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ABSTRACT 

Unexpected main bearing failure on a wind turbine causes 

unwanted maintenance and increased operation costs (mainly 

due to crane, parts, labor, and production loss). 

Unfortunately, historical data indicates that failure can 

happen far earlier than the component design lives. Root 

cause analysis investigations have pointed to problems 

inherent from manufacturing as the major contributor, as well 

as issues related to event loads (e.g., startups, shutdowns, and 

emergency stops), extreme environmental conditions, and 

maintenance practices, among others. Altogether, the 

multiple failure modes and contributors make modeling the 

remaining useful life of main bearings a very daunting task. 

In this paper, we present a novel physics-informed neural 

network modeling approach for main bearing fatigue. The 

proposed approach is fully hybrid and designed to merge 

physics- informed and data-driven layers within deep neural 

networks. The result is a cumulative damage model where the 

physics-informed layers are used model the relatively well-

understood physics (L10 fatigue life) and the data-driven 

layers account for the hard to model components (e.g., 

contribution due to poor greasing conditions). 

1. INTRODUCTION 

As pointed by Hornemann and Crowther (2018), main 

bearings of onshore wind turbines are subjected to multiple 

failure modes, among which we can mention wear and 

micropitting, false brinelling due to stationary loading, 

electrostatic discharge, cage and guide ring wear, 

manufacturing defects and quality problems. Factors that 

trigger these failure modes in the field include: 

 Operating conditions: wind conditions, hazardous 

weather, machine controls (overload mitigation, yaw 

misalignment, etc.). 

 Environment: wind (extreme cases, turbulence, etc.), 

ambient temperature, humidity, dust, etc. 

 Operator: while some tend to push machines to their 

limit, others are more zealous. 

 Maintenance and services practices: lubricant condition, 

inspection, cleaning, and regreasing frequency, etc. 

Literature reports a number of approaches to main bearing 

life estimation. Butler et al. (2012) focused on utilizing 

supervisory control and data acquisition (SCADA) data to 

forecast the remaining useful life by constructing a residual 

model for bearing temperature. Authors considered variables 

such as main shaft rotational speed, hydraulic brake 

temperature, hydraulic brake pressure, and blade pitch 

position as well as a compensation for ambient temperature. 

As a result, they managed to provide a failure indication with 

a 30 day lead time. Another example is the result published 

by Watanabe and Uchida (2015). Authors estimate wind 

turbine rear bearing fatigue using standard bearing life 

calculations found in ISO 28123. The model uses hub-height 

10 minutes wind data as an input. The model showed good 

agreement with failures observed in Japan. While collected 

field data indicated 𝐿10 = 12.7 years, the model predicted 

𝐿10 = 12 years. Authors also showed how their model could 

be used to quantify life extension through curtailment. 

Yucesan and Viana (2019a) used a fatigue damage 

accumulation model to manage reliability at a wind-turbine 

level across different farms. The results demonstrate that 

fatigue life contributes significantly to bearing failures, 

especially under poor lubrication conditions. They also 

showed how to use the cumulative damage model to promote 

component life extension (assigning turbine-specific 

maintenance through regreasing). 

Lubricant condition drastically affects bearing fatigue life. 

Unfortunately, modeling lubricant performance and 

degradation is incredibly difficult. Zhu et al. (2015) proposed 

a methodology for estimating the remaining useful life of 

lubricant using viscosity and dielectric constant sensor output 

and integrating these parameters as an observation function 

by particle filtering technique to predict remaining useful life 

of the lubricant. Their proposed model was validated by 

Yigit Anil Yucesan and Felipe A. C. Viana. This is an open-access article 

distributed under the terms of the Creative Commons Attribution 3.0 

United States License, which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original author and source are 

credited. 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019 

2 

conducted laboratory experiments. Results of the conducted 

case study show that single observation on dielectric constant 

sensor gives the best accuracy on life prediction. 

This paper proposes overcoming some of limitations in 

modeling bearing fatigue life by infusing physics into 

machine learning models. Namely, we propose modeling 

fatigue life through a recurrent neural network and 

incorporate a pure data-driven approach to model lubricant 

degradation. The proposed approach is fully hybrid and 

designed to merge physics- informed and data-driven layers 

within deep neural networks. The result is a cumulative 

damage model where the physics-informed layers are used 

model the relatively well understood physics (L10 fatigue 

life) and the data-driven layers account for the hard to model 

components (contribution due to poor greasing conditions). 

Recurrent neural networks (RNNs) have been successfully 

used to model time-series (Connor et al., 1994; Sak et al., 

2014; Chauban and Vig, 2015) speech recognition (Graves et 

al., 2013), and many other applications. Only recently, the 

scientific community has studied and proposed architectures 

that leverage formulations based on physics (Yu et al. 2018, 

Raissi and Karniadakis, 2018, Chen et al. 2018, Ruthotto and 

Haber, 2018). Differential equations are used to train multi-

layer perceptrons and RNNs. Nascimento and Viana (2019) 

proposed an RNN cell inspired on cumulative damage 

models (Fatemi and Yang, 1998; Frangopol et al., 2004). 

These models are often used to describe the irreversible 

accumulation of damage (progressive distress) throughout 

the useful life of components or systems. Ultimately, the 

accumulated damage hits a threshold level that is associated 

with repair, partial or total replacement, or even worse than 

that, the retirement, or catastrophic failure of the component 

or system. The interested reader can also find literature on 

Gaussian processes (Schober et al., 2014, Raissi et al., 2018). 

The remaining of the paper is organized as follows. Section 

2 gives an overview on physics-informed neural networks 

and our approach to modeling main bearing fatigue and 

grease degradation. Section 3 describes the case study and the 

design of the neural network. Section 4 presents and 

discusses the numerical results. Finally, section 5 closes the 

paper recapitulating salient points and presenting conclusions 

and future work. There is one appendix at the end of the 

paper, discussing grease degradation modeling, data, bearing 

temperature calculation, and activation functions. 

2. PHYSICS-INFORMED MACHINE LEARNING 

2.1. Recurrent Neural Networks and Cumulative 

Damage Models 

RNNs (Goodfellow et al., 2016) transform a vector of hidden 

states, 𝒅, in the following fashion: 

 𝒅𝑡 = 𝑓(𝒅𝑡−1, 𝒙𝑡), (1) 

where 𝑡 ∈  [0, … , 𝑇] represent the time discretization, 𝒅 ∈
ℝ𝑛𝑑  are the states representing the sequence, 𝒙𝑡 ∈ ℝ𝑛𝑥  are 

input (observable) variables, and 𝑓(. ) is the transformation 

to the hidden state. 

As illustrated in Figure 1-(a), the RNN cells repeatedly apply 

the transformations to the states. These states can be observed 

all the time or only at particular time stamps. Figure 1-(b) 

shows the simplest RNN cell, where a perceptron with a 

sigmoid activation function maps the inputs at time 𝑡  and 

states at time 𝑡 − 1 into the states at time 𝑡. Architecture of a 

single RNN cell can be tailored for desired problem. For 

example, over time, the scientific community working on 

data-driven applications have proposed the LSTM 

(Hochreiter and Schmidhuber, 1997), illustrated in Figure 1-

(c). The cell was designed to (a) improve the predictions of 

the neural network, and (b) mitigate the vanishing gradient 

problem (Goodfellow et al., 2016). 

 

 

(a) Recurrent cells of RNN. 

 

(b) Simple RNN cell. 

 

(c) Long short-term memory (LSTM) cell. 

Figure 1. Examples of recurrent neural networks (RNN) 

cells. In the LSTM cell, the squares are perceptrons with 

pre-defined activation functions; the oval shape is just the 

𝒕𝒂𝒏𝒉 activation. 

Cumulative damage models represent damage at time 𝑡 as a 

damage increment Δ𝒅𝑡  on top of damage 𝒅𝑡−1  at previous 

time step 𝑡 − 1 
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 𝒅𝑡 = 𝒅𝑡−1 + Δ𝒅𝑡 , (2) 

where Δ𝒅𝑡 is often a function of 𝒅𝑡−1 and some other inputs 

𝒙𝑡 at time 𝑡. 

 

We use the repeating cell proposed by Nascimento and Viana 

(2019) to model cumulative damage through RNNs. As 

illustrated in Figure 2, “MODEL” maps the inputs 𝒙𝑡  and 

previous damage 𝒅𝑡−1 into a damage increment Δ𝒅𝑡. In other 

words, the “MODEL” block implements the damage 

increment in the damage accumulation model. If a purely 

physics-based approach is used, “MODEL” is related to the 

physics of failure (which is highly application dependent). As 

it will be discussed in next section, “MODEL” is developed 

to be a hybrid model, where some parts are physics-based 

while others are data-driven. 

 

 
Figure 2. Cumulative damage RNN cell. 

2.2. Physics-Informed Neural Networks for Main 

Bearing Fatigue and Grease Degradation 

Bearing fatigue life is parametrized in terms of the dynamic 

loads and multiplication factors that reflect design, alloy, 

surface treatment, lubrication, and contamination, among 

other factors. As found in the SKF spherical roller bearings 

catalogue (SKF contributors, 2007), the fatigue life is 

calculated by 

 𝐿𝑛𝑚
𝐵𝑅𝐺 = 𝑎1𝑎𝑆𝐾𝐹 (

𝐶

𝑃
)

10/3

 and  𝐿𝑛𝑚ℎ
𝐵𝑅𝐺 =

106

60 𝑁
𝐿𝑛𝑚 (3) 

where 𝐿𝑛𝑚
𝐵𝑅𝐺  is the main bearing rated life (at 100-n) % 

reliability (in millions of revolutions), 𝐿𝑛𝑚ℎ
𝐵𝑅𝐺  is the rating life 

(at 100-n) %reliability (in operating hours), 𝑎1  is the life 

adjustment factor for reliability, see Table 1, 𝑎𝑆𝐾𝐹 is the SKF 

life modification factor, see Figure 3, 𝐶 is the basic dynamic 

load rating (in kN), 𝑃 is the equivalent dynamic bearing load 

(in kN), and 𝑁 is the rotational speed (in rpm). 

The adjustment factor 𝑎𝑆𝐾𝐹  depends on the lubrication 

condition in terms of viscosity (through the viscosity ratio, 𝜅) 

and particulate contamination (through the contamination 

factor, 𝜂𝑐), the equivalent dynamic bearing load 𝑃, and the 

fatigue load limit 𝑃𝑢. 𝜅 is expressed as 

 𝜅 = 𝜈/𝜈1, (4) 

where 𝜈 actual operating viscosity of the lubricant (mm2/s), 

and 𝜈1  rated viscosity, depending on the bearing mean 

diameter and rotational speed, (mm2/s). 

When a bearing operates at different load and rotational speed 

levels, the rated lives are obtained through Palmgren-Miner’s 

rule 

 
𝐿𝑛𝑚

𝐵𝑅𝐺 =
1

∑
60𝑁𝑖𝑡𝑖
𝐿𝑛𝑚𝑖

  and 𝐿𝑛𝑚ℎ
𝐵𝑅𝐺 =

1

∑
60𝑁𝑖

𝐿𝑛𝑚ℎ𝑖
𝐵𝑅𝐺

 
(5) 

where 𝑡𝑖  is number of hours the turbine ran at 𝑁𝑖  rpm. In 

other words, the Palmgren-Miner’s rule characterizes the 

incremental damage at each cycle: 

 Δ𝑑𝑡
𝐵𝑅𝐺 =

𝑛𝑡

𝐿𝑡
𝐵𝑅𝐺  (6) 

where, the subscript 𝑡  indicates the time step and 𝑛  is the 

number of cycles per time step. 

Table 1. 𝒂𝟏  life adjustment factor (SKF contributors, 

2007). 

 

 

Figure 3. 𝒂𝑺𝑲𝑭 life adjustment factor (SKF contributors, 

2007). 

 

We used data available in the SKF catalogues to determine 

the virgin grease curves and then we arbitrarily chose the 

degraded grease curves. There are several curves that 

represent grease types with different viscosity grades (VG) 

given in the SKF plot for lubricant viscosity calculation. We 

picked VG 320 for our case study as the virgin (undamaged) 

grease behavior, following recommendations found in the 

Schaeffler catalogue (Schaeffler contributors, 2016). As for 

contamination factor, we considered that virgin grease would 

present slight contamination (as per SKF catalogue), while 
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degraded lubricant would present very severe contamination 

(as per SKF catalogue). Figure 4 illustrates the variation of 

grease properties for the virgin and degraded greases. 

 

(a) Grease viscosity vs. bearing temperature 

 

(b) Contamination factor vs. viscosity ratio 

Figure 4. Viscosity and contamination factor for virgin 

and degraded grease. 

It is challenging to build a purely physics-based model for 

bearing fatigue life, since grease degradation is extremely 

complex. There are attempts to build physics-based models 

for grease life, but it is not clear how they relate to field 

conditions (see Appendix A for one example of such models). 

Here we propose a cumulative damage model for bearing 

fatigue life that is a hybrid of physics and machine learning. 

This way, a recurrent neural network (RNN) can be built such 

that: 

 𝒅𝑡 = 𝒅𝑡−1 + Δ𝒅𝑡 , (7) 

where: 

 𝒅𝒕 = [𝑑𝑡
𝐵𝑅𝐺 𝒅𝑡

𝐺𝑅𝑆], 

                                                           
1  The LSTM cell uses single layer perceptrons with pre-

defined activation functions, shown as squares in Figure 1-

(c). Here, our model uses a multilayer perceptron. 

 𝑑𝑡
𝐵𝑅𝐺  is the bearing cumulative damage, which damage 

increment Δ𝑑𝑡
𝐵𝑅𝐺  is based on published lifing curves for 

bearing fatigue, and 

 𝒅𝑡
𝐺𝑅𝑆  is the grease cumulative damage, which damage 

increment Δ𝒅𝑡
𝐺𝑅𝑆  is modeled through a multilayer 

perceptron model. 

With that, we propose the repeating RNN cell illustrated in 

Figure 5 to model the bearing and grease cumulative damage. 

This RNN cell takes wind speed (𝑊𝑆𝑡 ) and the bearing 

temperature ( 𝑇𝑡 ) as input variables. The cell will be 

recurrently used, as in Figure 1-(a), updating both the grease 

and bearing damages from previous time step ( 𝒅𝑡−1
𝐺𝑅𝑆  and 

𝒅𝑡−1
𝐵𝑅𝐺 , respectively). While 𝑊𝑆𝑡  is mapped to equivalent 

dynamic bearing load (𝑃𝑡) (see Figure 6), 𝑇𝑡 and cumulative 

grease damage from previous time step (𝒅𝑡−1
𝐺𝑅𝑆) are used to 

calculate grease damage parameters 𝜅𝑡 and 𝜂𝑐𝑡
 (as in Figure 

4). Combined with 𝑃𝑡, these parameters are incorporated to 

evaluate inverse life adjustment factor 1/𝑎𝑆𝐾𝐹𝑡
 (see Figure 

3), which is then multiplied with non-adjusted bearing fatigue 

damage increment ( 𝑛𝑡/𝑁𝑡 ) for bearing fatigue damage 

increment (Δ𝑑𝑡
𝐵𝑅𝐺 ) calculation (Eq. 3-6). The data-driven 

portion of the hybrid model is given by prediction of grease 

damage increment ( Δ𝒅𝑡
𝐺𝑅𝑆)  via multilayer perceptron 1 

(MLP) using 𝑃𝑡 , 𝑇𝑡 , and 𝒅𝑡−1
𝐺𝑅𝑆  as inputs. The MLP 

architecture is further discussed in Section 3.4. The MLP 

calculates increments to the grease damage that are then 

added to damage values from previous time step. In this 

scheme, while we maintain a physics portion with bearing 

fatigue accumulation, we also compensate the missing 

physics knowledge within the grease model with the help of 

neural networks. The training of this RNN aims at calibrating 

the MLP using grease damage observations and let it learn 

the damage accumulation on grease. 

 

Figure 5. Physics-informed neural network framework for 

main bearing fatigue and grease degradation. 
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3. CASE STUDY 

3.1. Wind Turbine Model 

In our case study, we chose a 1.5MW wind turbine with 80 

meters hub height, equipped with a main bearing in the three-

point mounting configuration. Table 2 provides some key 

parameters of wind turbine and main bearing used in our 

cased study. 

Table 2. Wind turbine and main bearing specifications 

 

Main bearing 

Designation SKF 230/600 CAW33 

Basic dynamic load rating 𝐶 6000 kN 

Fatigue load limit 𝑃𝑢 750 kN 

Mass 405 kg 

Mean diameter 𝑑𝑚 735 mm 

Wind turbine 

Rated power 1.5 MW 

Cut-in wind speed 3.5 m/s 

Rated wind speed 12 m/s 

Cut-out wind speed 25 m/s 

Maximum rotor speed 20 rpm 

Hub height 80 m 

 

Mapping from wind speed to dynamic bearing loads is 

maintained using a published National Renewable Energy 

Laboratory (NREL) report (Sethuraman et al., 2015), which 

involves a plot that provides dynamic load value for a given 

wind speed condition for the same type of main bearing we 

used in our case study, mounted on a 1.5MW wind turbine. 

Rotational speed output is calculated using the power curve 

of the wind turbine. Load, power, and rotational speed curves 

are provided in Figure 6. 

3.2. Nominal Wind Speed and Bearing Temperature 

Site-specific data is obtained from a database also provided 

by NREL (Draxl et al., 2015), which includes environmental 

data at one hour resolution between 2007 and 2013 for 

126,000 different locations throughout the United States. For 

the present case study, we arbitrarily chose Clayton, NM 

without any particular reason. Although data does not come 

directly from an actual wind park, we believe the NREL data 

provided for Clayton, NM is representative of a region in the 

USA with high penetration of wind energy. 

In order to mimic SCADA systems, the original NREL 

environmental data is augmented (upsampling) to achieve the 

10 minute resolution. Data is also extended up to 30 years to 

be used for long term bearing fatigue life predictions. Details 

of the data augmentation are given in the Appendix B. On top 

of that, since main bearing temperature is not originally 

available, we use an analytical model to estimate these values 

based on ambient and produced power. The details are given 

in Appendix C. At the end, the time series that we consider 

nominal conditions for wind speed and bearing temperature 

are shown in Figure 7. In order to generate synthetic set of 

wind turbines we divided 7 years of data into segments of 6 

months which yields to 14 different data sets that we treat as 

14 different turbines. We partitioned these machines into 10 

training and 4 validation turbines. 

 

 

(a) Power curve 

 

(b) Rotational speed 

 

(c) Equivalent dynamic bearing load 

Figure 6. Wind speed mapping for case study turbine. 
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Figure 7. Time series for wind speed and main bearing 

temperature. Data is represented in gray and trend is plotted 

in blue (monthly moving average to highlight any 

seasonality). 

 

3.3. Grease samples 

In essence, the bearing fatigue model needs information 

about the viscosity and contamination of grease over time. In 

real life, one way to obtain these grease parameters is through 

periodic sampling and laboratory analysis. With the process 

repeated continuously, the parameters used in bearing fatigue 

estimation could be updated, which would allow for accurate 

lifing of the component. 

Here, we create synthetic grease samples using the model 

described in Appendix A. In order to make the study more 

interesting, the effect of grease state on grease related 

parameters like viscosity and contamination is described by a 

quadratic relationship (see Figure 8): 

 𝑑𝜂𝑐 = 𝑑𝜅 = 1/(𝐿𝐺𝑅𝑆)2 (8) 

where 𝑑𝜅 is damage in terms of viscosity, 𝑑𝜂𝑐 is damage in  

contamination, and 𝐿𝐺𝑅𝑆 is the life of grease (see Eq. 14 in 

Appendix A).  

After determining the damage value, we use it as a factor to 

interpolate between curves assigned as virgin and degraded 

states of the lubricant (see Figure 4): 

 𝜈 = 𝑑𝜅 (𝜈𝑑𝑒𝑔 − 𝜈𝑣𝑖𝑟) + 𝜈𝑣𝑖𝑟 , (9) 

 𝜂𝑐 = 𝑑𝜂𝑐  (𝜂𝑐𝑑𝑒𝑔
− 𝜂𝑐𝑣𝑖𝑟

) + 𝜂𝑐𝑣𝑖𝑟
 (10) 

where 𝜈 and 𝜂𝑐 are viscosity and contamination factor of the 

grease respectively. 

 

 

Figure 8. Quadratic relationship between grease life and 

damage. 

Equations (8)-(10) are rather arbitrary and they are only used 

here as a way to generate synthetic grease sample data. As 

mentioned before, wind farm operators could obtain data for 

viscosity and contamination through grease sample analysis. 

In addition, here we consider the effect of grease degradation 

on viscosity and contamination as the same. In reality, the 

effect of damage on different grease parameters might differ 

from each other. For the sake of the RNN model, the grease 

damage vector is: 

 𝒅𝐺𝑅𝑆 = {𝑑𝜅 , 𝑑𝜂𝑐} (11) 

We build our synthetic grease sample data by assuming that 

grease analysis is conducted at the end of every month 

continuously for a period of six months. The sampling 

procedure essentially assess the level of degradation of 

grease. By this logic, we collect 𝑑𝜅 and 𝑑𝜂𝑐 values for each 

turbine at the end of each month for six months. We also 

assume that full regreasing of main bearing occurs every 6 

months. In terms of modeling, regreasing basically resets the 

grease damage back to zero (i.e., 𝑑𝜅 = 𝑑𝜂𝑐 = 0  after 

regreasing). 

3.4. Physics-informed Neural Network Design 

We considered the following information is available: 

 for every turbine in the fleet: wind speed and main 

bearing temperature from SCADA (inputs for the model 

as described in Section 2.2), and 

 for part of the fleet: grease damage metric, 𝒅𝐺𝑅𝑆 , 

observed every month for six months straight. 

With that information, we proceed to build a hybrid physics-

informed neural network model for bearing fatigue. In this 

model, the grease degradation increment, 𝜹𝒅𝐺𝑅𝑆, is a multi-

layer perceptron and the bearing damage accumulation is 

physics-based. Table 3 details the multilayer perceptron used 

in this work. Dense #0 is a perceptron without activation 

function that only scales the inputs (weights and bias selected 

such that inputs are normalized between zero and one). For 

layers Dense #1 and #5 we used sigmoid activation function, 

while for layers Dense #2, #3, and #4 we chose 𝑒𝑙𝑢 activation 
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(See Appendix D for details on activation functions). This 

way, the total parameters number of parameters is 1,263 (out 

of which 1,251 are trainable and 12 are non-trainable).  

Table 3. Grease degradation increment MLP, 𝜹𝒅𝑮𝑹𝑺, layer 

details. 

Layer Output shape # params Trainable? 

Dense #0 (None, 3) 12 N 

Dense #1 (None, 40) 160 Y 

Dense #2 (None, 20) 820 Y 

Dense #3 (None, 10) 210 Y 

Dense #4 (None, 5) 55 Y 

Dense #5 (None, 1) 6 Y 

 

We decided to use this architecture to illustrate the ability to 

fit a neural network with a large number of trainable 

parameters. No attempt was made to further simplify the 

multi-layer perceptron. In practical applications, we believe 

reducing the model is worth pursuing, as it could potentially 

lead to a more manageable number of trainable parameters 

without sacrificing accuracy. 

The constructed MLP essentially takes three inputs (wind 

speed, bearing temperature, and current 𝒅𝐺𝑅𝑆) and provides 

one output ( 𝜹𝒅𝐺𝑅𝑆 ). However, 𝜹𝒅𝐺𝑅𝑆  is never observed. 

Instead, the cumulative damage 𝒅𝐺𝑅𝑆  is observed through 

grease sample laboratory analysis. Here, we used the mean 

squared error as the loss function while optimizing the 

trainable parameters of the MLP model within the RNN. 

Since we have the 𝒅𝐺𝑅𝑆  observation only at grease 

inspection, we write the loss function to only account for the 

prediction error at these data points: 

 𝐿𝑜𝑠𝑠 =
1

𝑁𝑇𝑁𝑂

∑ ∑(𝒅𝑖𝑗
𝐺𝑅𝑆 − �̂�𝑖𝑗

𝐺𝑅𝑆)
2

𝑁𝑂

𝑖=1

𝑁𝑇

𝑗=1

 (12) 

where 𝑁𝑇 is the number of turbines within the training set, 

𝑁𝑂 is the number of observations for a single turbine, 𝒅𝑖𝑗
𝐺𝑅𝑆 is 

the 𝑖𝑡ℎ observation of grease damage (from sample results) 

for 𝑗𝑡ℎ turbine, and �̂�𝑖𝑗
𝐺𝑅𝑆 is the predicted grease damage for 

the 𝑖𝑡ℎ grease sample of the 𝑗𝑡ℎ turbine. 

It turns out that optimizing the 1,251 can be a challenging 

task. An initial point far away from actual relationship might 

cause divergence or very long time of training process. 

Therefore, initializing the weights and biases of this neural 

network model can greatly improve the training process. We 

propose constructing a simple linear plane representation of 

the input output relationship: 

𝑦 =  𝛼0 + 𝛼1𝑥1 + 𝛼2𝑥2 + 𝛼3𝑥3 (13) 

                                                           
2 

www.tensorflow.org/api_docs/python/tf/keras/optimizers/R

MSprop  

where, 𝑥𝑖  are normalized inputs, and 𝑦  is the output. The 

coefficients are initialized using engineering judgement. For 

example, we assume that 𝜹𝒅𝐺𝑅𝑆  increases with increasing 

bearing temperature, therefore the regression coefficient on 

bearing temperature has to be positive. For illustration 

purpose, one of the randomly generated plane is plotted 

against the actual input output relationship in Figure 9. In this 

illustration, wind speed and bearing temperature are the two 

inputs of MLP and the grease damage increment 𝛿𝑑𝐺𝑅𝑆 is the 

output of the MLP. The orange surface in the plot represents 

the actual (but unknown) input output behavior and the blue 

plane is the approximation to this behavior given by the MLP. 

Note that the third input variable grease damage is fixed to 

0.5 for this plot, in order to make 3D plotting possible. 

 

 

Figure 9. Plane approximation to actual data. Note that in 

this illustration the third variable, 𝒅𝑮𝑹𝑺, is fixed to 0.5. 

We initially train our MLP model with the plane 

approximation. To achieve that, we used the RMSprop 2 

optimizer set with learning rate 0.01 and 500 epochs. We 

used the mean square error as the loss function. Second stage 

of the training process is fine tuning the pretrained (i.e., 

initialized) MLP models inside RNN framework using the 

masked mean square error given in Eq. 12 as the loss 

function. Again, we used the RMSprop optimizer, but this 

time set with learning rate 5 × 10−4 and 50 epochs.  

In Section 4. Results and Discussion, we show how the RNN 

performs when initialized with 10 different randomly 
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generated 𝛼𝑖  coefficients (all constrained by engineering 

judgement of how inputs affect the output). 

3.5. Replication of results 

Our implementation is all done in TensorFlow 3  (version 

2.0.0-beta1) using the Python application programming 

interface. In order to replicate the results presented here, the 

interested reader can download the codes and data. First, 

install the PINN python package (base package for physics-

informed neural networks used in this work) available at 

Viana et al (2019). Then, clone the “pinn_wind_bearing” 

repository found in Yucesan and Viana (2019b). This 

repository includes two sets of the code. The basic set of 

codes contains a script that trains the RNN using a pretrained 

MLP model with fixed initial weights, and another script that 

predicts the fatigue damage accumulation of the wind turbine 

main bearing for 6 months. The advanced set of codes 

contains scripts that (1) generates a random plane 

approximation for MLP training, (2) trains the MLP with 

randomly generated initial weights, (3) trains the RNN using 

trained MLP model, and (4) predicts the fatigue damage 

accumulation of the wind turbine main bearing for 30 years. 

The data used in this work is also publicly available in 

Yucesan (2019). Download the data and extract folders inside 

wind_bearing_dataset to the directory where the 

“pinn_wind_bearing” repository is cloned). 

4. RESULTS AND DISCUSSION 

 Figure 10 and Figure 11 present the variation of 𝒅𝐺𝑅𝑆, wind 

speed, and bearing temperature versus time for two wind 

turbines within the set. This helps visualizing the diversity in 

our training set. In these figures, blue lines in wind speed and 

temperature plots show the trend of the data, from which we 

can observe the seasonality. 

As detailed in Section 3, we generated 10 random planes (as 

exemplified in Figure 9) to initialize the weights and we 

named these initializations as Case 1-10. After that, we 

compared the performances of these planes against the actual 

(but unknown) value of 𝜹𝒅𝐺𝑅𝑆, as shown in Figure 13. As we 

expected, predictions are far away from accurate, since we 

randomly generated plane coefficients to approximate input-

output relationship of MLP. However, in some cases (such as 

Case 1), trend of the predictions are somewhat aligned with 

the actual values. Figure 13 provides a good understanding of 

how the initial approximations may vary from one another. 

While Case 1 in the Figure 13-(a) is an example of relatively 

accurate initial approximation, Case 9 shown in Figure 13-(b) 

is a poor approximation for the input-output relationship. In 

the presence of engineering intuition or an educated guess 

about the inputs and output, it is possible to suggest more 

accurate initial relationship that would enhance the training 

afterwards. In practice, one would not know how well the 

                                                           
3 www.tensorflow.org 

initial weights represent the true behavior of 𝜹𝒅𝐺𝑅𝑆 . The 

interesting and challenge case of using RNNs for cumulative 

damage is that the MLP models a hidden output. In other 

words, although the cumulative damage 𝒅𝐺𝑅𝑆is observed, the 

damage increment 𝜹𝒅𝐺𝑅𝑆is not. Nevertheless, since we are 

using synthetic data in this study, we can afford illustrating 

the performance of the MLP even before training. 

 
(a) 𝒅𝐺𝑅𝑆 variation 

 

 
(b) Wind speed variation 

 

 
(c) Bearing temperature variation 

Figure 10. Turbine 2 time series. 
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Figure 12 illustrates the variation of actual 𝒅𝐺𝑅𝑆  and 

observation points (provided to model for training) at the end 

of each month for six months of duration. We can see that not 

all 𝒅𝐺𝑅𝑆 does not evolve at the same rate across the turbines 

in the training set (due to difference in the inputs). 

 
(a) 𝒅𝐺𝑅𝑆 variation 

 

 
(b) Wind speed variation 

 

 
(c) Bearing temperature variation 

Figure 11. Turbine 9 time series. 

After the initialization of the weights, the MLP is integrated 

into the RNN framework. Figure 14 illustrates the prediction 

capability of RNN before training, after training, and with 

validation turbines for two different cases. Unless we are 

extremely lucky with our random plane generator and have 

an excellent approximation of input output relationship, we 

should expect inaccurate estimations without training. Blue 

data points in Figure 14 show the inaccuracy of the model 

before it is trained. After we train our model separately for 

each cases, we observe predictions are getting better relative 

to their prior values. The importance of initial weights of the 

MLP makes a difference here. Using same number of epochs 

and same optimization settings, while Case 1 almost aligns 

with 45° line, Case 9 fails to approximate the actual values, 

as we can observe from red data points. Same trained models 

are used to predict for validation turbines. Note that not a 

single data point from validation turbines is used in the 

training of the model. Black data points in Figure 14 implies 

that the performance of trained RNN model is almost the 

same with training and validation turbines. Overall, it is safe 

to say the model can learn the 𝒅𝐺𝑅𝑆 propagation, depending 

on the initial approximation of the weights of MLP. 

 

 
Figure 12. All turbines 𝒅𝑮𝑹𝑺 propagation and observations. 

In Figure 15, we presented all 10 cases, where we initiated 

the weights randomly and trained within the RNN 

framework. As we can see from Figure 15, initiating the 

weights as a random plane yields to a well-trained model in 

almost 4 out of 10 cases (Case 1, 2, 3, and 10), fairly well in 

3 out of 10 cases (Case 4, 5, and 7), and inaccurate in 3 out 

of 10 cases (Case 6, 8, and 9). When we look at this figure 

from a broad perspective, we can conclude that initiating 

weights using a random plane is an accurate approximation 

in this study, such that in a fair amount times it helps the 

model to capture the behavior of data and trains to smaller 

errors. Note that errors presented are calculated by 

subtracting prediction of 𝒅𝐺𝑅𝑆  from true value of 𝒅𝐺𝑅𝑆  at 

observation points. It can be also inferred from Figure 15 that 

the model tends to overestimate the damage in the almost all 

of the cases. This tendency provides conservatism to the 

model, which is a preferred type of error in safety assessment 

applications. 
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(a) Case 1 

 

 
(b) Case 9 

Figure 13. Normalized outputs of randomly generated plane 

representations against actual output values. In some cases 

like Case 1 (a), randomly generated approximation provides 

relatively good results even before training phase. However, 

as shown in Case 9 (b), some planes are not good 

representations. 

Finally, we implemented our trained models into our larger 

physics-informed neural network model (Figure 5) to 

estimate bearing fatigue damage. We chose only three of the 

best cases we have in the previous simulations (Cases 1, 7, 

and 10) for convenience. If we compare the prediction results 

of the model with actual 𝒅𝐺𝑅𝑆 variation (as in Figure 17), we 

can observe the projection of overestimation errors vividly. 

While Cases 1 and 10 captures the trend of the variation, Case 

7 is always off with the prediction. However even Cases 1 

and 10 are overestimating the damage value for the most of 

the time before every 6 months of regreasing cycle. 

 

 
(a) Case 1 

 

 
(b) Case 9 

Figure 14. RNN predictions before and after training, and 

validation turbines. 

 

 
Figure 15. Box plot for before and after training and 

validation errors. 

Figure 16 shows the change in the loss function during the 

training phase. It is obvious that after only a few epochs, all 
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cases can converge to a value, which indicates the ability of 

rapid learning of the model. 

 

 
Figure 16. Loss function variation per epoch for all cases. 

This error in 𝒅𝐺𝑅𝑆 estimation is also reflected on the bearing 

fatigue damage accumulation. In Figure 18, damage 

accumulation of different scenarios are illustrated up to 

failure. Fully degraded and non-damaged (virgin) grease 

curves represent bearings operating under constant state of 

grease, failed and pristine states respectively. These two 

curves form an envelope in the plot, since they are the 

extreme cases for this machine. Actual curve is where grease 

degradation is observed and the component is fully regreased 

every 6 months. Along with these envelopes, dashed curves 

represent the estimations of our PINN models. As mentioned 

before, the error in 𝒅𝐺𝑅𝑆  estimation causes the model to 

overestimate bearing fatigue as well. However, our best 

models (Case 1 and 10) were able to predict the failure only 

with a few months earlier, which can be described as good 

estimates relative to ~16 years of total life. 

 
Figure 17. 𝒅𝑮𝑹𝑺 propagation for three different cases. 

 
Figure 18. Bearing fatigue damage propagation for three 

different cases. 

5. CLOSING REMARKS AND FUTURE WORK 

In this contribution we modeled wind turbine main bearing 

fatigue damage accumulation with a physics-informed 

machine learning approach. We took the advantage of known 

physics about how the damage is accumulated throughout 

each cycle of its life and we leveraged the learning 

capabilities of deep neural networks to model relatively 

unknown lubrication effect on the failure mode. 

With the help of a numerical study, we learned that: 

 initialization of the weights of MLP is crucial: a set 

of initial weights that is far away from optimum 

would not lead to accurate prediction, 

 the dependency of initial weights can be overcome 

through engineering-based weight initialization, 

 and provided a plausible initial point, artificial 

neural networks can capture the grease degradation 

trend with a small error by training only with a few 

observation points. 

Concluding remarks that we inferred from this study are: 

 even though prediction errors exist for grease 

damage increment, we can estimate the fatigue life 

of the bearing with a decent accuracy, 

 the small overestimation in grease damage 

accumulation yields to a conservative prediction 

error in bearing fatigue life estimation, 

 and we can utilize this hybrid approach on fatigue 

damage accumulation of wind turbine main bearings 

for accurate fatigue life prediction. 

Building on top of this work, we would like to improve our 

contribution by: 

 improving the design of the MLP to obtain the best 

prediction capability we can achieve, 
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 addressing other uncertainties within the model (e.g. 

loads model, sampling process etc.) and 

compensating them using deep neural networks, 

 and expanding our case study with multiple wind 

farms located in sites with different environmental 

conditions, and mature our model to eventually 

generate a farm level reliability report. 
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APPENDIX 

A. GREASE DEGRADATION 

Grease degradation is an extremely complex phenomenon to 

understand, let alone model. In this paper, we adopted a 

simplified model that relates grease life with bearing 

temperature and a number of adjustment factors: 

 𝐿𝑛𝑚
𝐺𝑅𝑆 = 𝐿𝑛𝑚

𝐺𝑅𝑆∗
 𝐾𝑁 𝐾𝐵  𝐹1 𝐹2 𝐹3 𝐹4 𝐹5 𝐹6 (14) 

Figure 19-(a) illustrates how grease service life varies with 

temperature. Most adjustment factors are given in Table 4. 

 𝐹3 is a factor that accounts for dynamic load variation and it 

is shown in Figure 19-(b). As stated by Lugt (2009), the 

bearing life is commonly expressed in terms of L10 life (as a 

safety factor to account for the variation in grease properties). 

As also discussed in the same paper, L50 life of grease can 

be approximated as the double of L10 life. Similarly to 

bearing fatigue, we used the Palmgren-Miner’s rule. 

 

 

(a) Nominal grease service life versus bearing temperature 

 

(b) Grease life adjustment factor depending on the 

dynamic load 

Figure 19. Grease life and 𝑭𝟑 adjustment factor. 

 

Table 4. Grease related modification factors and rated 

viscosity. 
Parameter Value Account for 

𝐾𝑁 7.69 Bearing design 

𝐾𝐵 0.15 Spherical bearing design 

𝐹1 0.8 Dust and humidity 

𝐹2 0.9 Shock, vibration, and 

oscillation 

𝐹4 1.0 Air flow 

𝐹5 1.0 Rotating outer ring 

𝐹6 1.0 Vertical shaft arrangement 

𝜈1 119 mm2/s Rated viscosity 

B. DATA AUGMENTATION 

Wind turbines are equipped with supervisory control and data 

acquisition (SCADA) systems, which most commonly 

records sensor and controls data every 10 minutes. For the 

sake of this study, wind speed and main bearing temperature 

would be available through SCADA on a turbine-by-turbine 

https://doi.org/10.1234/phmconf.2018.v10i1.513
https://github.com/PML-UCF/pinn_wind_bearing
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basis across the entire fleet of interest. Here we built synthetic 

data starting from a database made available by NREL. The 

NREL database has ambient temperature and wind speed at 

80 meters recorded at every hour. 

To mimic recorded SCADA data, we bootstrapped data from 

the original NREL database. Each day is represented by eight 

bins of three hours segments and each bin aggregates a week 

worth of data. In other words, each bin has 21 coming from 

the same 3 hours of the day across a week. We then sample 

at random (with replacement) from this pool to fill in the extra 

5 points per hour needed within each bin. This process is 

repeated with a sliding weekly window throughout the year 

so that seasonality is preserved. 

While the NREL database covers seven years (from 2007 to 

2013), some of our simulations needed data for up to 30 

years. To overcome this limitation and also to provide a 

mechanism for forecasting damage accumulation. Again, we 

bootstrapped from the previously augmented data binning it 

at every then minutes by time of the day and day of the year 

across the seven years. We calculated the mean and standard 

deviation of each bin and assuming normal distribution, we 

sampled data points for the same time stamp of the forecasted 

year. 

C. BEARING TEMPERATURE CALCULATION 

While main bearing temperature would be available through 

SCADA, in our study we had to estimate it (as it was not 

available in the NREL database). In this study, we leveraged 

the model proposed by Cambron et al. (2017). In essence, the 

main bearing temperature is described by a recursive model 

as a function of previous bearing temperature, nacelle 

temperature, angular velocity, and generated power value: 

𝑇𝐵𝑅𝐺(𝑡)
= 𝛽1𝑇𝐵𝑅𝐺(𝑡 − 1) + 𝛽2𝑇𝑁𝑎𝑐𝑒𝑙𝑙𝑒(𝑡) + 𝛽3𝑁2(𝑡)

+ 𝛽4𝑃𝑤𝑟(𝑡) 

(15) 

where: 

 𝑇𝐵𝑅𝐺  is the bearing temperature (K) 

 𝑇𝑁𝑎𝑐𝑒𝑙𝑙𝑒  is the nacelle temperature (K) 

 𝑁 is the angular velocity (rad/s), 

 𝑃𝑤𝑟 is the power generated (MW), and 

 𝛽𝑖 are the regression coefficients, see Table 5. 

Table 5 Regression coefficients for recursive bearing 

temperature model (Cambron et al., 2017). 

Coefficient Value Unit 

𝛽1 0.987  

𝛽2 0.0113  

𝛽3 0.0115 K s2/rad2 

𝛽4 0.0146 K/MW 

 

Most terms in Eq. (15) are easily estimated using the NREL 

database. 𝑁  and 𝑃𝑤𝑟  come from passing the wind speed 

through the curves shown in Figure 6. 𝑇𝑁𝑎𝑐𝑒𝑙𝑙𝑒  is not 

available in the NREL database, but we modeled it as a linear 

function of ambient temperature (which is available in the 

NREL database): 

𝑇𝑁𝑎𝑐𝑒𝑙𝑙𝑒(𝑡) = 0.5 𝑇𝐴𝑚𝑏𝑖𝑒𝑛𝑡(𝑡) + 250 (16) 

The coefficients of this equation were estimated by mapping 

minimum and maximum ambient temperature and main 

bearing temperature at the location reported by Cambron et 

al. (2017). 

D. ACTIVATION FUNCTIONS 

In this study, sigmoid and elu activation functions are used 

within the MLP layers. These functions are given as follows 

and Figure 20 illustrates these activation functions. 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1 + 𝑒−𝑥
 

(17) 

𝐸𝑙𝑢(𝑥) = {
𝑥               𝑖𝑓 𝑥 > 0

𝑒𝑥 − 1    𝑖𝑓 𝑥 < 0
 

(18) 

 

Figure 20. Activation functions. 


