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ABSTRACT 

For high-dimensional datasets, redundant features and 
complex interactions between features may increase 
computational costs and make outlier detection algorithms 
inefficient. Most feature selection methods are designed for 
supervised classification and regression. However, limited 
works have been conducted specifically for unsupervised 
outlier detection. This paper proposes a novel isolation-based 
feature selection (IBFS) method for unsupervised outlier 
detection. It is based on the training process of isolation forest 
(IFOR). The effectiveness of the proposed methodology is 
demonstrated on a simulation dataset and benchmarked 
against variance, Laplacian score and kurtosis. The 
evaluation results confirm that IBFS is immune to the effects 
of feature scaling. The performance of the proposed 
methodology is benchmarked using one-class support vector 
machine (OCSVM), IFOR and local outlier factor (LOF) on 
several real-world datasets. The evaluation results 
demonstrate that the proposed method can improve the 
performance of IFOR. The performance of IBFS is similar to 
and even better than the well-known outlier indicator: 
kurtosis, and better than variance and Laplacian score. 
Additionally, IBFS can produce good performance using a 
few high-score features, while other feature selection 
methods need more features. 

1. INTRODUCTION 

In high-dimensional dataset scenarios, redundant features 
and complex interactions result in high computational costs 
and make outlier detection algorithms inefficient. Various 
feature selection algorithms for supervised learning have 
been widely researched for many years, and most of them are 
specifically for classification and regression. Meanwhile, 
limited studies have been conducted on feature selection 
algorithms for unsupervised learning, since it’s quite 

challenging due to lack of class labels. Among these limited 
set of studies, most of them specifically focused on clustering 
problems; most notable among them being spectral feature 
selection (SPEC) (Zhao & Liu, 2007).  

There are three general classes of feature selection algorithms: 
filter, wrapper and embedded methods (Li et al., 2017). Filter 
methods compute a score of each feature for ranking, and 
then filter out lowly ranked features. Variance and Laplacian 
score (He et al., 2006) (Ambusaidi et al, 2015) (Zhang et al., 
2008) are used for unsupervised outlier detection. Liu, et al. 
(Liu et al., 2008) (Liu et al., 2012) used Kurtosis value to 
select feature subspace for isolation forest. The feature 
selection method (CBRW_FS) (Pang et al., 2016a) based on 
Coupled Biased Random Walks (CBRW) provides feature 
weights for categorical data with diversified frequency 
distributions and many noisy features. Dense Subgraph-
based Feature Selection (DSFS) (Pang et al., 2016b) is a 
parameter-free work designed for feature subset evaluation. 
Filter methods are independent of learning algorithms and 
hence their performance on specific learning algorithms may 
not be optimal. 

Wrapper methods repeat searching for a feature subset and 
evaluation of these features on the performance of a learning 
algorithm to select desired features. Pang, et al. (Pang et al., 
2017) proposed a wrapper-based detection framework 
(WrapperOD), which can simultaneously optimize its outlier 
scoring and feature selection. As search space is quite large, 
wrapper methods are often computationally expensive. 

Embedded methods interact feature selection with the 
training process of a learning algorithm. As it does not 
evaluate iteratively like wrapper, it’s a trade-off solution 
between filters and wrappers (Li et al., 2017). However, to 
the best of the authors knowledge, there is no study conducted 
using embedded method for unsupervised outlier detection.  

This paper proposes an isolation-based feature selection 
(IBFS) algorithm for unsupervised outlier detection. It 
computes the score of each feature during the training of 
isolation forest (IFOR). This paper has two main 
contributions: (1) A novel embedded method, IBFS, is 
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proposed based on IFOR to calculate feature scores, which is 
immune to the effects of feature scaling. (2) This paper 
compares several feature selection methods on several real-
world datasets, and analyzes their characteristics, which are 
seldom discussed in previous works. 

This paper is organized as follows: Section 2 describes the 
concept of isolation forest, and then proposes IBFS. Section 
3 benchmarks IBFS with variance, Laplacian score and 
kurtosis on a simulated dataset and several real-world 
datasets. In Section 4, the work and discuss future research 
are summarized to conclude this paper. 

2. METHODOLOGY 

The background of IFOR is introduced at first, and then the 
IBFS algorithm is elaborated. 

2.1. Background of Isolation Forest 

IFOR (Liu et al., 2008) (Liu et al., 2012) is a tree-based 
ensemble method for outlier detection. Compared with 
outlier detection methods which rely on measure of distance, 
IFOR uses a different mechanism: it isolates data into 
subspace, and outliers need fewer splitting to be isolated than 
normal points, which makes IFOR capable to handle large 
data size and high dimension data with many irrelevant 
features, so IFOR is considered that it has the potential to 
identify irrelevant features and to reduce dimensionality. 

The training stage of IFOR is simply described in Section 2.2. 
The purpose of training is to construct IFOR �������, which 
is composed of isolation trees. The training of an isolation 
tree ����� is the process to generate its nodes until it reaches 
the height limit or training data are used up. The way to 
generate a node is to randomly select a feature and a value of 
this feature, and split data into left and right nodes. 

2.2. Feature Selection Algorithm 

The procedure to calculate imbalance score using entropy is 
explained below. 

Information entropy is first introduced by Claude Shannon 
(Shannon, 1948) and then used in Iterative Dichotomiser 3 
(ID3) algorithm to measure the impurity of a feature for 
decision tree (Quinlan, 1986). Equation (1) is the entropy 
function in the case of two classes.  

� =  −�� ���� �� − �� ���� �� (1) 

where �� is the proportion of samples from class 1, and �� is 
the proportion of samples from class 2 where �� = 1 − ��. 

Based on entropy, an imbalance score ‘�’ defined in Equation 
(2) is proposed to measure the imbalance of the data 
distribution split by the randomly selected value from a 
randomly selected feature at a node. 

� =  1 + �� ���� �� + (1 − ��) ����(1 − ��) (2) 

where �� is the proportion of samples split into the left node. 

 

Figure. 1. The imbalance score � for the data distribution 
while splitting the node.  

Figure 1 depicts the variation of score ‘�’ when �� changes 
from 0 to 1. It can be observed that the score is large when 
the data distribution is more imbalanced. Equation (3) defines 
the penalty of imbalance score � using entropy. �� (Equation 
(4)) is the proportion of a split point � between the maximum 
���� and minimum ���� of this feature. The penalized score 
�� is defined in Equation (5). It means that if a split point is 
located at the edge in the range of a feature, a high penalty is 
given which is a low value �, so that the penalized score �� 
becomes smaller. 

� = −�� ���� �� − (1 − ��) ����(1 − ��) (3) 

�� = (� − ����)/(���� − ����) (4) 

�� =  � × � (5) 

 

(a)  

 

(b) 

 

Figure. 2. The illustration of the penalty of imbalance score. 

The importance of penalty value is illustrated with the help 
of a simulation depicted in Figure 2. The feature 1 in Figure 
2(b) should be given a higher value � (lower penalty) than 
the feature 1 in Figure 2(a). Even though in Figure 2(a) and 
Figure 2(b), the data split by the feature 1 is imbalanced, 
giving the similar scores of the feature 1 is improper. It is 
because in Figure 2(a), the split point of the feature 1 is at the 
edge in the range of feature 1 and it’s a matter of course to be 
imbalanced so that a high penalty of the imbalanced score 
should be given, and the penalized score is small. However, 
in Figure 2(b), the split point of the feature 1 is at the center 
in the range of the feature 1. If the feature 1 in Figure 2(b) 
splits imbalanced data, it should be given a low penalty, 
which produces a rather larger penalized score. 
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Algorithm 1: ������� from �������(�, �, �) 

Inputs: �, �, � 
Output: a set of �  ������ and ������� 

1: Initialize ������ 
2: set � =  �������(log� �) 
3: for � =  1 to � do 
4:     �� ←  ������(�, �) 
5:     ������ ←  ������ ∪  �����(��, 0, �) 
6:     ������ ←  ������ ∪  ������

 

7: end for 
8: for � =  1 to � do 
9:     ��������

= ∑ �������
�
��� �⁄   

10:     ������� ←  ������� ∪  ��������
 

11: end for 
12: return ������, ������� 

Figure. 3. Algorithm 1 of feature selection. 

Based on the training process of IFOR, two pseudo codes 
(Algorithm 1 & Algorithm 2 in Figure 3 & 4 respectively) are 
provided below to calculate the feature scores. Algorithm 1 
uses training data �  with �  features to compute a set of 
feature scores �������  by building an isolation forest model 

�������  including �  isolation trees ( ����� ) while �  is a 
hyperparameter to define the training data size of each tree. 
Algorithm 2 is the procedure to grow an ����� for Algorithm 
1 and compute a set of feature scores ����� for a tree using a 
subset of training data �� including � selected samples from 
�, noting that � is the current tree height of the tree, and � is 
the height limit of a tree.  

In Algorithm 2, during the split of each node of each tree, a 
penalized score ��  is calculated for each node defined by 
Equation (2), (3), (4) and (5).  

According to Liu et al.  (Liu et al., 2008), the number of trees 
‘� ’ is recommended to be 100, and before the algorithm 
reaches this number, the forest often converges well. 
Meanwhile, during the training process of isolation forest, as 
the data are randomly split by different features, the feature 
scores computed by the IFOR with small number of trees may 
change sharply. Therefore, sufficient number of trees is 
needed to get a stationary distribution of scores. Liu et al. (Liu 
et al., 2008) empirically found that subsampling size � = 256 
is enough to perform anomaly detection, so � = 256 is used 
as default value. 

3. RESULTS AND DISCUSSION  

3.1. Evaluation on A Simulated Dataset 

In this section, the performance of variance, Laplacian score, 
kurtosis and IBFS is compared on a simulated dataset. 
Variance is the simplest unsupervised feature evaluation. 
Larger variance often implies stronger representative power. 
Laplacian Score (He et al., 2006) is another unsupervised 
feature selection method. It not only considers large 

variances, but also takes locality preserving ability into 
consideration. Kurtosis measures the “tailedness” of a data 
distribution and large kurtosis tells the propensity to produce 
outliers (Westfall, 2014). Variance and kurtosis can be easily 
calculated in any computing environments. Laplacian score 
is computed by using the Feature Selection Library (Roffo, 
2018).  

Algorithm 2: ����� from �����(�, �, �) 

Inputs: �, �, �  
Output: an ����� and ����� 

1: if � ≥  � or  |�| ≤  1 then 
2:     for � =  1 to � do 
3:         search ���

 in S� and its ���
 in �� 

4:         calculate ������
= ∑ ����

× ����
�⁄�

���   

5:     end for 
6:     return ������{���� ←  |�|} 
7: else 
8:     let � be a list of features in �, �� is number of 

samples of � 
9:     randomly select a feature � ∈  � 

10:     randomly select a split point � between ���� and 
���� of feature � in � 

11:     ��  ←  ������(�, � <  �) 
12:     ��  ←  ������(�, � ≥  �) 
13:     calculate �� 
14:     return ������{���� ←  �����(��, � +  1, �), 
15:                              ���ℎ� ←  �����(��, � +  1, �), 
16:                              ������������ ←  �, 
17:                              ���������� ←  �, 
18:                              S� ←  �� 
19:                              �� ←  ��} 
20: end if 

Figure. 4. Algorithm 2 of feature selection. 

The simulated data contain three features and 100 samples. 
Feature 1 is simulated based on a gaussian distribution with 
100 normal data points with mean = 20. Feature 2 is 
simulated based on a gaussian distribution with 96 data points 
with mean = 20 and 4 outlier data points with mean = 70. 
Feature 3 is simulated based on a gaussian distribution with 
92 data points with mean = 20, 4 outliers data points with 
mean = 70and 4 data points with mean = -30. Figure 5 depicts 
the histograms of the 3 features. Since outliers can be seen 
from feature 2 and 3; therefore, it should be reasonable to 
give a higher score to feature 2 and feature 3. 

This comparison also considers the influence of feature 
scaling on feature selection methods. Min-max scaling has 
been widely used in outlier detection (Cousineau & Chartier, 
2010), and it normalizes each feature into the range of [0, 1].  

The evaluation results are displayed in Table 1. In Table 1, 
the value corresponding to “F1” and “Variance” represents 
the score for the feature 1 given by variance. A higher score 
means this feature is better for outlier detection. With no 
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feature scaling, all methods correctly regard the feature 1 as 
the weakest. But the methods provide different assessments 
on feature 2 and feature 3. With min-max scaling, the 
rankings of variance and Laplacian score are disordered. 
Meanwhile, the values of kurtosis and IBFS do not change 
with feature scaling. 

  

Figure. 5. Simulated features. 

Table 1. The comparison of feature scaling. 
 

Method Feature IBFS Kurtosis Variance Laplacian 
score 

No  
scaling 

F1 0.210 3.330 33.441 1.491 
F2 0.264 13.104 123.588 10.763 
F3 0.291 9.542 228.238 10.465 

Min-
max  
scaling 

F1 0.210 3.330 0.031 0.002 
F2 0.264 13.104 0.029 0.003 
F3 0.291 9.542 0.022 0.001 

* F1: Feature 1, F2: Feature 2, F3: Feature 3. 
 
Figure 6 depicts how the scores of the three features change 
while the number of trees in the IFOR model increases. It can 
be observed that a forest built with about 50 trees or more 
provides stable scores. 

  

Figure. 6. Feature scores with increasing number of trees 

3.2. Evaluation on Real-World Datasets 

In this section, the feature selection methods are evaluated on 
three real-world datasets from ODDS (Outlier Detection 
DataSets) Library (Rayana, 2018). These datasets are usually 
used to evaluate outlier detection methods. Table 2 provides 
the descriptions of datasets, including number of samples and 
number of features. 

Table 2. Dataset descriptions. 
 
ID Dataset # of samples # of features 
1 Annthyroid 7200 6 
2 Arrhythmia 452 274 
3 Breastw 683 9 
4 Cardio 1831 21 
5 Glass 214 9 
6 Ionosphere 351 33 
7 Letter 1600 32 
8 Lympho 148 18 
9 Mammography 11183 6 
10 Mnist 7603 100 
11 Musk 3062 166 
12 Thyroid 3772 6 
13 Vertebral 240 6 
14 Vowels 1456 12 

Figure 7. The working flowchart for the evaluation of feature selection methods. 
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The feature selection methods are evaluated by the working 
flowchart shown in Figure 7 with following steps: 1) Data are 
normalized by min-max scaling. 2) Feature scores are given 
by � different feature selection method. (Here is variance, 
Laplacian score, kurtosis and IBFS). 3) Features are ranked 
in a descending order according to their feature scores for 
each feature selection method. 4) For each feature ranking 
order, � feature subsets are generated. For �th feature subset, 
features with � top feature rankings are selected. 5) For each 
feature subset, their performance using �  outlier detection 

algorithms are evaluated (Here is one-class support vector 
machine (OCSVM), IFOR and local outlier factor (LOF). 
They are implemented by scikit-learn (INRIA, 2018) in 
Python 3.6). AUC (Area under the Receiver Operating 
Characteristic Curve) is the metric to evaluate the 
performance of the algorithms. Higher AUC represents better 
performance. 

The evaluation results of the best performing algorithm for 
each feature selection method and each outlier detection 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

   
(j) (k) (l) 

Figure 8. The performance evaluation using AUC curves generated by adding features iteratively. 
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algorithm are depicted in Table 3. In Table 3, the highest 
AUC for each dataset are highlighted in ‘bold’. The scores of 
OCSVM come from the highest AUC of the following 
models: OCSVM with linear kernel, OCSVM with 
polynomial kernel with three degrees, and OCSVM with 
Gaussian kernel. The scores of IFOR stem from the better 
outputs from IFOR with the subsampling size equaling to 256, 
and IFOR with the subsampling size equaling to the number 
of samples. The scores of LOF arise from the best 
performance of LOFs with 5, 15 and 25 number of neighbors.  

From Table 3, the merits and potential of IBFS can be easily 
understood. (1) IFOR can often be improved by IBFS: among 
the 9 datasets that IFOR perform best, IBFS can perform best 
for 6 datasets. (2) IFOR can also improve other outlier 
detection methods like OCSVM and LOF, like dataset 5, 11, 
13 and 14. (3) IBFS can get similar performance with kurtosis 
for dataset 1, 8, 11, 12, 13, 14, and as kurtosis is a well-known 
statistic to show outliers, the capability of IBFS is also valid. 

Figure 8 shows another way to evaluate the results: assessing 
the change of AUC with the increasing number of features. 
Due to page limitations, only three datasets are displayed. 
Figure 8(a), (d), (g) and (j) are the results for “Arrhythmia” 
dataset. Overall, there are many redundant features, so that 
with a few features, the algorithms can achieve good 
performance. Specifically, IBFS can exceed AUC 0.8 with 15 
high-score features, but Laplacian score needs 33 high-score 
features, variance needs 29 features and kurtosis needs 139 
features to get the same performance. 

Figure 8(b), (e), (h), (k) illustrate the results of “Ionosphere” 
dataset. IBFS and kurtosis are over AUC 0.9 with 6 and 5 
features respectively, but the performance of variance and 
Laplacian increase slowly, and does not go beyond AUC 0.9. 
This demonstrates that bad features hamper the performance 
of outlier detections and IBFS and kurtosis can reduce their 
negative effects.  Compared with kurtosis, the feature with 

highest score can achieve AUC 0.8301 while the feature with 
highest score of kurtosis can only achieve AUO 0.6508. 

Figure 8(b), (e), (h), (k) presents the results of “Lympho” 
dataset. On the whole, AUC 1 could be achieved by all four 
criteria’s and only a few redundant features influence the 
efficiency. With 3 high-score features scoring by IBFS, AUC 
over 0.98 can be achieved. Correspondingly, kurtosis needs 
12 features, variances needs 14 features and Laplacian needs 
11 features to go beyond AUC 0.98.  

Based on the discussion of Figure 8, it can be observed that 
IBFS can perform well with a fewer high-score features, 
while kurtosis, Laplacian score and variance need more 
features. 

4. CONCLUSIONS 

This paper proposes a novel isolation-based feature selection 
method (IBFS) where an embedded feature selection method 
is developed specifically for unsupervised outlier detection. 
The proposed methodology is validated on real-world 
datasets and benchmarked against variance, Laplacian score 
and kurtosis criteria. The evaluation results confirm that the 
proposed method and kurtosis are immune to the effects of 
feature scaling in comparison to variance and Laplacian score 
based criteria’s. However, IBFS can achieve good results 
using a fewer high-score features, while kurtosis, Laplacian 
score and variance need more features. The evaluation results 
further confirm that IBFS can often improve the performance 
of isolation forest (IFOR), and its results are similar to and 
even better than the well-known outlier indicator: kurtosis. 

However, the scores from IBFS were observed to be less 
stable with a small number of trees. Making the proposed 
methodology more stable and measuring the convergence of 
the scores with the increasing number of trees is part of the 
author’s future scope of research. 

Table 3. The performance evaluation using maximum AUCs. 
 

ID IBFS Kurtosis Variance Laplacian score 
OCSVM IFOR LOF OCSVM IFOR LOF OCSVM IFOR LOF OCSVM IFOR LOF 

1 0.7826 0.9885 0.8321 0.8142 0.9885 0.8178 0.5842 0.8426 0.7692 0.5842 0.8426 0.7123 
2 0.8117 0.8363 0.7918 0.8253 0.8287 0.7719 0.7938 0.8329 0.7721 0.7994 0.8353 0.7864 
3 0.8052 0.9880 0.8174 0.8052 0.9874 0.7570 0.8143 0.9857 0.6329 0.8143 0.9860 0.6818 
4 0.9430 0.9371 0.6582 0.9465 0.9328 0.6582 0.9286 0.9508 0.6902 0.9286 0.9513 0.6582 
5 0.9878 0.7488 0.8770 0.9878 0.7539 0.8770 0.8783 0.8827 0.7837 0.8873 0.8827 0.7837 
6 0.9011 0.9273 0.9043 0.8980 0.9375 0.9206 0.7867 0.8613 0.8988 0.7867 0.8693 0.8988 
7 0.6070 0.7167 0.9013 0.5824 0.7106 0.9013 0.5065 0.7269 0.9044 0.5132 0.7559 0.9027 
8 0.9906 1.0000 0.9906 0.9906 1.0000 0.9894 0.9918 1.0000 0.9930 0.9930 1.0000 0.9930 
9 0.8412 0.8629 0.7683 0.8412 0.8635 0.7683 0.8412 0.8700 0.7627 0.8434 0.8807 0.7662 
10 0.8376 0.8343 0.7704 0.8382 0.8766 0.7656 0.9032 0.8377 0.6684 0.8544 0.8384 0.7031 
11 1.0000 1.0000 0.7190 1.0000 1.0000 0.8737 0.9997 1.0000 0.7989 1.0000 1.0000 0.6105 
12 0.9895 0.9924 0.8554 0.9895 0.9924 0.8554 0.8437 0.9823 0.9363 0.8437 0.9823 0.9363 
13 0.8489 0.4141 0.5954 0.8489 0.4743 0.5954 0.7240 0.4444 0.5301 0.7173 0.4858 0.5263 
14 0.7290 0.8165 0.9622 0.7681 0.8350 0.9622 0.5507 0.8135 0.9485 0.5507 0.8173 0.9485 
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NOMENCLATURE 

� Entropy 
� current tree height 
������ �������(�, �, �) 
������� an isolation forest 
����� an isolation tree 
� height limit of a tree 
� number of features 
�� a set of number of samples for � features before 

each splitting, �� = {���
, ���

, … , ���
} 

� number of feature selection methods 
�� number of samples of a node before splitting 
���

 number of samples for �th feature before each 
splitting 

����
 number of samples of �th node using �th feature 

before splitting 
�� number of samples split into the left node 
� number of outlier detection algorithms 
� a split point 
�� a proportion of a split point � 
�� a proportion of samples from class 1 
�� a proportion of samples from class 2 
�� a proportion of samples split into the left node, 

�� = �� ��⁄  
���� a maximum value of a feature 
���� a minimum value of a feature 
� a list of features in � 
� a feature randomly selected for splitting 
������� a set of feature scores computed from ������� 

for � features, ������� =

���������
, ��������

, … , ��������
� 

��������
 a score of �th feature from ������� 

����� a set of feature scores computed from an ����� 
for � features, ����� =
{������

, ������
, … , ������

} 

������ a set of feature scores computed from � ������, 
������ = {������

, ������
, … , ������

} 

������
 a set of feature scores computed from �th ����� 

for � features, ������
=

{�������
, �������

, … , �������
} 

������
 a score of �th feature from a tree 

�������
 a score of �th feature from �th ����� 

S� a set of penalized scores of a node for � 
features, S� = {���

, ���
, … , ���

} 

���
 a penalized score of �th feature 

� an imbalanced score 
�� a penalized score 
����

 a penalized score of �th node using �th feature 
for splitting 

� number of trees 
� input training data 
�� � selected samples from � 

�� samples split into left node 
�� samples split into right node 
� penalty 
� number of nodes using �th feature for splitting 
� sub-sampling size that determines the training 

data size of each tree 
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