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ABSTRACT 

A standardized taxonomy enables asset-intensive industrial 
organizations to systematically measure and track efficiency 
and performance of assets at different levels in an asset 
hierarchy. Having a well-structured taxonomy also allows 
companies to take advantage of emerging data-driven 
technologies, such as prognostics and health management 
(PHM), through enabling straightforward mapping of assets 
to analytical content specific to equipment commonalities, 
e.g., failure modes. However, the complexity and use of 
equipment taxonomy and coding structures in maintenance 
management systems vary widely for different organizations. 
This paper describes a data-driven approach for identifying 
equipment taxonomy from equipment records in maintenance 
management systems. The approach combines machine 
learning-based and rule-based methods into a hybrid man-in-
the-loop workflow, which enables rapid and consistent 
mapping of equipment into a standard taxonomy. A case 
study is presented to demonstrate the performance and 
challenges of the proposed approach on equipment taxonomy 
classification.  

1. INTRODUCTION 

Business outcomes for asset-intensive industrial 
organizations depend on high performing and reliable 
equipment.  There can be a massive amount of physical assets 
in a single industrial organization which can be organized or 
structured in a variety of ways such as by system, by function, 
or broken down into the smallest component. Having a 
categorization system in place to track all the assets in a 
registry by their function and physical characteristics helps to 
manage and keep track of assets.  An equipment taxonomy is 
a structured way of classifying equipment into hierarchical 
groupings where levels are based on asset similarities.  A 
taxonomy is a classification system for assets that facilitates 

indexing, grouping, saving, searching, and retrieving digital 
data  (Fortin, 2018).  Digitally, taxonomic classifications are 
typically captured as attributes to assets that are stored in an 
asset repository.  Asset repositories are typically stored in 
central computerized systems for maintenance management 
processes such as the Enterprise Asset Management (EAM) 
or Computerized Maintenance Management System 
(CMMS) where the assets are linked to maintenance 
activities such as work planning, scheduling and execution 
(Distefano & Thomas, 2011). 
 
Having a standard and consistent taxonomy in place at an 
industrial organization means there is one single data 
structure and methodology used for classifying assets across 
the organization.  A standardized taxonomy enables a 
systematic way to use data for measuring and tracking asset 
efficiency and performance linked to different levels of the 
hierarchy.  As a result, benefits include the ability to make 
comparisons across an organization as well as the ability to 
deploy “off-the-shelf” content at scale.  For comparative 
analytics across units, sites, or plants to be meaningful, 
measures need to be related to comparable levels of the 
taxonomic hierarchy. For example, it does not make sense to 
compare the reliability and performance of a compressor train 
with a pressure transmitter.  “Off-the-shelf” content which 
depends on specifics such as common failure modes which 
are context sensitive to the asset classification could vary 
from collections of standard lists and codes to templates for 
analyses such as Failure Mode and Effects Analysis (FMEA) 
to highly sophisticated machine learning models for 
prognostics and health monitoring trained for specific signals 
and failure patterns.  In order to deploy any of this content at 
scale across an organization, a standard taxonomy is a pre-
requisite for matching analytic content with appropriate 
industrial equipment.   
 
While the benefits of a standard taxonomy seem 
straightforward, there are many issues which impede direct 
mapping from equipment registries in the EAM/CMMS to a 
standard. In extreme cases, an equipment taxonomy may not 
be used at all and elements characterizing an asset type can 
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only be inferred from various fields in the asset registry 
associated with individual assets.  Other common poor 
practices include fragmented or incomplete entries when a 
taxonomic structure is used and the practice of grouping 
assets together under generic high levels in the taxonomy 
such as an entire system or unit.  For example, all the assets 
in an air-cooling system may be classified as “air cooling 
system” instead of differentiating like-assets such as pumps, 
piping, tanks, heat exchangers, or cooling towers that may be 
part of the system.  In cases where the taxonomies are 
meticulously implemented at a site or company, the 
taxonomy itself may differ between different sites and 
companies, which challenges both the execution of 
comparative analytics as well as the use of repeatable content 
and analytics deployed through a common system.   
 
Information characterizing an asset can usually be found in 
the description fields for the equipment and/or functional 
location in the EAM/CMMS.  Many challenges regarding 
missing or inconsistent taxonomic classifications can be 
addressed through utilizing the unstructured description of 
the asset in the asset registry.  Methods from natural language 
processing (NLP) can be utilized as a means to structure the 
unstructured text.  There have been ongoing efforts to utilize 
methods from NLP on maintenance work order data for 
applications such as characterizing failure events from field 
maintenance data for reliability analytics (Sexton & 
Brundage, 2019) (Sexton, Brundage, Hoffman, and Morris, 
2017) (Sexton, Hodkiewicz, Brundage, and Smoker, 2018) 
(Hodkiewicz, Batsioudis, Radomiljac, and Ho, 2017) 
(Hodkiewicz & Ho, 2016) (Arif-Uz-Zaman, Cholette, Li, and 
Karim, 2016) (Lukens, Naik, Doan, Hu, and Abado, 2017) 
(Lukens & Markham, 2018) (Lukens, Naik, Markham, and 
Laplante, 2019) (Lukens & Markham, 2018).   
 
There are many similarities in the use of NLP to characterize 
maintenance work order data with characterizing equipment 
taxonomy that differ from NLP algorithms applied to 
consumer world applications. As a result, available NLP 
packages which are developed for consumer applications 
often produce inadequate results when applied to industrial 
text data.  Industrial text often contains or refers to implied 
domain knowledge which does not exist explicitly in the text 
itself such as jargon, acronyms/abbreviations, or industry 
specific context.   
 
This paper reviews the importance of a standard equipment 
taxonomy, summarizes challenges with imposing a standard, 
and proposes an approach for mapping equipment to a 
standard taxonomy using the equipment description fields.  
The rest of this article is organized as followed.  Section 2 
summarizes existing standards for equipment taxonomy as 
well as data quality challenges common in equipment 
registries.  Section 3 describes the high-level workflow that 
we have adopted based on the challenges in the data.  Section 
4 presents a case study illustrating the methodology.  The 

paper ends with concluding discussions and suggests future 
research directions. 

2. BACKGROUND 

2.1. Equipment taxonomy and existing standards 

An equipment taxonomy is a systematic classification of 
equipment into a hierarchical grouping where levels are 
based on the complexity of equipment characterization (ISO, 
2004).  For example, “rotating equipment” is a high-level 
characterization which includes pumps, turbines and 
compressors but has similarities that differentiate this 
grouping from other high-level groupings such as 
instrumentation which includes sensors, transmitters, etc., or 
fixed equipment which includes pressure vessels, heat 
exchangers, tanks, etc.  Pumps, which are a class of similar 
rotating equipment, can further be split into centrifugal 
pumps, piston pumps, peristaltic pumps, screw pumps, etc.  
Pumps all have certain commonalities, but there are 
differences between the different types of pumps.  And each 
type of pump has its own set of components, failure modes, 
etc. which may be similar or different.  For example, both 
centrifugal pumps and reciprocating pumps are used for 
pumping liquid and typically experience “seal leaks” as the 
most common failure mode.  However, the mechanism which 
drives these pumps is different – reciprocating pumps push 
liquid through positive displacement forced by a piston while 
centrifugal pumps continuously pump through kinetic energy 
of its impeller.  It is important to be able to both differentiate 
these as two separate equipment groups as well as group both 
together depending on the use case, which is possible when 
an equipment taxonomy is in place. 
 
The equipment taxonomy differs from the functional location 
hierarchy, which is another important hierarchical grouping 
of industrial assets.  The functional location hierarchy 
describes the physical relationship and hierarchy of assets, 
such as from site to unit to area, and also plays a distinct and 
important role.  It is important to distinguish the difference 
between the serialized asset and its functional location 
(Distefano & Thomas, 2011).  While the taxonomy will 
always stay fixed for a serialized asset, the functional location 
may change.  For example, if the asset is a repairable spare it 
may be removed from service, sent out for re-build, and 
possibly re-installed in a different functional location.  Asset 
characterizations at this level are important for being able to 
identify issues with repairable spares.  If failures or 
performance is not tracked against both the serialized asset 
and the lowest level of the functional location, it is extremely 
difficult to determine if a recurring issue is associated with a 
particular location or a poorly-rebuilt asset.  Benefits of a 
functional location hierarchy include ability to locate assets 
in a database when creating work orders, allows roll up of 
performance metrics by physical and functional location, and 
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facilitates organizing and grouping of assets within a 
location.  
 
Standards and best practices do exist for equipment 
taxonomy but vary across different industries and verticals.  
One well used standard in the oil and gas industry is ISO-
14224 (ISO, 2004).  ISO 14224 in general provides 
guidelines for collecting maintenance and reliability data in a 
standard format.  ISO 14224 defines taxonomy with respect 
to recommendations about levels and boundaries and 
provides a suggested standard taxonomy for common assets 
in upstream oil and gas.  While developed for offshore 
structures in oil and gas industries, other companies both 
inside and outside the petroleum, petrochemical, and natural 
gas industries use ISO-14224 as a standard for formatting and 
coding equipment taxonomies (Distefano & Thomas, 2011).  
The KKS Identification System for Power Plants is a 
classification system for power plants (Konigstein, 2007).  
The KKS system includes codes identifying plant equipment 
and its operation ranging from building, structures, and 
equipment levels which can be used for developing databases 
for plant maintenance and management. The KKS system is 
the most widely used in European countries.  The commercial 
aircraft industry uses the concept of “ATA Chapter”, which 
are documented in the Joint Aircraft System/Component 
(JASC) Code Table (JASC, 2002).  ATA chapters categorize 
the various systems that are on a plane such as 
“Communications”, “Equipment/Furnishings” and 
“Pneumatics” and are used in the aviation industry as a 
standardized system to code the different technical features 
of an aircraft. 
 
Currently to date there is no one standard taxonomy that 
captures all industrial use cases.  Due to the wide variety of 
industrial verticals, equipment, and applications, it is likely 
that if one “standard” is ever adopted, it would look more like 
a standard process for managing a centrally stored taxonomy 
than a static list.  The details of a single standard taxonomy 
and how to manage such a list is an open research topic, 
important for all of the reasons described in this paper, but 
beyond the scope of this work. This work assumes that a 
standard taxonomy which is sufficiently-good to capture the 
given data for the desired use case exists.  The case study 
presented in this work specifically uses a home-grown 
taxonomy for equipment that originated from ISO-14224 but 
has evolved as data from other verticals have been included 
as the “standard taxonomy”.  This taxonomy has proven in 
practice to be very effective for consistently describing 
equipment across hundreds of industrial companies in the 
process, power generation and mining industries.  The 
equipment levels used are category, class, and type, 
respectively.   

2.2. The relationship between analytics and equipment 
taxonomy 

ISO 14224 (ISO, 2004) observes that the level of equipment 
taxonomy is directly related to the types of analyses possible, 
and in order to conduct a certain type of analysis, there must 
be information at the required level.  Reliability and 
maintenance data need to be related to a certain level within 
the taxonomy hierarchy in order to be comparable in a 
meaningful way.  Determining the appropriate level of the 
taxonomy for an analysis depends on what the 
challenge/business problem is that the analytic is trying to 
solve.  For example, analyses that link maintenance with 
operations such as availability, production stoppages, or 
quality may be more meaningful at higher levels, while 
analytics that are dependent on failure mode patterns and 
particular sensor measurements are very specific to the type 
of equipment.  Different analytic characterizations are 
reviewed below. 
 
Metric evaluation for benchmarking and comparative 
analytics.  Metrics or key performance indicators (KPI’s) are 
measurable values which can be used both to evaluate the 
effectiveness of a company to meet its goals and to identify 
opportunities by comparing like-assets.  For example, if one 
particular asset is failing three times as much as similar 
assets, comparative analytics offer a way to identify and 
measure the opportunity.  Depending on the use case and 
which metrics are used, it is important to be able to group 
like-assets under any comparable level of both the equipment 
taxonomy and the functional location hierarchy.   

FMEA or asset strategy template.  FMEA or strategy 
templates are templates which list possible failure modes and 
for each failure mode, quantifies the probability and 
consequence of each risk and lists the possible mitigating 
actions.  FMEA or Strategy templates are useful as a starting 
point for creating maintenance strategies (instead of starting 
from scratch).   Linking lists of possible risks and suggested 
mitigating actions must be done at the equipment type level. 

Downtime and availability analysis.  Formally, availability 
is the probability that an asset can perform its intended 
function satisfactorily when needed (Gulati, 2013).  
Availability is a key input measure for estimating 
performance efficiency measured by Overall Equipment 
Effectiveness (OEE) along with quality and performance as 
well as being central to estimating production losses.  Some 
critical and expensive assets and systems can cost a facility 
“money-by-the-minute” when they are unavailable.   In many 
cases, measures of availability may make more sense when 
evaluated at the system or unit level because the system or 
process level is the level that impacts process or plant 
efficiency.  In other cases, such as identifying improvement 
opportunities through comparative analytics, availability may 
make more sense at the asset type level, at the failure mode 
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level, or at different levels of the functional location 
hierarchy. 

Weibull/Reliability distribution analysis.  In Weibull 
analysis, statistical distributions are fit to time-to-failure 
(TTF) data samples in order to make predictions about the 
expected failure times for an equipment population.  
Common statistical distributions used to fit TTF data include 
the Weibull distribution, the Exponential distribution, and the 
Lognormal distribution.  Different failure modes have 
different time-scales and failure properties, so each failure 
mode should be modeled and characterized by its own 
statistical distribution parameters.  For example, some failure 
modes may tend to occur earlier in the lifetime of an asset, 
such as failure modes due to improper installation or 
manufacturing defects.  Other failure modes may be related 
to the wear-out or degradation of an asset and are observed 
later in life.  For statistical distribution fitting, it is essential 
to have failure mode information to fit a statistical 
distribution (Abernathy, 2004), (Meeker 1998). 

Reliability Growth analysis.  While statistical distribution 
analysis is useful for TTF predictions for non-repairable 
assets at the failure mode level, there is also a class of 
statistical models for repairable systems based around Non-
Homogeneous Poisson Processes (NHPP) referred to as 
Reliability Growth models in the reliability community 
(Abernathy, 2004), (Meeker & Escobar, 1998).   Reliability 
Growth models are used when the time between one failure 
to the next is dependent on the time between the previous 
failures for a repairable asset or system.  The most common 
Reliability Growth model is the Crow-AMSAA model, 
which is an NHPP model with the recurrence rate described 
by a power-model.  While there is rich statistical theory 
behind the Crow-AMSAA model, in practice, parameters can 
be simply estimated and the model is very robust for 
applications where understanding recurrent events is of 
interest.  The Crow-AMSAA model is useful for estimating 
next event times for many different event types of interest 
ranging from failures due to a specific failure mode to general 
corrective maintenance events.  For this reason, depending on 
the application of interest, the Crow-AMSAA model can be 
used at different levels of the taxonomy.  However, for 
expected failure predictions the model should be at the asset 
type level.  

Analytic template/blueprint for PHM analytics.  
Typically, diagnostic or prognostic models are built or trained 
from readings from condition-based monitoring (CBM) 
which give measures of system health which can be used to 
report the current state of an asset or for determining 
performance life remaining in an asset.  Different CBM 
technologies may measure different attributes such as flow 
rate, temperature, pressure, vibration, etc. which give 

indications of system health.  For instance, a change in 
differential pressure on an air intake filter in a gas turbine 
could be due to the filter fouling, or increased bearing 
temperatures on a pump could be due to degraded lube oil 
impairing cooling of the bearings.  Models which can capture 
these measures of system health are very specific to the asset, 
the CBM readings, and possible failure modes.  In order to 
deploy such a model at scale there needs to be some sort of 
templatized way to consistently match the analytical models 
to the appropriate assets and signals.   

The different analytical categories discussed above and the 
required levels needed in a standard taxonomy and in the 
functional location hierarchy to deploy these analytics are 
shown in Table 1.  For simplicity, the functional location 
hierarchy is abstracted to two levels; a site or plant level and 
a lower meaningful level describing a functional process 
within a site or plant which can be a unit, an area within a 
unit, or a line.  In practice the functional location hierarchy is 
a key hierarchy by itself that needs to be well defined, be 
consistent across different sites and should standardized in 
the context of the equipment taxonomy, but those levels of 
granularity are not required for the information presented in 
the table.  The levels of the equipment taxonomy are 
expressed by Category/Class/Type.  While there is a 
component/maintainable item level below the equipment 
type, in practice analytics as content would be applied to the 
asset type.  It is important to remark that missing from this 
table (Table 1) is the actual asset itself.  Specifically, what is 
missing is the relationship or mapping between the serialized 
asset to the lowest level of the functional location hierarchy, 
and determining whether an analytic should be mapped to the 
serialized asset or to the functional location is another 
decision to make based on the application and desired output. 

2.3. Data quality challenges in taxonomy 

There are data quality challenges when mapping a standard 
taxonomy to general equipment registries from the 
CMMS/EAM across different sites or companies that can 
make the process not straightforward.  One data quality 
challenge is that sometimes an industrial company will not 
use an equipment taxonomy at all.  The information about the 
asset in the equipment registry may not be based on 
taxonomic coding and instead relies on unstructured 
descriptions, which in turn may contain misspellings, 
abbreviations, or reflects general poor data entry practices.  A 
few examples of cases where the equipment type is not coded, 
but there is information in the description field that could 
possibly is shown in Table 2.   
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Table 1. Mapping different types of analytics that could be developed and deployed as content to the required levels of the 
taxonomy and/or functional location hierarchy needed. 
 

Analytics as content Functional location hierarchy Taxonomy Notes 

Site/Plant 
level 

Unit/area or 
line level 

Equipment 
category 

Equipment 
class 

Equipment 
type 

Benchmarking and 
comparative analytics for 
opportunity identification 

X X X X X Ideally want all 
levels to match to 
enable drill down 
analysis 

FMEA or asset strategy 
template 

    
X Requires common 

failure modes and 
actions 

Analytic template/ blueprint 
for PHM analytics 

    
X Requires common 

failure modes and 
sensor readings 

Downtime and Availability 
analysis  

X X X X X Level depends on 
the application 

Weibull/Reliability 
distribution analysis  

    
X Requires similar 

failure modes 

Reliability growth analysis X X X X X Level depends on 
the application 

Impact of failure or 
maintenance on safety 

X X 
   

Ref: ISO-14224 

Impact of failure or 
maintenance on operations 

X X 
   

Ref: ISO-14224 

Table 2. Examples of equipment descriptions in the case 
where the taxonomy is unavailable (no codes) 
 

Equipment Short 
Description 

Equipment 
type (code) 

Notes 

Fork Lift, 
Manufacturer 
name 

NULL Fork Lift 

GAS TURBINE NULL Gas Turbine 
VALVULA DE 
SEGURIDAD 

NULL Safety Valve 

Feedwater pump NULL Unable to determine 
at a level lower than 
“Pump” 

ABC123-TO-BE-
EDITED 

NULL Unable to determine 

Unknown NULL Unable to determine 
 
The examples in Table 2 illustrate that while often the 
required information is directly found in the text, often it is 
not possible (such as “Unknown”, or “to be edited”).  Further, 
while information about the equipment taxonomy may be 
present, it may not be enough to populate the full taxonomy 

such as “feedwater pump” or “valve”.  It is possible to 
determine that a “feedwater pump” is a pump, but not what 
type of pump.  It is very common for the equipment 
description to contain information about the service or 
location of an asset. 

When the taxonomy codes are available, often the structure 
is fragmented or incomplete.  For instance, assets may be 
coded at too high of a level such as “PIPING”, which may 
contain tens of thousands of pipes, hoses, and supports.  This 
is a barrier to enabling the analyst to roll up and measure 
reliability, asset performance, or cost information. For 
example, Sikorska, Hammond, and Kelly (2008) were faced 
with the challenge of an equipment taxonomy which was not 
constructed to assign a failure to the correct level (In this 
case, it was too high level, so in the default structure, could 
only assign blocked lube oil filter to the whole lube oil 
system).  Sikorska et al. (2008) solved this by creating a 
taxonomy based on ISO 14224 for the data, and stored 
mapping rules linking the standard taxonomy to the CMMS, 
and to the database with reliability content in order to link 
content to the appropriate equipment. 
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2.4. Natural language processing applied to industrial 
data 

NLP has been increasing in popularity as tool for 
characterizing maintenance work events from maintenance 
data in industrial applications.  Many key challenges in 
maintenance data which make straightforward use of 
analytics are also applicable to equipment taxonomy.  
Different data cleansing approaches and challenges for 
maintenance data are extensively reviewed by Hodkiewicz 
and Ho (2016), which are summarized here in the context of 
equipment taxonomy. 
 
Rule-based systems can be used to quickly characterize a 
high volume of text sufficiently well, but managing a rule set 
can grow into increasing complexity and size as data grows.  
Rule-based systems have been used successfully by Sexton 
et al. (2018), and Hodkiewicz and Ho (2016).  Syntactic 
processing such as keyword spotting is a great way to manage 
and generalize rule sets by developing scalable ways to 
manage keyword lists, but are challenged by ambiguities that 
may occur.  For example, the word “motor” can describe a 
motor, or it can be part of something such as “motor-
controlled” or “motor control center”.  The word “pressure” 
alone does not have meaning as an equipment type, but 
becomes essential in the context of “pressure transmitter”, 
“pressure vessel”, “pressure relief valve”, etc.   
 
Machine learning classification is very powerful for making 
predictions based on training data, and has the ability to scale 
with increasing data sizes or complexities.  The challenge 
with classification models is that there needs to be a labeled 
training data set, and the original challenge is lack of labeled 
data (Arif-Uz-Zaman, Cholette, Ma, and Karim, 2017) (He, 
2016) (Sexton et al., 2017).  Assuming there is a sufficient 
volume of labeled data, the first step to building a classifier 
is the process of converting the words into input to machine 
learning classifiers, or vectorization.  The most common way 
for representing text is through a “bag-of-words” (BOW) 
model (Cambria & White, 2014), where words or tokens in 
the text are features.  However, there are many ambiguous 
words in equipment descriptions that could confuse such a 
model, for example if the description contains a higher-level 
system (such as instrumentation on a turbine or compressor), 
or ambiguous words that can have several meanings.  With 
recent advances in recurrent neural networks (RNN) and 
word embedding algorithms such as word2vec (Dos Santos 
& Gatti, 2014) (Goldberg, 2016), there exists the potential to 
handle ambiguous words based on context in the description. 
However, new challenges emerge because a massive amount 
of labeled data is required for these models to perform 
adequately. 
 
Class imbalance is a characterization of equipment taxonomy 
data by its very nature.  There may be one or two gas turbines 
at a powerplant, but thousands of valves, instruments, circuit 

breakers and piping.  Out-of-the-box machine learning 
classifiers are challenged by class imbalance which must be 
addressed for adequate model performance.  Not only does 
the data feature class imbalance, but the example also shows 
how two equipment may not be equal.  There should be 
emphasis on correctly labeling the gas turbine, but correctly 
capturing two pipes or breakers at the lowest level of the 
taxonomy may not be as important. 
 
A challenge for both training models and for enabling 
comparative analytics is consistency between different sites, 
units, or companies.  The information needed to accurately 
characterize taxonomy may not be found in the description 
field, but found in another field somewhere else in the 
CMMS/EAM data.  A couple of examples are shown in Table 
3. The first two rows show the case where identical 
description fields may have completely different codes, while 
the last two rows show how the description field alone may 
not contain the level of granularity to infer equipment type. 
While this is okay in general since the equipment is coded 
and present in the registry, if this labeled data is used to train 
a model to apply to new data, challenges emerge.  If the fields 
are combined in the training, the prediction model may be 
overfit, but if the fields are not combined, key information 
may be lost.  For these reasons, different approaches should 
be used depending on the end goal.  Two distinct end goals 
for taxonomy classification are: (1) predicting or filling in 
standard taxonomy values based on the data descriptions, or 
(2) standardizing equipment taxonomy in the cases where 
codes are inconsistent using the unstructured descriptions as 
well as provided codes.   
 
Table 3. Examples when the description fields alone do not 
capture the appropriate information needed to classify 
equipment taxonomy. 
 

Equipment description Equipment Type (Code) 
Regeneration pump Reciprocating pump 
Regeneration pump Centrifugal pump 
HX-1 Heat Exchanger - Plate 
HX-2 Heat Exchanger – Shell and Tube 

 
The “no free lunch” theorem applies to characterizing 
equipment taxonomy.  We propose a hybrid approach which 
combines machine learning classification algorithms and 
rules-based methods in a workflow with a man-in-the-loop, 
described in the next section.  The machine learning models 
are data-driven and will scale as new data is added, but 
require the data to be cleaned and labeled.  The rule-based 
methods are knowledge-driven and incorporate domain-
expert knowledge to make inferences on the data in a scalable 
way.  The scope of the workflow focuses specifically on the 
first end goal: to predict standard taxonomy values using the 
description fields where none exist.   
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3. METHODS 

We describe the end-to-end workflow and considerations for 
mapping equipment data to a standard taxonomy based on the 
data characterizations from the unstructured description 
fields in the asset registry.  In this case it is assumed that there 
is already equipment data mapped to standard for sites in the 
same vertical which can be used to train a model. Due to 
having training data, at a high level, the workflow is based on 
a standard machine-learning training-prediction workflow, 
where labeled data is used to train a classification model and 
the model is then used to make predictions on unlabeled data.  
However, due to the many challenges in the equipment data, 
many considerations need to be addressed and modifications 
developed in order to execute the workflow.  The high-level 
workflow is shown in Figure 1 below.  

 

 
 

Figure 1. High level standard workflow for training 
classification models on labeled text, and using the models 
to make predictions on unlabeled text.  
 
In the standard workflow, labeled data containing equipment 
descriptions with labeled codes are used to train a 
classification model using supervised machine learning.  The 
first step for developing the model is data pre-processing.  For 
classification models, this involves not only traditional text 
cleaning steps such as removing special characters but also 
word replacement using knowledge dictionaries for feature 
selection/reduction.  Specific knowledge dictionaries 
capturing equipment words and phrases need to be 
developed, and a man-in-the-loop component is introduced to 
develop custom dictionaries for equipment words.  The need 
for knowledge dictionaries arises from the fact that domain-
specific acronyms/abbreviations and misspelling are 
common in equipment data, e.g., xmtr is used in place of 
transmitter; condensor and condensors are used to describe 
condenser.  Once pre-processing is conducted using a 
combination of rules and knowledge dictionaries on the 
labeled data, classification models are trained and selected.  
In developing these models, challenges with quality of 
labeled data emerge and are addressed through introducing 
another man-in-the-loop component. 
 

For unlabeled (new/unseen) data, the expected pathway is to 
run the data preprocessing pipeline that was developed from 
the labeled data, and then runs the trained model on the 
cleaned text to make predictions.  In this case, potential 
incompatibilities of the unlabeled data with the trained model 
emerge (a symptom of lack of sufficient labeled data). The 
workflow is modified to determine which predictions are 
sufficient, and which predictions need review.   

3.1. Model training on labeled data 

3.1.1. Data pre-processing 

Data-preprocessing is essential for any NLP model, but is 
particularly important for unstructured text in industrial 
applications because prevalent spelling errors, abbreviations 
and ambiguities typically lead to many distinct words which 
have the same meaning. Having different words describing 
the same word adds noise to the data, and this leads to 
classification models with poor quality. Data pre-processing 
includes both rule-based and dictionary-based steps for 
cleaning text, feature selection, and keyword extraction.  
Rule-based methods can be blanket applied, while dictionary-
based require managing and maintaining a dictionary.  Text 
pre-processing can also be classified as out-of-the-box, which 
can apply to any industrial dataset, or specialty which is 
specific to a dataset or application.  These 4 combinations of 
text pre-processing steps are summarized in Table 4. We 
utilize the following sequence of text cleanup steps for 
equipment text data: 1) rule-based specialty, 2) rule-based 
out-of-the-box, 3) dictionary-based out-of-the-box, 4) 
dictionary-based specialty. This sequence was found to work 
well with the equipment data. 
 
Table 4. Examples for each of the 4 different combinations 
of rule-based versus dictionary-based text cleaning against 
generic out-of-the-box and specialty. 
  

Out-of-the-Box Specialty 

R
ul

e-
ba

se
d 

• Lowercase  
• Remove special 

characters/numbers 

• Special case rules 
such as remove 
text in (), remove 
equipment ID 

D
ic

tio
na

ry
-

ba
se

d 

• Remove stop words 
such as “are, the, is” 

• Expand contractions 
such as “isn’t” to ”is 
not”. 

• Removal or 
replacement of text 
based on a specific 
case, such as site-
specific jargon or 
abbreviations 

 
Creating dictionaries based on the use case can be used for 
feature engineering, and for keyword extraction.  We use the 
human tagging process developed at the National Institute of 
Standards and Technology (NIST) (Sexton et al., 2017) 
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(Sexton et al., 2018) (Sexton, T., Moccozet S., Brundage, M. 
P., Madhusudanan, N., Hastings, E., & Bones, L).  The 
process catches similar terms, as well as merging important 
N-grams to 1-grams (such as “circuit breaker”, “motor 
control center”, and “relief valve”).  Mapping instances of 
“motor control center” to “motor_control_center” removes 
ambiguities around those instances of the word “motor”. The 
tagging process also identifies stop-words to remove to 
contribute to feature reduction in the cleaned text.  We 
manage the dictionaries in a central database so changes are 
applied immediately in the pipeline. 

3.1.2. Inconsistent label handling 

One of the main challenges in training classification models 
is due to the inconsistent labels of training data as described 
in Section 2.3.   Modifications to the work process include 
adding a data quality check step to automatically flag 
problematic data points with inconsistent labels, and a 
subject-matter expert (SME) to review the labels.  The work 
process for handling inconsistent labels is shown in Figure 2. 
After the data goes through the pre-processing stage, it goes 
through a data quality check.  The data quality check is 
composed of rules such as if the descriptions are identical but 
the labels are different, create a flag to review.  Once the 
flagged entries are reviewed, the training data is preprocessed 
and consistent and ready for model training.     

 
Figure 2. Inconsistency check for labeled data. 

3.1.3. Classification engine 

We use a supervised machine learning approach to build and 
train classification models to predict equipment code from 
equipment text descriptions. We explored two families of 
models; classification models using bag-of-words based on 
the sklearn package (Pedregosa, Varoquaux, Gramfort, 
Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, 
Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, 
and Duchesnay, 2011), and RNN models using word 
embeddings based on keras/TensorFlow (Chollet, 2015). For 
the bag-of-words model, support vector machine (SVM) and 
random forest (RF) algorithms were considered. The 
workflow was built to incorporate flexibility for different 
classifiers for model selection. 

3.2. Unlabeled data modifications 

Once the model was trained on the labeled data, the next step 
is to run the pipeline on the unlabeled data.  However, due to 
challenges discussed in Section 2.3, depending on the size, 
equipment, and vocabulary used in the labeled training 
dataset, it may be inappropriate to predict all of labels for the 
unlabeled data from the training data.  Classification models 
always return a prediction, and while many are valid, many 
can also be invalid.  The workflow aims to utilize the valid 
predictions, necessitating the development of an approach 
which automates the determination of which predictions are 
trustworthy and which are not based on the prediction 
probability and through a compatibility score. 

The compatibility score developed here is the ratio 
comparing the number of features (words) in a new 
description with the vocabulary from the training set.  For 
example, for a description 5 words long, if 4 of the 5 words 
are features in the training set, the compatibility score would 
be 4/5 = 0.8.  The compatibility score is a quick way to 
determine if the equipment described is relevant to the 
training set or if it not.   
 
The workflow for the compatibility check is illustrated in 
Figure 3.  Once the unlabeled data is pre-processed, the 
compatibility score is calculated for each cleaned description.  
For compatible descriptions with a satisfactory prediction 
probability from the trained model, a prediction result is 
produced.  For records with low compatibility scores 
(features that are not captured in the training data), an active 
learning approach is implemented where the SME labels the 
feature set to be fed back to the trained model and the process 
resumes. 

4. CASE STUDY 

In the case study, we walk through the different steps of the 
workflow.  The case study illustrates how the process uses 
labeled data from with 73,000 assets and 110 different 
equipment types to train a classifier and develop preliminary 
word dictionaries, which are then applied to unlabeled data at 
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4 new sites with 42,000 assets.  To protect proprietary 
information, all variables have been anonymized and 
numerical quantities such as counts in classes have been 
mixed.  Enough data is used in the case study to train a model, 
but not enough data to capture all of the features in the 
unlabeled data. 
 

 
 
Figure 3. Compatibility check for unlabeled data. 

4.1. Pre-processing 

After the preprocessing workflow was executed, the number 
of unique words (features) in the training data was reduced 
from about 3,200 features to 2,400 features.  Examples of 
how the text cleaning reduces features is shown in Table 5 
below.  For instance, alpha-numeric characters such as 
“1ABC-YZ-23” are removed and N-grams such as “RELIEF 
VLV” and “Relief Valve” are mapped to “relief_valve” after 
the dictionary-based preprocessing step based on human 
tagging. 

4.2. Model training 

The labeled dataset has 73,000 records with 110 classes of 
unique equipment types. Model performances for support 
vector machine (SVM) and random forest (RF) are 
summarized in Table 6. We compare the accuracy and F1 
score from a test set with 0.7-0.3 train-test split. In this setup, 
70% of the labeled data was used to train models, and 30% 
of the data was held out to test performance of the trained 

models. The SVM model had higher accuracy and F1 for the 
test set, but these values are not impressive at ~70%.  Several 
factors contributed to the low performance of the test set 
including class imbalance. 12% of the class labels contained 
80% of the data in this dataset. Further exploration revealed 
that class imbalance was not the most significant driver of 
low accuracy, it was inconsistent labels. 
 
Table 5. Equipment descriptions before and after text 
cleaning steps, notably application of the corpus specific 
dictionary developed using human tagging. 
 

Equipment 
type 

Raw description Cleaned description 

Relief valve 1ABC-YZ-23 
FILTER PRESS 
AIR RECEIVER 
RELIEF VLV  

filter press air receiver 
relief_valve 

Relief valve HRSG-1 HP 
Drum Pressure 
Relief Valve, PSV 
1234 

hp drum pressure 
relief_valve psv 

Temperature 
indicator 

HP STEAM 
TEMPREATURE 
INDICATOR 

hp steam 
temperature_indicator 

 
Table 6. Performances of SVM and RF models on labeled 
data. 

  Support Vector Machine Random Forest 
Accuracy F1 Accuracy F1 

Train set 85.1 0.849 99.1 0.991 
Test set 71.0 0.703 68.6 0.682 

 

We explored using word embedding algorithms with RNN’s 
using TensorFlow, but did not have better results than 
traditional machine learning algorithms, e.g., SVM and RF. 
Several reasons may have contributed to this result. One, 
neural network models require significantly larger training 
datasets than the dataset we had.  Second, inconsistent labels 
in the data are a high influencer of model performance.  The 
first level of performance gains was to focus our workflow 
on improving the labels of the training dataset. 

4.3. Improving inconsistent labels 

We utilized the main-in-the-loop workflow in Figure 2 from 
to clean up some inconsistent labels. A subject-matter expert 
(SME) manually reviewed texts in the equipment description 
field and modified the equipment class label field if the label 
was incorrect. One SME spent about 3 hours reviewing 
inconsistent labels and, in that time, reviewed and labeled 670 
samples. A preliminary result of model performance from a 
test set using the 670 manually reviewed samples is shown in 
Table 7. The test-set accuracy of data with reviewed labels is 
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significantly higher than the original labeled data for both 
SVM and RF. This result is not surprising because machine 
learning models do not generalize well if the models were 
trained using poor quality data with unreliable labels. To 
further improve the generalizability of our models, additional 
effort is required to review and improve the labels of the 
training dataset. 
 
Table 7. Comparison of performances of SVM and RF 
models trained on the 670 manually reviewed samples before 
and after the labels were reviewed by SME by the consistency 
check. 

 SVM Random Forest 
Accuracy F1 Accuracy F1 

Original 
labels 

55.0 0.53 53.0 0.518 

Reviewed 
labels 

87.5 0.872 83.9 0.833 

 

4.4. Predictions on unlabeled data 

We applied the workflow described in Figure 3 to make 
predictions on unlabeled data containing 42,000 records. The 
SVM model described in Section 4.2 was used to classify the 
unlabeled data. The labeled and the unlabeled data each 
contained about ~2,000 unique words (features) after text 
preprocessing step.  A compatibility check comparing the 
training corpus with the unlabeled corpus revealed that only 
about 1,000 of these features were in common. Several 
factors contributed to the low compatibility including some 
equipment descriptions were found to be in Spanish, and the 
labeled data insufficiently covered the various equipment in 
the unlabeled data.  For example, the labeled data was not 
exhaustive enough to capture all of the equipment on the 
standard taxonomy, and some equipment types were in the 
unlabeled data that were not in the training data.  These 
equipment were filtered out by the compatibility score.   
 
For records with low compatibility (<0.8), a manual review 
by an SME was performed to label features such as stop-
words to reduce feature size and improve training data. For 
unlabeled data with high compatibility, the classification 
results of the trained model were candidate labels.  
Predictions with high predicted probability scores (>0.7) 
were auto-labeled with confidence while others with low 
scores also were candidates to be reviewed by an SME.  
 
Table 8 shows some examples of predicted labels and scores 
by the SVM model on unlabeled data. The first two examples 
have a high compatibility of 1 where all the words had been 
seen in the training data. They also have high prediction 
score, so we can confidently use these results. The third 
example has a low prediction score and needs to be reviewed 
by an SME. The fourth example has low compatibility and 
prediction score; thus, a manual review is needed. 

From the unlabeled dataset, 28% of the equipment 
descriptions were auto-labeled by the trained model using the 
compatibility and prediction score criteria. To measure 
performance of the compatibility check process (Figure 3), 
600 unlabeled descriptions with the lowest compatibility 
scores were reviewed and labeled by an SME.  The 
classification model was retrained with the additional 600 
newly labeled samples.  The number of equipment 
descriptions auto-labeled by the compatibility and prediction 
score criteria rose to 33%. While results show promise for the 
man-in-the-loop workflow, the low numbers (only about 1/3 
of the unlabeled data got auto-labeled by the trained model) 
signify need for additional work, e.g., gathering larger 
labeled data with a diverse range of equipment, before such a 
process can be deployed at scale. 

Table 8. Examples of predictions and scores by SVM model 
on unlabeled data. 
 
# Cleaned 

equipment 
description 

Compatibility Predict 
label 

Predict 
score 

1 pump purge 
check valve 

1.0 Check 
Valve 

0.80 

2 piping 1.0 Piping 0.81 

3 air receiver 1.0 Storage 
Tank 

0.19 

4 weatherproof 
addressable 
breack glass 

0.25 Valve 0.25 

 

5. CONCLUSION 

The workflow proposed in this paper discusses how NLP for 
industrial data can be used for standardization of equipment 
taxonomy using equipment descriptions.  The workflow can 
be used not only for identifying missing fields, it can also be 
used to make existing labeled data more consistent, and can 
be used in companies with multiple sites in order to enable 
comparative analytics. Considerations, challenges, and 
requirements needed to implement and deploy the workflow 
include man-in-the-loop to review data in a prioritized way 
(active learning approach), and data quality challenges with 
both labeled and unlabeled data. 
 
The learning model approach with a feedback loop is an 
advantage of this process.  Another strength is utilizing the 
best of both worlds in multiple cases.  One case is taking the 
strengths of a machine learning model, which is ability to 
scale and capture complex patterns in the training data, with 
the strengths of a rules-based model which does not require 
labeled data, only expert knowledge.  However, due to the 
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low percentage of auto-mapped records in the case study, 
early on in the process there should probably be more 
emphasis on developing and using the appropriate rule-based 
model to get the numbers higher before focusing on the data-
driven models. Another example of strengths and weaknesses 
is using the strengths of a person, which is looking at a 
description and knowing what is, and the strengths of a 
computer, which is to consistently execute extremely 
quickly.   
 
Weaknesses of this approach can be viewed into two broad 
categories: technical weaknesses and functional weaknesses.  
One challenge from technical perspective is model selection 
for classification models. For the smaller training data such 
as in this study, bag-of-words with SVM was sufficient, but 
as the training data grows in size and complexity, when 
should the modelling approach change? Measuring the 
accuracy on the unlabeled data is another challenge. 
Technically, there are statistical methods that could be 
applied to infer the accuracy by sampling the unlabeled data 
and reviewing the predictions.  But functionally this approach 
becomes challenging.  Because the taxonomy is a hierarchy, 
if a model correctly captures the class but does not get the 
type, is it correct?  Is it correct when the type is not in the 
description, but incorrect when that level of information is in 
the description? For example, if one description says “valve”, 
and the model predicts the asset is a generic valve in the valve 
class, and another description says “ball valve” and the model 
also predicts the asset is a generic valve in the valve class, but 
“Ball Valve” is an asset type on the standard list, is that 
incorrect? How do you treat these cases when evaluating 
accuracy of the predictions?  In practice, this will depend on 
the purpose of why the taxonomy is getting mapped, which 
may vary from case to case. 
 
A key assumption made in this work was that a satisfactory 
standard taxonomy already existed and was available. As 
mentioned in Section 2.1, the details of a standard taxonomy 
and how to manage such a list that is applicable across 
industries is an open research topic.  One lesson we learned 
in this study is that there is need to develop approaches to 
manage and grow standard taxonomies based on what is 
observed in the data as well as approaches to synchronize 
breathing standard taxonomies with asset registries.  Such 
work is an important research topic that would have 
usefulness across all industries. 
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NOMENCLATURE 

CMMS Computerized Maintenance Management System 
EAM Enterprise Asset Management 
BOW Bag-of-words 
RNN Recurrent neural network 
SVM Support vector machine 
NLP Natural language processing 
RF Random Forest 
RCM Reliability-centered maintenance 
FMEA Failure mode and effects analysis 
KPI Key Performance Indicator 
TTF Time-to-failure 
NHPP Non-homogeneous Poisson Process 
CBM Condition-based Monitoring 
RCA Root cause analysis 
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