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ABSTRACT 

Modern gear fault detection analysis began with algorithms 

based on the time synchronous average. Over the course of 

decades, many gear analyses have been proposed, but with no 

evidence that the analysis was significantly more powerful in 

terms of fault detection than existing algorithms.  This study 

focuses on a comprehensive comparison of gear fault 

detection algorithms to evaluate their performance. Using a 

large, statistically significant set of data from three nominal 

machines and a damaged machine, the condition indicator 

(CI) responses of 88 different analysis are compared in terms 

of their statistical significance to detect a cracked tooth. The 

comparison includes residual, energy operator (and its 

variants), the narrowband analysis (with a comparison of 

bandwidth requirements), the amplitude and 

frequency modulation analysis, an analysis of variance of the 

"factor” analysis: crest, shape, impulse, and margin, and other 

standard gear fault CIs. Further, the effect of CI selection in 

the establishment of gear component health is evaluated, 

where given a set of CIs, a gear health indicator is built, 

showing that CIs with high statistically separability and low 

correlation have improved fault detection power. This is 

validated on a third, dissimilar gear fault propagation test.  

1. INTRODUCTION 

Detection of gear faults is challenging. Undetected gear faults 

can result in catastrophic gearbox failures, which depending 

on the criticality of the application, can be life threatening. 

For example, as a result of a number of North Sea helicopter 

accidents, many large helicopter operators have installed 

Health and Usage Monitoring Systems (HUMS). The Civil 

Aviation Authority (CAA), by issuing ADD 001-05-99, 

recognized the benefits of monitoring, mandating gearbox 

monitoring to protect, in part, against gear fault.  

A vast literature on automate gear fault analysis has been 

generated, beginning with the seminal work of R.M. 

Stewart’s Some Useful Data Analysis Techniques for 

Gearbox Diagnostics (1977). Stewart gave us the use of the 

time synchronous average (Bechhoefer, 2009), the 

residual/difference analysis and mesh specific Figures of 

Merit. Building on Stewart, P.D. McFadden reported 

Amplitude and Phase Demodulation techniques (1986), 

while Ma (1995) introduced Teager’s energy operator to the 

condition monitoring community. A number of NASA 

researchers (Zakrajsek, Lewicki, 1989, 1993 and 2009) 

investigate the ability of these, and other various algorithms 

to detect gear faults. However, to date, there has not been a 

comparison of the power of the algorithms to detect fault. 

That is to say, which gear analysis algorithms are the best at 

detecting a gear fault? 

Further complicating this issue is that the gear themselves 

have a number of failure modes (Gopinath, 2010), to include:  

Scoring/Frosting, Wear (adhesive, abrasive, corrosive), 

Pitting (flaking, spalling), Plastic Flow (Ridging/Rippling) 

and tooth breakage.  

Critical to determining an algorithms fault detection 

capability is a metric for measuring the performance of an 

analysis. Also, of importance is how this information is 

displayed for a user. For this paper, a statistical method is 

proposed to measure separability of a number of standard 

analyses. These results will be used to construct in improved 

health indicator, which is designed to provide actionable 

information to a maintainer. This analysis is based on a large 

(300+ raw data acquisitions) data set from three nominal 

gearboxes, and 300 raw data acquisitions from a damaged 

gear (tooth breakage). The results (e.g. best condition 

indicators) are tested against another, dissimilar gearbox with 

a known propagating fault. This study is focused on 

broken/cracked tooth, as it presents the failure mode that is 
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associated with catastrophic failure. It is cautioned that other 

failure modes, such as scuffing, may require a different set of 

analysis.  

2. QUANTIFYING GEAR ALGORITHMS PERFORMANCE 

Detection: the action or process of identifying the presences 

of something concealed. For vibration monitoring, it is 

identifying a feature within the background noise of a 

gearbox which is indicative of fault. For critical system, the 

risk is a missed detection that allows a mission to proceed 

when it should be aborted. Otherwise, the risk is performing 

unnecessary maintenance due to a false alarm. Inherent to 

both Probability of Detection (PD), and Probability of False 

Alarm (PFA) is signal to noise: improving SNR increases the 

PD and floor a given PFA. A linear measure of signal to noise 

is signal divided by the standard deviation. Form a statistical 

sense, this is related to Hypothesis testing. When nominally 

assuming a Gaussian signal, if the normalized signal exceeds 

the mean by 3 standard deviation, the PD is 0.9987, while the 

PFA is 0.0013. For this test, a similar metric is used: 

statistical separability.  

2.1. Statistical Separability 

Separability defines the statistical distances between two 

populations. The concept inherently implies that for distinct 

populations (e.g. a nominal gear vs. a damaged gear) using 

an algorithm that can detect the damage, the separability will 

be large. This is quantified using the pooled sampled standard 

deviation. This test assumes Gaussian PDF, which for some 

distribution is a poor assumption. The test statistic (see 

Medenhall, 1990) used is the small-sample test for comparing 

two population means, where:  

𝑇 =  
𝑌1̅ − 𝑌2̅

𝑆√1 𝑛1 + 1 𝑛2⁄⁄
⁄                  (1) 

Where, 𝑌1̅ is the nominal gear CI mean, 𝑌2̅ is the damage gear 

CI mean, n1 is the number of samples for the nominal gear, 

n2 is the number of samples for the damaged gear, and S, the 

pooled sample variance is, where 𝑆1
2  is the nominal gear 

sample variance, and 𝑆2
2 is the damage gear sample variance: 

𝑆 =  √(𝑛1 − 1)𝑆1
2 + (𝑛2 − 1)𝑆2

2

𝑛1 + 𝑛2 − 2
⁄        (2) 

The population mean and sample variance are calculated 

from the gear analysis condition indicators (CIs), where the 

CIs are statistics derived from the gear analysis.  

All analysis and comparisons of analysis for this study will 

be based on T, the separability of an analysis. This allows a 

convent way to measure the performance of one analysis 

against another.  

2.1.1. Analysis of Variance/Ranking 

Further performance metric will be based on Analysis of 

Variance (ANOVA). For example, while the T represents the 

mean separability, one has to ask if it is statically different 

from another analysis. For a number of similar analysis 

(energy operator and its related analysis), ANOVA can 

determine if there is any statistical different between the CI 

populations. This will also be done for the “factor” analysis: 

Crest, Shape, Impact and Margin.  

2.2. Building Actionable Information: Gear Health  

In order to reduce maintainer workload, and improve fault 

detection, the concept of the health indicator was introduced 

in (Bechhoefer, 2011). This allows the maintainer a common 

paradigm for determining when a maintenance action needs 

to be carried out. In general, the Health Indicator (HI) is a 

function of distributions of n CIs, where the HI is scaled such 

that: 

• HI ranges from 0 to a positive value, where the 

probability of exceeding an HI of 0.35 is the PFA 

(probability of false alarm), 

• A warning (yellow) alert is generated when the HI is 

greater than or equal to 0.75. Maintenance should be 

planned by estimating the RUL until the HI is 1.0. 

• An alarm (red) alert is generated when the HI is greater 

than or equal to 1.0. Continued operations could cause 

collateral damage. 

Note that this nomenclature does not define a probability of 

failure for the component, or that the component fails when 

the HI is 1.0. Instead, it suggests a change in operator 

behavior to a proactive maintenance policy: perform 

maintenance before the generations of collateral or cascading 

faults. For example, by performing maintenance on a bearing 

prior the bearing shedding extensive material, costly gearbox 

replacement can be avoided. 

Hence, from a maintainer perspective, this is a stoplight-

based threshold setting/alerting system: when a component is 

yellow, plan maintenance, and when the component turns 

red: do maintenance 

2.3. Importance of Controlling Correlation Between CIs 

All CIs have a probability distribution (PDF). Any operation 

on the CI to form a health index (HI) is then a function of 

distributions. The HI function is defined as the norm of n CIs 

(energy): 

𝐻𝐼 =  0.35
𝑐𝑟𝑖𝑡⁄ √𝒀𝑇𝒀                   (3) 

where Y is the whitened, normalized array of CIs, and crit, is 

the critical value (see Bechhoefer et al, 2011). 

The function is valid if and only if the distribution (e.g., CIs) 

are independent and identical (e.g., IID). As an example, for 
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Gaussian distribution, subtracting the mean and dividing by 

the standard deviation will give identical Z distributions. The 

issue of ensuring independence is much more difficult.  In 

general, the correlation between CIs is non-zero. For 

instance, Error! Reference source not found. shows the 

correlation coefficients for 6 CIs used for gear fault analysis: 

most are statically significant. 

Table 1: Correlation Coefficients for the Six CIs Used 

in the Study 

ij CI 1 CI 2 CI 3 CI 4 CI 5 CI 6 

CI 1 1 0.84 0.79 0.66 -0.47 0.74 

CI 2  1 0.46 0.27 -0.59 0.36 

CI 3   1 0.96 -0.03 0.97 

CI 4    1 0.11 0.98 

CI 5     1 0.05 

CI 6      1 

 

This correlation between CIs implies that for a given function 

of distributions to have a threshold that operationally meets 

the design PFA, the CIs must be whitened (e.g., de-

correlated). A whitening solution can be found using 

Cholesky decomposition.  

The Cholesky decomposition of Hermitian, positive definite 

matrix results in A = LL*, where L is a lower triangular, and 

L* is its conjugate transpose. By definition, the inverse 

covariance is positive definite Hermitian.  It then follows that 

if (Bechhoefer, et al, 2011): 

LL* = -1, then Y = L x CIT          (4) 

The vector CI is the correlated CIs used for the HI 

calculation, and Y is 1 to n independent CIs with unit variance 

(one CI representing the trivial case). The Cholesky 

decomposition, in effect, creates the square root of the inverse 

covariance. This, in turn, is analogous to dividing the CI by 

its standard deviation (the trivial case of one CI). It can be 

shown that Y = L x CIT then creates the necessary 

independent and identical distributions required to calculate 

the critical values for a function of distributions. 

2.4. Determining the Critical Value for Scaling Gear 

Health 

The critical value is taken from the inverse cumulative 

distribution function for the HI. The CIs used have Rayleigh 

like PDFs (e.g., heavily tailed). For magnitude-based CIs, it 

can be shown that for the nominal case, the CI probability 

distribution function (PDF) is Rayleigh (Bechhoefer, 2005). 

For Gear CIs and Bearing CIs (where magnitudes which are 

biased by RMS), a transform is used by make the CI more 

Rayleigh like. The transform “left shifts” the CI. For 

example, a shift such that the .05 CDF (cumulative 

distribution function) is assigned to 0.0. 

Consequently, the HI function is based using the Rayleigh 

distribution. The PDF for the Rayleigh distribution uses a 

single parameter, , defining the mean  = *(/2)0.5, and 

variance 2 = (2 - /2) * 2.  The PDF of the Rayleigh is: 

x/2exp(x/22).  Note that when applying these operations to 

the whitening process, the value for  for each CI will then 

be: 2 = 1, such that:  = 2 / (2 - /2)0.5 = 1.5264.  

For the HI equation in (4), the normalized energy of the CIs, 

it can be shown that the function defines a Nakagami PDF 

(Bechhoefer, 2011). The statistics for the Nakagami are  = 

n, and  = 1/(2-/2)*2*n, where n is the number IID CIs used 

in the HI calculation. 

2.5. Advantages of the HI vs. the CI for the Maintainer 

The use of a common threshold for damage, as per the HI, 

simplifies the user experience. It does offer two additional 

benefits. First, the HI allows better control of the probability 

of false alarm as it whitens/removes correlation between CIs. 

As an example of the importance of correlation, consider a 

simple HI function HI = CI1 + CI2. The CIs will be normally 

distributed with mean 0 and standard deviation of 1. The 

standard deviation of this HI is: 

𝜎𝐻𝐼 = √𝜎𝐶𝐼1
2 + 𝜎𝐶𝐼2

2 + 2𝜌𝐶𝐼1,𝐶𝐼2𝜎𝑐𝑖1𝜎𝑐𝑖2               (5)  

Where CI1, CI2 is the correlation between CI1 and CI2. If one 

assumes CI1,CI2 is 0.0, then 𝜎𝐻𝐼  =  √2. For a PFA of 10e-6, 

the threshold is then 6.722. Consider the case in which the 

observed correlation is closer to 1 (e.g., CI1, CI2 is 1.0), then 

the observed 𝜎𝐻𝐼  =  2 . For a threshold of 6.722, the 

operational PFA is 4 x 10e-4. This is 390 times greater than 

the designed PFA. This illustrates the deleterious effect of 

correlation on the threshold setting. 

Second, using an HI with multiple CI give a process gain and 

improves sensitivity. Consider a simple example where one 

sets up a case where there are four CIs that have similar 

performance (e.g. for a damaged component, the normalized 

CI value is 1). One can ask the question, at what level would 

the CI have to be for the HI to be one? That is:  

1 = √𝐶𝐼1
2 + 𝐶𝐼2

2 + 𝐶𝐼3
2 + 𝐶𝐼4

2 = √4𝐶𝐼𝑥
2 = 2𝐶𝐼       (6) 

Hence, the CI values would be ½: the HI using four CI would 

have a process gain of 3dB. In this study, the HI algorithm 

will use six CIs, potentially a gain of 3.9 dB. 

3. GEAR FAULT CONDITION INDICATORS 

It should be observed that there is analysis (e.g. the Time 

Synchronous Average), and then statistics of the analysis, 

which define the condition indicator. Generally speaking, 

some papers (McFadden, 86, Ma, 1995) describe an analysis, 

but not specific condition indictors, whereas other papers, 

(Zakrajsek, 1989, and 1993, or Lewicki, 2009) refer the 

condition indicator (CI) which is a statistic of an analysis 

(such as the kurtosis of the Narrowband Analysis). Finally, 
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Stewart (1977) describe CIs which are derived as gear mesh 

specific statistics, usually ratio of analysis statistics.  

For this analysis, the statistics for CIs applied to analysis are: 

• RMS: Root Mean Square 

• Skewness 

• Kurtosis 

• Peak to peak (max – min value of a waveform) 

• Crest Factor 

• Shape Factor  

• Impulse Factor and 

• Margin Factor 

Whereas the analysis performed were based on the: 

• Time Synchronous Average 

• Residual Analysis 

• Energy Operator 

• Narrowband Analysis 

• Amplitude Modulation Analysis and  

• Frequency Modulation Analysis 

The flow of the processing is given Figure 1  

 

Figure 1 Gear Analysis Process Flow 

 

Note that the starting point for all analysis is the time 

synchronous average. Observed that the AM and FM analysis 

start with the Narrowband analysis. 

3.1. The “Factor Analysis” Statistic 

The “factor” analysis is a family of related, non-dimensional, 

time domain features which have often proven successful in 

fault detection (Caesarendra, 2017). The crest factor (CF) is 

a measure of the impact occurring over one revolution of the 

TSA and is defined as: 

max(TSA) − 𝑚𝑖𝑛(TSA)

√1 𝑛⁄ ∑ 𝑇𝑆𝐴𝑖
2𝑛

𝑖=1

⁄             (7) 

This is the TSA peak to peak divided by the TSA RMS. The 

shape factor (SF) is affected by the TSA shape, but is 

independent of its dimensions: 

√1 𝑛⁄ ∑ 𝑇𝑆𝐴𝑖
2𝑛

𝑖=1
1 𝑛⁄ ∑ |TSA𝑖|

𝑛
𝑖=1

⁄           (8) 

It is the TSA RMS divided by the mean absolute value of the 

TSA. Both the impact factor (IF) and margin factor (MF) = 

are similar to the CF, as both are a measure of impact. IF is 

defined as:  

max(TSA) − 𝑚𝑖𝑛(TSA)
1 𝑛⁄ ∑ |TSA𝑖|

𝑛
𝑖=1

⁄        (9)  

And MF is defined as:  

max(TSA) − 𝑚𝑖𝑛(TSA)

(1 𝑛⁄ ∑ √|𝑇𝑆𝐴𝑖|
𝑛
𝑖=1 )

2⁄        (10)  

3.2. Gear Analysis: The Time Synchronous Average 

All of the analyses start with the TSA (Figure 1). A solution 

to the TSA starts as a model of vibration from rotating 

equipment, as given in (Bechhoefer, 2009): 

𝑥(𝑡) = ∑ 𝑋𝑘[1 + 𝑎𝑘(𝑡)]𝐾
𝑘=1 × 𝑐𝑜𝑠[2𝜋𝑘𝑓𝑚(𝑡) + 𝜙𝑘] + 𝑏(𝑡) 

(11) 

where: 

• Xk is the amplitude of the kth mesh harmonic 

• fm(t) is the average mesh frequency 

• ak(t) is the amplitude modulation function of the kth 

mesh harmonic. 

• k(t) is the phase modulation function of the kth mesh 

harmonic. 

• k is the initial phase of harmonic k, and 

• b(t) is additive background noise. 

The mesh frequency is a function of the shaft rotational 

speed: fm = Nf, where N is the number of teeth on the gear and 

f is the shaft speed. The vibration model in (11) assumes that 

that f is constant. This is never the case: there is some wander 

is the shaft speed due to changes in load or feedback delay in 

the control system. This change in speed will result in 

smearing of amplitude energy in the frequency domain. 

Hence, the TSA algorithm (Appendix A), controls this by 

interpreting the zero cross time (for ratios that are not 1 and 
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where the zero cross time is generated from a shaft with more 

than one pulse per revolution for the target), and by 

resampling the vibration so that, from revolution to 

revolution, the x(t) in (11) has the same radian position on the 

shaft. That is, a one per revolution imbalance represents 

cosine with period of one revolution. This resampling of the 

data mitigates the smearing effect, and reduction of non-

synchronous noise by 1/sqrt(rev), where rev is the number of 

revolutions in the TSA. 

Note that when the Fourier transform (usually implemented 

at an FFT with radix 2 length), bin 0 is DC, bin 1 is one per 

rev, and the bin for gear mesh is the number of teeth (e.g. 31 

tooth gear would be bin 31). 

3.3. Gear Analysis: The Residual Analysis 

The residual, or different signal, is given by Stewart (1977). 

A residual signal is defined as a synchronous averaged signal 

without the gear mesh frequency, its harmonics, driveshaft 

frequency and its second harmonics. If the first order 

sidebands about the gear mesh frequencies are filtered out, a 

differential signal is created. Conceptually, the TSA (a time 

domain signal) will measure the periodic signal associated a 

soft/cracked tooth. This fault feature is not sinusoidal and is 

not associated with 1/Rev or gear mesh, which are removed 

in the residual signal, leaving the “impact” as is clearly seen 

in Figure 1.  

This study compared four types of residual signal. The 

“classical” residual were the gear mesh and sidebands are 

explicitly removed, and the “Threshold Residual”, were a 

search algorithm removes frequencies that are statistically 

significant (were no gear tooth count is needed).  

The last two residual are based on the envelope of the 

residual, square, as given inn Wang (2001). This is an 

improvement to McFadden’s (1987) paper. In this test, the 

“amRES”, is the envelop of the threshold residual, squared: 

𝑎𝑚𝑅𝐸𝑆 =  |𝐻𝑖𝑙𝑏𝑒𝑟𝑡(𝑅𝐸𝑆2)|                  (12) 

Whereas amRESD is a low pass filtered version of amRES, 

(the D is for decimated, as the bandwidth was 0.5, or 

decimation by 2).  

An implementation of the residual is given in Appendix B. 

3.4. Gear Analysis: The Narrowband/AM/FM Analysis 

McFadden (1986) understood that in complex gearboxes, it 

is was not always clear from the sideband modulations, how 

sever a gear tooth defect might be. Further, for early faults, 

such as a fatigue cracks, more effective analysis may be 

needed. McFadden shows that by band pass filtering to 

remove gear mesh harmonics (e.g. the narrow band analysis, 

where the bandpass is approximately 25% of the gear tooth 

count), and then enveloping, one can directly measuring the 

amplitude and phase (frequency) modulation present in the 

original time synchronous average. McFadden hypothesised 

that as the soft/cracked tooth enters the load zone, the reduced 

stiffness of the damaged tooth transfers load to the 

surrounding teeth. This both affects the displacement (AM 

modulation), and the rotational speed of the gear (FM 

modulation).   

It should be noted that the performance of the narrowband 

analysis is based on the bandwidth of the bandpass filter used. 

As such a separate analysis was conducted to evaluate the 

performance of these analysis based on the varying the 

bandwidth. 

This is a very powerful technique, given in Appendix C. 

3.5. Gear Analysis: Teagers’ Energy Operator Analysis 

The energy operator is nonlinear tracker which, given an 

amplitude and phase modulated signal, can measure the 

product of their instantaneous frequency. It has been 

observed that in practice the analysis is quite sensitive to 

torque, which is why these CIs often use kurtosis and crest 

factor (which tends to normalize the change in magnitude due 

to torque effects).  

Mayo et al. (2016) reported variants of the energy operator 

(EO) that should have improved performance. Whereas the 

EO is given as:  

Ψ𝐸𝑂(𝑇𝑆𝐴𝑛) =  𝑇𝑆𝐴𝑛
2 − 𝑇𝑆𝐴𝑛+1 × 𝑇𝑆𝐴𝑛−1       (13) 

The computational enhanced energy operator (CEEO) is 

given as:  

Ψ𝐶𝐸𝐸𝑂(𝑇𝑆𝐴𝑛) =  𝑇𝑆𝐴𝑛
2 − 𝑇𝑆𝐴𝑛+2 × 𝑇𝑆𝐴𝑛−2     (14) 

Mayo then presents a Taylor series expansion of (12) where 

the second order term is kept, giving EO123:    

Ψ𝐸𝑂123(𝑇𝑆𝐴𝑛) = 𝑇𝑆𝐴𝑛+1
2 − 𝑇𝑆𝐴𝑛+2 × 𝑇𝑆𝐴𝑛 −

1

3
[𝑇𝑆𝐴𝑛

2 −

𝑇𝑆𝐴𝑛+1 × 𝑇𝑆𝐴𝑛−1] +
1

12
  [𝑇𝑆𝐴𝑛

2 − 𝑇𝑆𝐴𝑛+2 × 𝑇𝑆𝐴𝑛−2] (15) 

The pseudo code is given in Appendix D. 

3.6. Gear Analysis: Miscellaneous Analysis 

The Figure of Merit 0 is a well know analysis derived from 

Stewart (1977), and is generally calculated as:  

fm0 =  
𝑡𝑠𝑎 𝑝𝑒𝑎𝑘 𝑡𝑜 𝑝𝑒𝑎𝑘

∑ 𝐺𝑀𝑖
3
𝑖=1

⁄               (16) 

Where GM is the gear mesh harmonic taken from the FFT of 

the TSA. The peak to peak features is a time domain 

phenomenon (from tooth impact, breathing crack), whereas 

the gear mesh in calculated with the FFT with is not sensitive 

to soft toot feature. Hence, as tooth damage increases, so too 

does FM0. 

The energy ratio is the residual RMS divided by the TSA rms. 

The concept is that as the gear fault progresses, the residual 

RMS will approach the TSA RMS (e.g. the TSA will be 
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dominated by gear mesh signatures associated with the gear 

fault). If the residual signal is defined ri, and the TSA is tsai: 

𝑒𝑟 =  √
∑ (𝑟𝑖−�̅�)2𝑛

𝑖=1

𝑛
√

∑ (𝑡𝑠𝑎𝑖−𝑡𝑠𝑎̅̅ ̅̅ ̅)2𝑛
𝑖=1

𝑛
⁄                 (17) 

The sideband level factor is defined as the sum of the first 

order sideband amplitudes about the gear mesh, divided by 

the TSA rms (Kellar, 2003): 

𝑆𝐿𝐹 =
𝑇𝑆𝐴𝑔𝑚−1 + 𝑇𝑆𝐴𝑔𝑚+1

√
∑ (𝑡𝑠𝑎𝑖−𝑡𝑠𝑎̅̅ ̅̅ ̅)2𝑛

𝑖=1

𝑛

⁄
      (18) 

The G2 analysis is simply the ratio of the second gear mesh 

harmonic energy to the first gear mesh harmonic energy. 

4. RESULTS: BANDWIDTH/AM/FM ANALYSIS 

The initial study was to evaluate the effect of narrowband 

analysis bandwidth selection on the separability of the CIs 

generated by the narrowband, AM and FM analysis. Recall 

that for each analysis, there are eight condition indicators: 

RMS, Skewness, Kurtosis, Peak to Peak, Crest, Shape, 

Impact and Margin factor. The bandwidth selected was based 

on a percentage of the number of teeth on the damage pinion 

(which had 23 teeth). The bandwidth was varied from 3 (e.g. 

bandpass from 23 +/-3) to 9 bins, which represents a bandpass 

of 13% to 39% of the gear tooth. McFadden (1986) reported 

that 25% was optimal, and in prior studies (Bechhoefer 2015) 

found this to be a good value.  

As such, the test space for this experiment was 7 x 24 trails. 

Representative results are given in Table 2, were “Mean All” 

is the separability for all CIs (24),  

Table 2 Bandwidth vs. Separability 
BW NB 

RMS 

NB 
CF 

AM 
RMS 

AM 
KRT 

FM 
RMS 

FM 
KRT 

MEAN 
ALL 

13% 1.7 7.3 5.9 -.4 13.2 7.1 5.8 

17% 1.92 7.2 6.3 1.6 5.4 6.4 5.7 

22% 2 6.5 6.1 2.3 4.6 6.6 5..6 

26% 2 6 6.0 2.1 4.3 6.2 5.5 

30% 2.1 4.5 6.2 1.9 3.8 5.2 4.4 

35% 3 6.6 8.3 -.8 3.7 -.3 4.1 

39% 3.2 7.8 8.3 -.3 6.2 -.8 5.6 

 

It is clear from these results that the separability is a function 

of both the CI algorithm/Analysis and the bandwidth. That 

said, a separability greater than 3 should be considered 

significant. As there is some risk of over training a result - 

McFadden’s recommendation of 25% should be considered. 

5. RESULTS: ENERGY OPERATOR AND ITS VARIANTS  

As the EO and EO123 are numerically similar (essentially a 

time shaft), it was found that there is no statistical different 

between them, as based on ANOVA. However, it was found 

that the CEEO was statically different and in all case, had 

greater separability (Table 3) 

Table 3 EO and Variant Separability 

CI EO CEEO EO123 

RMS 0.51 0.75 0.51 

SKEW 2.39 2.91 2.06 

KURT 1.76 2.09 1.52 

P2P 0.58 0.68 0.59 

CF 1.49 2.27 1.51 

SF 2.1 3.6 1.81 

IF 2.0 2.6 1.82 

MF 2.0 2.3 1.8 

Note that while for this test, the power of the EO and its 

variants may be low compared to other analysis (less than 3). 

That said, in other studies looking at scuffing, EO was found 

to be a good indicator. 

6. RESULTS: FACTOR ANALYSIS  

The ANOVA analysis indicated that the difference between 

the factor analysis were statically significant. In table 4, the 

result for CF, SF, IF and MF are compared with each 

analysis. 

Table 4 Factor Analysis Separability 
ANAL CF SF IF MF 

THRES 5.9 5.6 6.2 6.2 
RES 5.0 3.2 4.4 4.2 
AMRES 2.3 6.5 3.7 3.8 
AMRESD 2.4 7.2 4.8 4.9 
EO 1.5 2.1 2.0 2.0 
CEEO 2.3 3.7 2.6 2.3 
EO123 1.5 1.5 1.5 1.5 
NB 5.7 6.1 5.8 8.2 
AM 3.4 11.3 9.8 9.7 
FM 2.1 2.2 2.6 2.6 
MEAN 3.2 4.9 4.3 4.54 

 

From the results of Table 4. Shape Factor is the more 

powerful analysis.  

7. RESULTS: ALL ANALYSIS AND ALGORITHMS 

 The overall test results are presented in Appendix E. In 

general, these results can be compressed as the performance 

of similar analysis do not diverge significantly. Table 5 gives 

the overall results for the Residual, Computational Enhanced 

Energy Operator, the Narrowband analysis (using a 

bandwidth of 6, or 26%), Amplitude Modulation, Frequency 

Modulation and Amplitude Modulated Residual. 

Table 5 Mean Separability of Analysis for RMS, Kurtosis 

and Shape Factor 
 RES CEEO NB AM FM AM 

RES 
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SEP 6.4 1.6 4.4 6.7 4.1 3.7 

 

The reduction from 90 values (Appendix E) to six value in 

Table 5 was: that the analysis suggested that skewness and 

peak to peak were in general not powerful statistics. 

Similarly, from Table 4, the shape factor was found to be the 

highest performance factor analysis. Hence, Table 5 

represents the mean separability response for RMS, Kurtosis 

and Shape Factor. 

From Figure 2, the relationship between the classes of 

residual analysis are compared. Clearly, the fault at 0.4 

revolution is seen. While the amplitude modulation residual 

is easily seen as a large change in subplot 3, its performance 

from Appendix E suggest that it is more sensitive to noise, 

hence the lower separability.   

 

Figure 2 Comparison of Residual based analysis for good to 

bad pinion 

 

As noted in Table 3, the performance of the energy operator 

and its variants are all similar. Again, it is clear that the lower 

separability score that the EO, CEEO and EO123 are 

typically a nosier analysis (Figure 3).  

 
Figure 3 Comparison of EO and its variants for good and 

bad pinion 

 

The narrowband, amplitude modulation and frequency 

modulation analysis are consistently powerful. While it is not 

as easy to visually identify the gear fault as the residual and 

energy operator, the reduced bandwidth (e.g. noise) of the 

analysis greatly improve the separability score (Figure 4). 

It should be noted that these test results were performed on 

machines running at similar, constant RPM. As acceleration 

is the second derivative of displacement, the sensor response 

is a function of RPM, squared. Hence amplitude-based 

statistics are more sensitive to changes in RPM, than say, 

shape-based statistics. For example, if the machine is to 

operate under varying RPM condition, condition indicators 

based on kurtosis would be less effected by RPM than RMS, 

or Peak to Peak.  

 
Figure 4 Comparison of the narrowband, amplitude and 

frequency modulation analysis for good and bad pinion 

7.1. Validation of Condition Indicator Selection 

Data was collected on a single stage, spiral bevel gearbox, 

which was run under high load. The instrumentation was 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019 

8 

installed on a nominal gearbox, with the intent of propagating 

a fault. After approximately 24 days, the spiral bevel pinion 

showed indications of fatigue cracking at the root of a tooth. 

For the test, the health algorithm (eq 3), the gear CI used were 

index: Residual Kurtosis, Residual Crest Factor, Energy 

Operator Kurtosis, Figure of Merit 0, Amplitude Modulation 

RMS and Frequency Modulation RMS (index 2, 3, 5, 7 and 

12, Figure 5).  

These CIs based on a study (Bechhoefer 2011), with a 

consideration of attempting of algorithm diversity. That is, it 

was hypothesized that because there is no single CI that 

works for every gear fault, it would be wise to use at least one 

CI from each type of analysis. It should also be noted that for 

(ref 12), the damage was scuffing, not a cracked tooth. 

Because the of the result (Appendix E) indicated that the 

Residual RMS, Narrowband Kurtosis, FM Kurtosis 

performance (e.g. separability) was improved, and that FM0 

did not perform well, the CIs for the health algorithm were 

changed to Residual RMS, Energy Operator Kurtosis, 

Narrowband Kurtosis, Amplitude Modulation and Frequency 

Modulation Kurtosis, or index: 1, 5, 8, 10, 12, and 15, Figure 

5. Note that the final HI value changed from approximately 

0.45 to 1.5, or almost 3x improvement in fault detection. It is 

interesting to note that the separability of Residual RMS 

(10.18) is only 41% improved over the Residual CF (5.94). 

The energy operator, was not a particularly powerful (the 

separability was 1.55), was left in because it may improve the 

HI performance with other gear fault modes. 

 
Figure 5 Comparison of the gear health performance based 

on CI selection 

One question to ask would be: why not use a greater number 

of the CIs with positive separability? This was tried, but after 

normalizing, there was no increase in performance. That is, 

the HI using 15 CI indexes did have a greater HI value. 

However, its starting (nominal HI) value was 0.275 vs. 0.174. 

When the new HI was scaled by 0.174/0.275 or 0.64, there 

was no observable change in the HI. It is suspected that an 

orthogonal transformation, such as principal component 

analysis, would indicate that using 15 CI was over 

dimensioned, as using both Residual RMS, Kurtosis and CF 

(as an example) are highly correlated (Figure 6). 

 

Figure 6 Comparison of HIs using 15 CIs vs. 6 CIs 

8. CONCLUSION 

Few studies have asked the question: how good is a particular 

gear analysis algorithm? Generally, the analysis is given on a 

small set of data, with no comparison to other analysis. This 

study, using a statistically significant data set, compared the 

performance of gear CI analysis between a good and damage 

population. The performance metric used was statistical 

separability. Separability is a natural metric as condition 

monitoring is in effect a decision support tool (e.g. hypothesis 

testing), the decision being to bring an asset out of service for 

inspection, or not. CI algorithms with a large separability, 

will reduce the probability of a false alarm.  

For a decision support tool, this study uses the concept of the 

health indicator (HI). The HI is a mapping of n CIs into a 

common, threshold value which allow the maintainer to make 

decision as to when to perform maintenance. When the 

component HI is greater than 1, then it is appropriate to do 

maintenance. Using the CIs with the largest separability 

increased the sensitivity of the HI by 3x, or a 4.5 dB 

improvement. Further, it was shown that using the HI (eq 3) 

can give a 3 to 4.5 dB gain over using CIs alone.  

Caution should be taken in that, while the validation (e.g. HI 

improvement) was gained using a different gearbox type than 

the original data set used for measuring separability (Table 

2), the fault mode was similar: a fatigue crack on a tooth. It 

is likely that for scuffing/pitting type of faults, the optimal set 

of CIs would be different. 
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APPENDIX A 

Example Time Synchronous Average  
Function [tsadata, navgs,rpm] = tsaLinearInterp( 

data, zct, sr, ratio, ppr) 

%[tsadata, 

navgs,rpm]=tsaLinearInterp(data,zct,sr,ratio,ppr,n

avgs) 

%Inputs: 

%   data:       time domain data in g's 

%   zct:        zero cross time 

%   sr:         sample rate 

%   ratio:      gear ratio/pulse per revolution on 

the tach 

%   ppr:        pulse per rev 

%Output: 

%   tsadata:    time synchronous average data 

%   navgs:      the number of averages in the TSA 

%   rpm:        mean shaft rpm 

  

%data = data - mean(data); 

  

ndata = length(data); 

dt = ndata/sr;  %sample length 

rev = 0; 

i = 1+ppr; 

  

while zct(i) < dt && i < length(zct)-1 

    rev = rev + 1; 

    i = i + ppr; 

end 

https://nptel.ac.in/courses/112106137/9
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% Define the number of averages to perform 

navgs = floor(rev * ratio); 

trev = zct(navgs*ppr) - zct(1); 

rpm =  navgs/trev*60*ratio; 

     

% Determine radix 2 number where # of points in 

resampled TSA 

% is at sample rate just greater than fsample 

N=(2^(ceil(log2(60/rpm*sr)))); 

  

% now calculate times for each rev (1/ratio teeth 

pass by) 

% resample vibe data using zero crossing times to 

interpolate the vibe  

yy = zeros(1,N); %data to accumulate the resampled 

signal once per rev 

ya = yy; %ya is the resample signal once per rev   

iN = 1/N; %resample N points per rev 

ir = 1/(ratio/ppr);  %inverse ratio - how much to 

advance zct 

tidx = 1;               %start of zct index 

  

while (floor(zct(tidx)*sr) == 0) 

     tidx = tidx + 1; 

end 

  

zct1 = zct(tidx);%start zct time; 

  

for k = 1:navgs 

    tidx = tidx + ir;       %get the zct for the 

shaft  

     

    stidx = floor(tidx)-1;  %start idx for 

interpolation  

    dx = tidx - stidx; 

    yo = zct(stidx); 

    dy = zct(stidx+1)-yo; 

    zcti = yo + dx*dy;      %interpolated ZCT 

    dtrev = zcti - zct1;    %time of 1 rev 

    dtic = dtrev*iN;        %time between each sample 

    zct1c = zct1; 

    for j = 1:N 

        cidx = floor(zct1c*sr); 

        yo = data(cidx); y1 = data(cidx+1); 

        x1 = zct1c*sr; 

        xo = floor(x1);  

        dx = x1-xo; 

        dy = y1-yo; 

        yaj = yo + dx*dy;     %simple linear interp 

        ya(j) = yaj; 

        zct1c = zct1 + j*dtic; %increment to the 

next sample 

    end 

     

    zct1 = zcti; 

    

    yy = yy + ya;     %accumulate the tsa per reve 

end 

  

tsadata = yy/navgs;            % compute the average 

APPENDIX B 

function [xres] = residualSignal(x, geartooth) 

%[xres] = residualSignal(x, geartooth) 

%Inputs: 

%  x        :input TSA signal 

%geartooth  :array with number of teeth on a gear 

%from Vercer 

x = x(:)'; 

  

n = length(x); 

n2 = n/2; 

nHarmonics = 3; 

X = rfft(x);                    %real fft - no 

conjugate 

X(1) = 0;                       % DC is removed 

X(2) = 0;                       % SO1 is removed 

X(3) = 0;                       % SO2 is removed 

nGears = length(geartooth); 

for j = 1:nGears 

    crtGear = geartooth(j); 

    for i = 1:nHarmonics 

        indx = 1+crtGear*i; 

        if indx < n2            %projection 

against running over the array 

            X(indx) = 0;        %gear tooth meash 

are removed 

        end 

    end 

end 

  

xres = irfft(X);         % residual signal from 

the inverses real fft 

APPENDIX C 
function [nb,am,fm] = narrowband(x, gt, BW) 

%[nb,am,fm] = narrowband(x, gt, BW) 

% x is the TSA 

% gt is the number of gear teeth and 

% BW is bandwidth, usually 25% of gt. 

%Output: 

%    nb: narrow band signal 

%    am: amplitude modulated signal 

%    fm: phase modulated signal 

  

X = rfft(x); 

  

lw = gt-BW;                                 

%calculate the band pass indexes 

hi = gt+BW + 2; 

  

X(1:lw) = 0;                                

%idealized filter 

X(hi:end) = 0; 

  

nb = irfft(X);  

  

n = length(nb); 

n2 = n/2; 

X = fft(x);                                     

%take the Hilbert Transform 

X(1:n2) = X(1:n2) * 2; 

X(n2:end) = 0; 

h = ifft(X);                                    

%Analytic Signal 

  

%   Amplitude Modulation signal - am 

am = abs(h); 

  

%   Phase Modulation signal - fm 

arg = unwrap(angle(h));                         

%take the argument 

fm = arg - (arg(end)-arg(1))*linspace(0,1,n);   

%take the derivate  

APPENDIX D 

function eo = energyOperator(x) 
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%eo = energyOperator(x); 

%Inputs: 

%    x:  the TSA 

%Outputs: 

%    eo: the energy operator 

  

n = length(x); 

data = x(:) - ones(n,1)*mean(x); 

%Generate the x(n-1) and x(n+1) sequences  

dataminus1=[data(end); data(1:end-1,:)]; 

dataplus1=[data(2:end); data(1)]; 

%Calculate the E 

eo=data.*data-dataminus1.*dataplus1; 

APPENDIX E 

Overall Separability Analysis Results 

Analysis Sep Analysis Sep 

AM P2P         15.564 CEEO IF      2.604 

SBLF                     14.938 FM IF      2.592 

AM SF          11.35 FM MF        2.586 

RES RMS 10.185 amRes Krt 2.498 

AM IF        9.861 amResd CF                2.432 

AM MF        9.68 EO Skew              2.394 

TRES RMS 8.982 CEEO MF       2.336 

TRES P2P   8.487 amRes CF       2.275 

NB MF        8.237 CEEO CF      2.273 

amResd SF      7.207 FM SF        2.199 

amRes  SF       6.417 CEEO Krt                2.089 

TRES MF         6.202 FM CF          2.088 

TRES IF         6.188 EO SF          2.08 

NB SF          6.109 EO123 SF           2.062 

FM Krt  5.966 EO IF 2.025 

TRES CF 5.939 EO MF         2.008 

FM P2P 5.926 NB RMS                   1.978 

AM RMS  5.914 EO123 IF 1.818 

NB IF 5.791 EO123 SF       1.815 

NB CF  5.747 EO123 MF      1.803 

TRES SF         5.59 EO Krt  1.759 

FM Skw              5.49 RES P2P    1.698 

S Index           5.222 Gs RMS                   1.643 

NB Krt  5.053 EO123 Krt           1.527 

RES CF    4.997 EO123 CF 1.514 

amResd MF    4.865  TRES Skw   1.503 

SBLF - 2 4.827  EO CF  1.492 

amResd IF  4.804  FM0                      1.348 

TRES Krt 4.721 amResdP2P  1.218 

amResdSkw    4.623 Gear Mesh                1.149 

RES IF   4.401 amRes P2P                1.038 

RES MF   4.193 amResdRMS               0.976 

amRes Skw           4.188 amRes RMS                0.87 

FM RMS  4 CEEO P2P        0.68 

amRes MF     3.805 GM2/GM1  0.642 

amRes IF     3.668 EO123 P2P     0.594 

CEEO SF        3.661 EO P2P          0.583 

AM CF        3.373 CEEO RMS 0.571 

RES SF    3.179  EO RMS                   0.509 

SBLF 3.168 EO123 RMS                0.508 

NB P2P         3.15 Eng Ops 0.373 

 

 


