rails are sup-
ported by a set of rolling bearings. When they become stuck
or lost, the energy losses due to friction increase. A compo-
nent connected to the rail was included to account for fric-
tion. This component has a parameter that sets the value for
the friction coefficient. By increasing the value of this param-
eter, the effect of the missing bearings fault can be simulated.
Figure 7 shows a comparison between the nominal behavior
and the missing bearing behavior on the motor current and
angular velocity.

7

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

Figure 7. Effects of missing bearings on the motor current
and angular velocity

Obstacle: In this fault mode, an obstacle obstructs the motion
of the switch blades. In case the obstacle is insurmountable, a
gap between the switch blades and the stock rail appears. The
effect on the motor torque is a sudden increase in value, as
the motor tries to overcome the obstacle. To model this fault
we included a component that induces a localized, additional
friction phenomenon for the switch blades. This component
has two parameters: the severity of the fault and the position.
For very high severity the switch blades cannot move beyond
a certain position. Figure 8 shows a comparison between the
nominal behavior and the obstacle present behavior on the
motor current and angular velocity.

Figure 8. Effects of missing bearings on the motor current
and angular velocity

4.3. Fault-diagnosis: partially known behavior

First we train the parameters of the rail model. Since the rail
model is not directly impacted by the fault modes, we learn
one single model that is valid for all modes. We chose the
hidden layer dimension to be 20 for the NN modeling the rail.
Hence we have a total of 100 parameters. To our knowledge,
currently no deep learning platform supports DAE in the loop
for the training process. The DAETools (Nikolic, 2016b)
Python package does support DAE as dynamical models and
enables gradient computations through sensitivity analysis.
This requires though transforming the Modelica model into a
form compatible with the DAETools formalism which is not

a trivial process. Hence, we opted to use a gradient-free algo-
rithm, and used a functional mockup unit (FMU) (Blochwitz
et al., 2011) representation of the rail-switch model that was
imported in Python and integrated in an least-square opti-
mization process. In particular, we use Powell algorithm,
which is the closest gradient-free optimization algorithm to
gradient-based one. The training data corresponds to the
nominal rail behavior, and consist in motor current, angle and
angular velocity measurements. The inputs to the server mo-
tor are pre-designed reference signals that ensure a specific
angular velocity profile for the rail. A 7 sec reference signal
profile ensures the motion from left to right of the rail. A re-
versed reference profile, ensures the rail motion from right to
left. The output measurements are time series over 14 sec,
sampled at 0.05 sec time period.

Since the fault scenario does not directly affect the rail, only
nominal data is used to train the rail model parameters. Using
the Powell algorithm, we solved the following optimization
problem:

min
W [1],b[1],W [0],b[0]

1

N

N∑
i=1

‖y(ti)− ŷ(ti)‖2 (27)

subject to: F (ż(ti), z(ti)) = 0 (28)
y(ti) = h(z(ti) (29)

where F (ż, z) = 0 is the DAE corresponding to the rail
switch model that includes the rail representation shown in
Eq. (26), and h(z) is the measurement model that selects
the motor current, angle and angular velocity from the model
variables. The variables y(ti) and ŷ(ti) are measured and
simulated output measurements, respectively. The variances
of the output prediction errors were estimated to be: 0.05,
0.74, and 0.57 for the motor current, angle and velocity, re-
spectively.

Next we train the parameters of the classifier as described
in Algorithm 1. For each of the fault modes we generated
1000 time series as training data. The fault data was gener-
ated by selecting some fault parameters and adding noise to
the outputs. In particular, for the left bolt fault mode we set a
deviation from its nominal value of 50 mm, for the right bolt
fault mode we set a 200 mm deviation from its nominal value,
for the bearing fault mode we the viscous coefficient at 5000
Ns/m, and we set an obstacle at 10 cm from the initial rail po-
sition, with a viscous coefficient equal to 105 Ns/m affecting
the rail motion. The noise free faulty behavior corresponding
to the four fault modes are shown in Figures 5-8. The noise
added to the outputs was chosen as zero mean Gaussian noise
with variances determined by the trained model, as shown
above.

We split the data into training (60%) and test (40%) data. The
probabilities q(θ = j|y(i)

0:T) follow from the time series labels:
q(θ = j|y(i)

0:T) = 1 if the time series y(i)
0:T corresponds to

8

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

mode j, and zero otherwise. To define the loss function, we
calculated the probabilities p(y(i)

0:T |θ = j) by approximating
them using model simulations. Namely, for each model j, we
simulated the rail-switch model by activating the jth fault and
generating the output time series ŷ(j)

0:T . It follows that

p(y
(i)
0:T |θ = j) =

1√
(2π)3|Σ|

e−
1
2 (y

(i)
0:T−ŷ

(j)
0:T)TΣ−1(y

(i)
0:T−ŷ

(j)
0:T), (30)

where Σ is a diagonal matrix with diagonal entries deter-
mined by the output noise variances, and |Σ| being the de-
terminant of Σ. Let qij = q(θ = j|y(i)

0:T) and pij = p(θ =

j|y(i)
0:T). The final step is the compute the switch parameters

ηj that minimizes the cross-entropy loss function:

min
ηj

1

N

N,5∑
i,j

qij log pij , (31)

where pij = ηjp(y
(i)
0:T |θ = j)/(

∑5
l=1 ηlp(y

(i)
0:T |θ = l)), and

N = 3000. We used Autograd to compute the gradient of the
loss function, and Adams algorithm to compute the optimal
solution described in Table 1. The confusion matrices for the

Parameters Values
η1 0.00955831
η2 0.00994298
η3 0.34316536
η4 0.58860535
η5 0.06784462

Table 1. Optimal solution for the hybrid diagnoser

training and testing data are shown in Figures 9 and 10.

Figure 9. Confusion matrix: training data

Figure 10. Confusion matrix: testing data

4.4. Fault diagnosis: neural network based classifier

We trained a NN-based classifier using the same data set. In
general, it is difficult to find the best and the most parsimo-
nious NN architecture that generates good results. We used a
trial and error process to converge to a NN architecture that
gives accurate results. Using the 14 sec time series as in-
put samples proved to be a bad idea. The 5000 sample were
not enough for the ten of thousands of parameters of the NN.
We recall that the number of columns of the first layer of the
NN is given by the input size. Hence, we had to reduce the
number of inputs. Instead of using an autoencoder which is
typically greedy for data, we trained a random forest classi-
fier and used its feature importance output to select 27 entries
of the time series that contain relevant information for dif-
ferentiating between the fault modes. We again employed a
trial and error process to converge to the minimal number of
features and a parsimonious NN architecture that is able to
learn an accurate classifier. We ended up with a NN with one
hidden layer of size 15 and with an output layer of size 5 that
uses a softmax function as an activation function. Hence we
have a total number of 500 training parameters. Although
we cannot guarantee that there is no simpler NN architecture,
empirically we have noticed that the prediction accuracy de-
creases for hidden layer sizes smaller than 15. After training
the NN parameter we ended up with a classifier that has sim-
ilar accuracy performance as the one shown in the previous
section.

4.5. Discussion

When including the partial model, the complexity of the clas-
sification is transferred from learning a potentially complex
classifier to training a regression model for the missing com-

9

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

ponent. Hence the potential to reduce complexity. The clas-
sification problem for the partial model knowledge case is
much simpler and hence more easily to train. In addition, we
escape the feature selection step that is typically an ad-hoc
process. In addition, since we maintain the physical inter-
pretation of the model (at least in part), there are opportuni-
ties to further investigate the consequences of faults to other
system components as faults progress. That is, we can use
the model for prognostics. Machine learning algorithms for
prognostics are hungry for data; data that in many cases is
not available. The partial model has a regularization effect on
the learning algorithm, and hence it is an avenue for dealing
with small data sets and limiting this way the overfitting. The
classification results for both the hybrid and machine learning
architecture were perfect. This is most likely due to the use
of simulated data for the faults modes. Still, we expect our
approach to give reasonable results on experimental data as
well, using a complexity reduced classifier.

5. CONCLUSIONS

In this paper we discussed the classification problem based on
data generated by a partially known physical system. Unlike
standard classification problems, where the classifier ignores
any knowledge about the physical system, our goal was to in-
tegrated this information in the classifier design. We demon-
strated that the classification problems can be converted into
a set of regression problems and a set of dimensionally re-
duced classification sub-problems. We introduced two algo-
rithms for learning a classifier, each one corresponding to an
assumption on the measurement noise. We showcased our
approach in the context of fault diagnosis for a rail switch
system.

ACKNOWLEDGMENT

This material is based upon work supported in part by the De-
fense Advanced Research Projects Agency (DARPA) Award
HR00111890037 Physics of AI (PAI) Program.

REFERENCES

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,
Citro, C., . . . Zheng, X. (2015). TensorFlow: Large-
scale machine learning on heterogeneous systems. Re-
trieved from https://www.tensorflow.org/
(Software available from tensorflow.org)

Arulampalam, M. S., Maskell, S., & Gordon, N. (2002).
A tutorial on particle filters for online nonlinear/non-
gaussian bayesian tracking. IEEE TRANSACTIONS
ON SIGNAL PROCESSING, 50, 174–188.

Blochwitz, T., Otter, M., Arnold, M., Bausch, C., Claub,
C., Elmqvist, H., . . . Augustin, S. (2011). The func-
tional mockup interface for tool independent exchange
of simulation models. In In proceedings of the 8th in-
ternational modelica conference.

de Kleer, J., Mackworth, A., & Reiter, R. (1992). Charac-
terizing diagnoses and systems. ”Journal of Artificial
Inteligence”, 56(2–3), 197–222.

Gertler, J. (1998). Fault-detection and diagnosis in engineer-
ing systems. New York: Marcel Dekker.

Isermann, R. (2005). Model-based fault-detection and di-
agnosis - status and applications. Annual Reviews in
Control, 29(1), 71 - 85.

Kalman, R. (1960). A new approach to linear filtering
and prediction problems. Transactions of the ASME–
Journal of Basic Engineering, 82(Series D), 35–45.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochas-
tic optimization. CoRR, abs/1412.6980. Retrieved
from http://arxiv.org/abs/1412.6980

Maclaurin, D., Duvenaud, D., Johnson, M., & Adams,
R. P. (2015). Autograd: Reverse-mode dif-
ferentiation of native Python. Retrieved from
http://github.com/HIPS/autograd

Matei, I., de Kleer, J., & Minhas, R. (2018, June). Learn-
ing constitutive equations of physical components with
constraints discovery. In Proceedings of the ieee 2018
american control conference (acc 2018).

Matei, I., Ganguli, A., Honda, T., & de Kleer, J. (2015,
Aug). The case for a hybrid approach to diagnosis:
A railway switch. In Proceedings of the 26th interna-
tional workshop on principles of diagnosis (dx-2015)
(pp. 225–232).

Nikolic, D. D. (2016a, April). Dae tools:
equation-based object-oriented modelling, sim-
ulation and optimisation software. PeerJ
Computer Science, 2, e54. Retrieved from
https://doi.org/10.7717/peerj-cs.54
doi: 10.7717/peerj-cs.54

Nikolic, D. D. (2016b, April). Dae tools: equation-based
object-oriented modelling, simulation and optimisation
software. PeerJ Computer Science, 2, e54.

Patton, R. J., Frank, P. M., & Clark, R. N. (2000). Issues of
fault diagnosis for dynamic systems. Springer-Verlag
London.

Ruder, S. (2016). An overview of gradient descent optimiza-
tion algorithms. CoRR, abs/1609.04747. Retrieved
from http://arxiv.org/abs/1609.04747

Subramanian, V. (2018). Deep learning with pytorch: A prac-
tical approach to building neural network models using
pytorch (1st ed.). Packt Publishing.

10

