
Isolation and Localization of Unknown Faults Using Neural
Network-Based Residuals

Daniel Jung

Department of Electrical Engineering, Linköping University, Linköping, 581 83, Sweden
daniel.jung@liu.se

ABSTRACT

Localization of unknown faults in industrial systems is a dif-
ficult task for data-driven diagnosis methods. The classifica-
tion performance of many machine learning methods relies
on the quality of training data. Unknown faults, for exam-
ple faults not represented in training data, can be detected
using, for example, anomaly classifiers. However, mapping
these unknown faults to an actual location in the real system
is a non-trivial problem. In model-based diagnosis, physical-
based models are used to create residuals that isolate faults by
mapping model equations to faulty system components. De-
veloping sufficiently accurate physical-based models can be a
time-consuming process. Hybrid modeling methods combin-
ing physical-based methods and machine learning is one solu-
tion to design data-driven residuals for fault isolation. In this
work, a set of neural network-based residuals are designed by
incorporating physical insights about the system behavior in
the residual model structure. The residuals are trained using
only fault-free data and a simulation case study shows that
they can be used to perform fault isolation and localization of
unknown faults in the system.

1. INTRODUCTION

An important task of fault diagnosis of industrial systems is
fault localization, i.e., identifying where faults are located in
the system. Increasing system complexity and autonomous
operation require that the system is reliable and able to detect
faults early before any accidents or damages occur. Being
able to identify a faulty component gives important informa-
tion when deciding for suitable counter-measures to minimize
costs and the risk of potential dangers.

Machine Learning has been very successful in many appli-
cations, including image classification and text analysis. One
example of such methods are neural networks and deep learn-
ing. However, some of the recent successes have been made

Daniel Jung et al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

possible thanks to the access to large amounts of training
data (Jia, Lei, Lin, Zhou, & Lu, 2016). In many fault di-
agnosis applications, collecting representative data is compli-
cated and expensive, especially during the system develop-
ment phase and early system life (Sankavaram, Kodali, Pat-
tipati, & Singh, 2015). Even though incremental classifica-
tion algorithms are able to improve performance over time,
as more training data become available, it is still relevant to
be able to identify likely fault locations of fault scenarios not
covered in training data. This is important in, for example,
troubleshooting (Pernestål, Nyberg, & Warnquist, 2012). One
solution to limited training data is to use physical-based mod-
els when implementing machine learning algorithms.

The idea of using physical-based model structures in data-
driven neural network design for fault diagnosis has been pro-
posed in (Pulido, Zamarreño, Merino, & Bregon, 2019). With
respect to the mentioned work, this paper presents how to use
neural network-based residuals and physical-based models to
localize unknown faults in the system. In (Garcia-Alvarez,
Bregon, Fuente, & Pulido, 2011) a model parameter estima-
tion approach based on a partitioned system model is pro-
posed.

The benefits of combining model-based and data-driven fault
diagnosis methods have also been discussed in (Tidriri,
Chatti, Verron, & Tiplica, 2016). Hybrid diagnosis system de-
signs, combining model-based residuals and machine learn-
ing classifiers, have been proposed in, for example, (Jung &
Sundström, 2017; Tidriri, Tiplica, Chatti, & Verron, 2018;
Jung, Ng, Frisk, & Krysander, 2018). The methods in these
mentioned papers, relies on residuals to perform fault isola-
tion and classification. Therefore, residual generation is an
important task during the diagnosis system design to achieve
satisfactory fault isolation performance. With respect to these
previous works, not only fault isolation is considered here but
also localization of unknown faults.

1.1. Problem Statement

Even though a data-driven classifier is able to identify when
an unknown fault has occurred, it is non-trivial to localize the

1



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

fault in the actual system without training data from that fault.
One solution is to utilize physical insights about the system
when implementing a machine learning algorithm.

In this work, a simulation study is performed to investigate if
it is possible to point out the fault location in a system using
a set of unconventional neural network-based residuals where
the network design represents the structure of the system. The
neural network design is implemented using Python 3 and Py-
Torch (Paszke et al., 2017). It is assumed that training data to
train the neural network models are available from nominal
system operation only, i.e. no data from any fault scenario
are used during the training phase. The study shows that in-
cluding some physical insights in the neural network design
makes it possible to detect and localize system faults even
though the networks are trained using data from nominal sys-
tem operation only.

For the neural network design, structural model decomposi-
tion methods are used on a structural representation of the
system. A structural model describes the relationship be-
tween system variables without considering the analytical re-
lation, i.e., it only describes which variables are included in
each model equation (Blanke, Kinnaert, Lunze, Staroswiecki,
& Schröder, 2006). Different residual generation algorithms
use the structural model to create computational graphs to
evaluate the model equations from sensor data to compute
a residual, see for example (Frisk, Krysander, & Jung, 2017;
Pulido & González, 2004). If a detailed analytical model of
the system is not available, a structural model representing
the physical-based relations, describing the system behavior,
can still be used to design neural-networks for residual gen-
eration.

2. A NON-LINEAR TWO TANK SIMULATION CASE
STUDY

To illustrate the proposed method, a non-linear two-tank sim-
ulation model is used to simulate sensor data. An illustration
of the system is shown in Figure 1 and the model dynamics
are derived from the Bernoulli equation as

ẋ1 = −d1
√
x1 + d2u, ẋ2 = −d3

√
x1 + d4

√
x2,

y1 = x1, y2 = x2, y3 = d5
√
x1, y4 = d6

√
x2

(1)

where xi is water level in tank i, u is a known input flow
in tank one, y1 and y2 measure the water level in each tank,
respectively, y3 and y4 measure the out-flow from each tank,
respectively, and d1, . . . , d6 are model parameters.

In this case study, it is assumed that an accurate model of the
system is not available for the diagnosis system design. In-
stead, a qualitative model is available that describes the gen-

u

xf,1

x1

xf,2

x2

Figure 1. An illustration of the two tank system.

eral system behavior as follows:

e1 :ẋ1 = h1(xf,1, u) e5 :y1 = x1

e2 :ẋ2 = h2(xf,1, xf,2) e6 :y2 = x2

e3 :xf,1 = g1(x1) e7 :y3 = xf,1

e4 :xf,2 = g2(x2) e8 :y4 = xf,2

(2)

where xf,i is out-flow from tank i, u is a known input flow
into tank one, and y1, y2, y3, y4 are sensor data. The functions
h1(·) and h2(·) state that the change in water level in each
tank depend on the inflow and outflow. The functions g1(·)
and g2(·) say that the outflow depends on the water level in
the tank.

An example of simulated data from the system is shown in
Figure 2. For the evaluation, the simulation model can be
used to simulate different faults, for example leakages in the
tank, clogging in the outflow pipes, and sensor faults.

0 200 400 600 800 1000

0.0

2.5

u

0 200 400 600 800 1000

0

50

y1

y2

0 200 400 600 800 1000

Sample

0

10
y3

y4

Figure 2. An example of simulated data from the two tank
system.

3. BACKGROUND

First, a brief summary of artificial neural networks is pre-
sented. Then, the principles of model-based diagnosis and
structural analysis methods are summarized.

2



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

3.1. Artificial Neural Networks

Artificial neural networks and deep learning are a set of ma-
chine learning methods that can be used to approximate non-
linear functions (Schmidhuber, 2015). Neural networks con-
sist of a set of neurons where the output from some neurons
are inputs to other neurons and can be represented as a com-
putational graph. Each neuron is a non-linear function of the
inputs to the neuron, for example

xi,out = hi(w
T
i xi,in + βi) (3)

where xi,in denote the inputs to neuron i, xi,out the output,
wi is a vector of weights, βi is a bias, and hi is a non-linear
activation function, e.g. rectified linear unit (ReLU), sigmoid
or hard tan (Aggarwal, 2018). A common method for training
neural networks is to use back-propagation.

Conventional neural network designs arrange the neurons in
different layers. The first layer of the neural network is de-
noted the input layer, the final layer is called the output layer,
and all layers in between are called hidden layers. One type
of neural networks, called recurrent neural networks, can
be used to model temporal dynamic systems (Pearlmutter,
1995). In recurrent neural networks, the output from some
neurons are used as input to other neurons at concurring time
steps. This is shown in Figure 3 where the state variable x̂1 is
used as input in the next time instance of the recurrent neural
network. The variable ut is an input signal and ŷt is an output
signal at time instance t.

ut−1 ut

x̂1,t x̂1,t+1

x̂1,t−1

ŷ1,t ŷ1,t+1

Figure 3. An example of a recurrent neural network. The
figure illustrates the neural network structure of residual r5 in
Eq. (11) that is used to compute ŷt.

3.2. Model-Based Fault Diagnosis

In model-based fault diagnosis, faults are identified by detect-
ing inconsistencies between sensor data y and predictions ŷ
from a physical-based model of the system, using residuals
r = y − ŷ. To generate residuals require analytical redun-
dancy in the model (Travé-Massuyès, 2014). A residual is a
function of known variables and is, ideally, zero in the nom-
inal case. Because of model uncertainties and sensor noise,
different types of statistical tests are used to determine when
a significant change in the residual output has occurred. Each
residual models nominal system behavior, and can thus be in-
terpreted as an anomaly classifier (Gupta, Gao, Aggarwal, &
Han, 2014).

3.2.1. Structural Methods

A useful analysis tool for model-based diagnosis is structural
methods (Blanke et al., 2006). A structural model is a bipar-
tite graph describing the relationship between variables and
equations and can be represented as an incidence matrix. Fig-
ure 4 shows an example of an structural representation of the
two tank model Eq. (2). Each row represents a model equa-
tion and each column a model variable. Equations e9 and e10
are used in the structural model to state the relationship that
ẋ = dx

dt where I in Figure 4 is used in these equations to
highlight the state variable and D its derivative (Frisk et al.,
2012).

The structural model is not dependent on the actual analyti-
cal expression which makes it a useful tool for analysis during
early system design since no parameter values are needed. By
using a method called Dulmage-Mendelsohn decomposition
on the structural model, it is possible to, for example, per-
form fault detectability and isolability analysis but also find
redundant equation sets for residual generation (Krysander,
Åslund, & Nyberg, 2008).

An example of a redundant equation set given Eq. (2) is
{e1, e3, e5}. The three equations contain two unknown vari-
ables x1 and xf,1 and can be used to generate a residual.
Matching algorithms can be used with redundant equation
sets to generate residuals, see for example (Frisk et al., 2017).
In principle, a matching algorithm finds a computational se-
quence describing how the known signals should be used to,
sequentially, compute the unknown variables in the model us-
ing the equation set when one of the equations is used as a
residual equation.

Example 3.1 Asssume that the functions h1 and g1 in
Eq. (2) are known. The equation set {e1, e3, e5} can be used
to design different residuals, for example,

˙̂x1 = h1 (g1(x̂1), u)

r = y1 − x̂1
(4)

3



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

e1

e2

e3

e4

e5

e6

e7

e8

e9

e10

Watertank structural model

DI

DI

x
1

x
2

d
x
1

d
x
2

x
f1

x
f2 u

y
1

y
2

y
3

y
4

Figure 4. A structural representation of the two tank model.

or
r = ẏ1 − h1 (g1(x̂1), u) . (5)

Equation (4) is an example of a residual with integral causal-
ity and Eq. (5) with derivative causality (Frisk et al., 2012).
If the redundant equation set does not contain any dynamic
equations the residual is said to be an algebraic relation. In
this work, only integral causality will be considered for resid-
uals with dynamic equations.

3.2.2. Model-Based Residual Design

Depending on which redundant set of model equations is used
to generate a residual, the residual will be sensitive to faults in
a certain part of the system. If different residuals are designed
using different sets of redundant equations, referred to as the
model support of the residual, the set of residuals will give a
specific fault pattern depending on where a fault occurs in the
system (Travé-Massuyès, 2014). Residuals that are designed
to monitor the part of the system where a fault occurs should,
ideally, deviate from their nominal behavior, while the other
residuals should not be affected. By comparing the model
support of the residuals that have deviated from their nom-
inal behavior, it is possible to identify possible locations of
the fault in the system based on the model equations (Pucel,
Mayer, & Stumptner, 2009).

4. NEURAL NETWORK-BASED RESIDUAL GENERA-
TION

Based on the structural model of the system, a set of different
redundant equation sets are identified using the fault diag-

nosis toolbox (Frisk et al., 2017). Based on each redundant
equation set, a residual is modeled using a recurrent neural
network where the location of the state variables are given by
the structural model. For example, the residual in Eq. (4) is
reformulated as

˙̂x1,t = ξ (x̂1,t−1, ut−1)

rt = y1,t − x̂1,t
(6)

where subscript t denotes time index, the unknown function
ξ : R2 → R is modeled using a neural network and the state
variable is approximated using the Euler forward method to
formulate a time-discrete model. The resulting residual func-
tion is a recurrent neural network with only one state variable,
as illustrated in Figure 3.

Similarly, six additional residuals are implemented from dif-
ferent redundant equation sets, using the principles described
in for example (Frisk et al., 2012), and the final residual set is
summarized as follows:

r1,t = y4,t − ξ1 (y2,t) (7)

r2,t = y3,t − ξ2 (y1,t) (8)

x̂2,t = ξ3a (y3,t−1, x̂2,t−1)

r3,t = y4,t − ξ3b (x̂2,t) (9)

x̂2,t = ξ4 (y1,t−1, x̂2,t−1)

r4,t = y2,t − x̂2,t (10)

x̂1,t = ξ5a (x̂1,t−1, ut−1)

r5,t = y3,t − ξ5b (x̂1,t) (11)

x̂1,t = x̂1,t−1 + ξ6 (y3,t−1, ut−1) + 0.01 (y1,t − x̂1,t)
r6,t = y1,t − x̂1,t (12)

x̂1,t = ξ7a (x̂1,t−1, ut−1)

x̂2,t = ξ7b (x̂1,t−1, x̂2,t−1)

r7,t = y2,t − x̂2,t (13)

where each function ξi(·) is modeled as a neural network.
Residuals r3, ..., r7 are modeled as recurrent neural networks
with similar structures as in Figure 3. The model support of
all residuals are summarized in Table 1.

Residuals r1 and r2 are static algebraic relations modeling the
relation between measured water levels in each tank and the
measured outflow in each tank. Residuals r3, ..., r7 have in-
ternal dynamics, where a small feedback term was introduced
in the dynamic equation of residual r6 in Eq. (12) because of
difficulties to achieve satisfactory prediction error when train-
ing the model. Also, note that in r6, with respect to the other
dynamic residuals, the term x̂1,t−1 is not included as an in-

4



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

Table 1. A summary of the equation sets used to design each
neural network-based residual.

e1 e2 e3 e4 e5 e6 e7 e8
r1 X X X
r2 X X X
r3 X X X X
r4 X X X X X
r5 X X X
r6 X X X
r7 X X X X X

Table 2. A summary of the equation sets used to design each
neural network-based residual.

e1 e2 e3 e4 e5 e6 e7 e8
e1 X
e2 X X
e3 X
e4 X
e5 X
e6 X X
e7 X
e8 X X

put in the neural network model ξ6(·) but kept outside. This
is necessary to maintain the redundant model structure and to
make sure that faults not directly affecting the equations in the
model support of r6 are decoupled. Note that r6 resembles a
ResNet structure (He, Zhang, Ren, & Sun, 2016).

Ideal fault localization performance, i.e. when model uncer-
tainties are not considered, given the selected residual set is
summarized in Table 2. A fault in ei is isolable from a fault
in ej if there is a residual where ei is part of its model support
but not ej . An X at position (i, j) means that a fault affecting
equation ei cannot be isolated from a fault affecting equation
ej . Based on the selected residuals it is possible to, ideally,
localize a fault to a part of the system modeled by one equa-
tion. The exceptions are faults in e2, e6, and e8 that cannot be
isolated from a fault in e4.

4.1. Implementation and Training of Residuals

Each residual is implemented in Python and PyTorch and
trained using simulated fault-free data, see Figure 2. Each
non-linear function ξ(·) is here modeled using a neural net-
work with three hidden layers, 32 neurons in each layer, and
ReLU as activation function. The training is performed by
simulating the system and minimizing the mean square er-
ror

∑
t(yt − ŷt)

2 using the ADAM solver (Kingma & Ba,
2014) and truncated back-propagation through time (Werbos,
1990). It is important that training data are representative
of nominal system operation since model validity is not ex-
pected for operating points not covered by training data.

An example of the evaluated residual outputs in the nomi-

nal case are shown in Figure 5. The left column shows the
residual time-series data, while the second column shows the
histogram of each residual. The two histograms in each plot
show the residual distribution during the first and second half
of the time-series. The red dashed lines represent the 1% and
99% quantiles of the blue histograms representing the first
half of the data set. These will be used analyze the residual
outputs when the distributions are affected by different faults.
Note that more sophisticated change detection algorithms can
be used, instead of thresholding the residual, to automatically
detect changes in the residual output, for example CUmula-
tive SUM (CUSUM) (Page, 1954).

500 1000 1500 2000
0.1

0.0r 1

0.10 0.05 0.00 0.05
0

10

500 1000 1500 2000
0.05
0.00
0.05

r 2
0.05 0.00 0.05

0

20

500 1000 1500 2000

0.5

0.0
r 3

0.75 0.50 0.25 0.00
0

5

500 1000 1500 2000

0.5
0.0
0.5

r 4

0.5 0.0 0.5
0.0

2.5

500 1000 1500 2000
0.5

0.0r 5

0.50 0.25 0.00 0.25
0

5

500 1000 1500 2000
5

0

r 6

4 2 0
0

1

500 1000 1500 2000

0.0

0.5

r 7

0.2 0.0 0.2 0.4 0.6
0.0

2.5

Figure 5. The residual outputs using simulated fault-free data.

5. EVALUATION

To evaluate the fault localization performance of the neural
network-based residuals, different fault scenarios are simu-
lated. For single-fault scenarios, fault localization can be per-
formed by analyzing the intersection of the model support
of all residuals that significantly deviate from their nominal
behavior. To handle multiple-fault scenarios, minimal hit-
ting set algorithms, such as the one proposed in (De Kleer
& Williams, 1987), can be applied to identify likely fault lo-
calizations.

5



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

The first simulated fault scenario is a leakage fault in tank
one occurring after sample 1000. The residual outputs are
shown in Figure 6 where the time-series data are plotted in
the left column and the histogram of the residuals, before and
after the fault occurs, in the right column. When comparing
the distributions in the right column it is visible that residuals
r5 and r6 deviate significantly from their nominal behavior
while the other ones does not.

When comparing the model support for r5 and r6 in Table 1,
the intersection of the corresponding equation sets is {e1, e7},
indicating that the fault should affect the part of the system
described by one of the two equations. Equation e1 describes
the water level dynamics in tank one and e7 the sensor mea-
suring the outflow from tank one. A leakage will affect the
dynamics of the water level in the tank since there is an ad-
ditional outflow from the tank not captured by the nominal
model e1 thus correctly narrowing down the location of the
fault. Ideally, r7 should also react to the leakage but is not
deviating significantly in this case. An explanation could be
that the accuracy of the residual model is not good enough to
distinguish the fault.

500 1000 1500 2000

0.1
0.0

r 1

0.1 0.0
0

10

500 1000 1500 2000
0.05

0.00

0.05

r 2

0.05 0.00 0.05
0

20

500 1000 1500 2000
1.0
0.5
0.0

r 3

0.5 0.0
0

5

500 1000 1500 2000

0.5
0.0
0.5

r 4

0.5 0.0 0.5
0

2

500 1000 1500 2000
2

0

r 5

2 1 0
0

2

4

500 1000 1500 2000

20

0

r 6

20 10 0
0

1

500 1000 1500 2000
1

0

r 7

1.0 0.5 0.0 0.5
0.0

2.5

Figure 6. The residual outputs when simulating a leakage in
tank one.

In the second fault scenario, a clogging affecting the outflow

from tank two is simulated and the residual outputs are shown
in Figure 7. In this case, there is a significant change in the
distributions of residuals r1 and r4, while a small change can
be noticed in r7. Based on the model support in Table 1 the
intersection is {e4, e6}. Equation e4 describes the relation
between water level in tank one and the resulting outflow and
e6 the sensor measuring the level in tank two. The clogging
fault is identified since the fault results in a decreased outflow
described by e4. Note that residual r3, which is sensitive to
a fault in e4 makes a sudden change when the fault occurs
but then goes back to nominal behavior. If a change detection
algorithm applied to r3 also triggers an alarm, e4 would be
isolated uniquely.

500 1000 1500 2000
2

0

r 1

2.0 1.5 1.0 0.5 0.0
0

10

500 1000 1500 2000
0.05

0.00

0.05
r 2

0.050 0.0250.000 0.025 0.050
0

20

500 1000 1500 2000

1

0

r 3

1.5 1.0 0.5 0.0
0

5

500 1000 1500 2000
0

5

r 4

0 2 4 6 8
0

1

500 1000 1500 2000
0.5

0.0

0.5

r 5

0.50 0.25 0.00 0.25 0.50
0.0

2.5

500 1000 1500 2000

5

0

r 6

6 4 2 0
0

1

500 1000 1500 2000

0

1

r 7

0.0 0.5 1.0
0

2

Figure 7. The residual outputs when simulating clogging in
the outflow pipe of tank two.

The results from the two fault scenarios show that the trained
set of neural network-based residuals can be used to identify
the fault location in the actual system. Even if there were
more than one equation where the fault could be located in
the two scenarios, it gives useful information to a technician
where to start troubleshooting.

6



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

6. CONCLUSIONS

The case study shows that it is possible to perform fault local-
ization of unknown faults using neural network-based resid-
uals without the need of training data from faults. Devel-
oping accurate physical-based models can be time consum-
ing. Hybrid methods combining qualitative models and ma-
chine learning can be one solution to reduce development
time while still be make to make use of the structural proper-
ties of the physical-based model.

REFERENCES

Aggarwal, C. C. (2018). Neural networks and deep learning.
Springer.

Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M., &
Schröder, J. (2006). Diagnosis and fault-tolerant con-
trol (Vol. 2). Springer.

De Kleer, J., & Williams, B. (1987). Diagnosing multiple
faults. Artificial intelligence, 32(1), 97–130.

Frisk, E., Bregon, A., Åslund, J., Krysander, M., Pulido, B.,
& Biswas, G. (2012). Diagnosability analysis consid-
ering causal interpretations for differential constraints.
IEEE Transactions on Systems, Man, and Cybernetics-
Part A: Systems and Humans, 42(5), 1216–1229.

Frisk, E., Krysander, M., & Jung, D. (2017). A toolbox for
analysis and design of model based diagnosis systems
for large scale models. IFAC-PapersOnLine, 50(1),
3287–3293.

Garcia-Alvarez, D., Bregon, A., Fuente, M., & Pulido, B.
(2011). Improving parameter estimation using mini-
mal analytically redundant subsystems. In 2011 50th
ieee conference on decision and control and european
control conference (pp. 7788–7793).

Gupta, M., Gao, J., Aggarwal, C., & Han, J. (2014). Outlier
detection for temporal data: A survey. IEEE Trans-
actions on Knowledge and Data Engineering, 26(9),
2250–2267.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual
learning for image recognition. In Proceedings of the
ieee conference on computer vision and pattern recog-
nition (pp. 770–778).

Jia, F., Lei, Y., Lin, J., Zhou, X., & Lu, N. (2016). Deep
neural networks: A promising tool for fault character-
istic mining and intelligent diagnosis of rotating ma-
chinery with massive data. Mechanical Systems and
Signal Processing, 72, 303–315.

Jung, D., Ng, K., Frisk, E., & Krysander, M. (2018). Com-
bining model-based diagnosis and data-driven anomaly
classifiers for fault isolation. Control Engineering
Practice, 80, 146–156.

Jung, D., & Sundström, C. (2017). A combined data-driven
and model-based residual selection algorithm for fault
detection and isolation. IEEE Transactions on Control

Systems Technology, PP(99), 1-15.
Kingma, D., & Ba, J. (2014). Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980.
Krysander, M., Åslund, J., & Nyberg, M. (2008). An efficient

algorithm for finding minimal overconstrained subsys-
tems for model-based diagnosis. IEEE Transactions
on Systems, Man, and Cybernetics-Part A: Systems and
Humans, 38(1), 197–206.

Page, E. (1954). Continuous inspection schemes. Biometrika,
41(1/2), 100–115.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., . . . Lerer, A. (2017). Automatic differenti-
ation in pytorch. In Nips-w.

Pearlmutter, B. (1995). Gradient calculations for dynamic re-
current neural networks: A survey. IEEE Transactions
on Neural networks, 6(5), 1212–1228.

Pernestål, A., Nyberg, M., & Warnquist, H. (2012). Mod-
eling and inference for troubleshooting with interven-
tions applied to a heavy truck auxiliary braking sys-
tem. Engineering applications of artificial intelligence,
25(4), 705–719.

Pucel, X., Mayer, W., & Stumptner, M. (2009). Diagnosabil-
ity analysis without fault models. In 20th international
workshop on principles of diagnosis (dx-09) (pp. 67–
74).

Pulido, B., & González, C. (2004). Possible conflicts: a
compilation technique for consistency-based diagnosis.
IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), 34(5), 2192–2206.

Pulido, B., Zamarreño, J., Merino, A., & Bregon, A. (2019).
State space neural networks and model-decomposition
methods for fault diagnosis of complex industrial sys-
tems. Engineering Applications of Artificial Intelli-
gence, 79, 67–86.

Sankavaram, C., Kodali, A., Pattipati, K., & Singh, S. (2015).
Incremental classifiers for data-driven fault diagnosis
applied to automotive systems. IEEE Access, 3, 407–
419.

Schmidhuber, J. (2015). Deep learning in neural networks:
An overview. Neural networks, 61, 85–117.

Tidriri, K., Chatti, N., Verron, S., & Tiplica, T. (2016). Bridg-
ing data-driven and model-based approaches for pro-
cess fault diagnosis and health monitoring: A review
of researches and future challenges. Annual Reviews in
Control, 42, 63–81.

Tidriri, K., Tiplica, T., Chatti, N., & Verron, S. (2018). A
generic framework for decision fusion in fault detection
and diagnosis. Engineering Applications of Artificial
Intelligence, 71, 73 - 86.

Travé-Massuyès, L. (2014). Bridging control and artificial in-
telligence theories for diagnosis: A survey. Engineer-
ing Applications of Artificial Intelligence, 27, 1–16.

Werbos, P. (1990). Backpropagation through time: what it
does and how to do it. Proceedings of the IEEE, 78(10),

7



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

1550–1560.

BIOGRAPHIES

Daniel Jung was born in Linköping, Sweden in 1984. He
received a Ph.D. degree in 2015 from Linköping University,
Sweden. During 2017, he was a Research Associate at the

Center for Automotive Research at The Ohio State Univer-
sity, Columbus, OH, USA. Since 2018, he is an Assistant
Professor at Linköping University. His current research in-
terests include theory and applications of model-based and
data-driven fault diagnosis, smart grids, and optimal control
of hybrid electric vehicles.

8


